CHAPTER IV

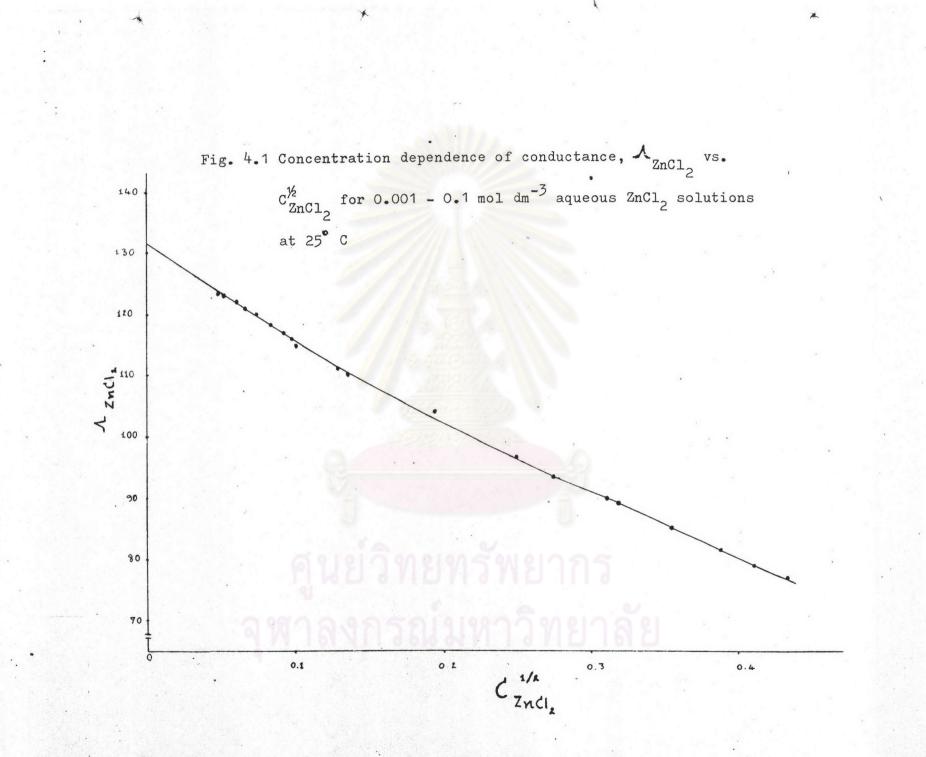
RESULTS AND THEORETICAL ANALYSIS OF TRANSFERENCE NUMBER DATA FOR DILUTE AQUEOUS ZINC CHLORIDE SOLUTIONS

4.1 Results

4.1.1 Conductivity Measurements of Aqueous ZnCl₂ Solutions In this work the conductivity was corrected for solvent conductivity by equation (3.2)

The magnitude of $K_{solvent}$ depends on the choice of the conductivity water used in solution preparation. In most cases, this correction was determined to within $\frac{1}{2}$ 0.5 - 1% of the value of $K_{solvent}$. The uncertainty in conductance results attributed to the precision in the cell constants, the accuracy of the resistance measurements and the error in the solvent correction relative to the measured conductivity of the solution. The magnitude of uncertainty increases with decreasing solution concentration. The determination of cell constants is precise to 0.05% and 0.06% for the cells used with moderate and dilute concentration respectively. The resistance measurement was accurate within 0.05%. An error in solvent correction was small in most cases. The uncertainty of this correction contributed about $\stackrel{+}{-}$ 0.01% error in conductivity of most dilute solution. On this basis the conductance results are reported with an accuracy of 0.1% over the concentration of solution studied.

Results of conductivity vs. concentration for 0.001 -0.1 mol dm⁻³ aqueous $ZnCl_2$ solution at 25° C are listed in Table 4.1. A plot of Λ as a function of $C^{1/2}$ over this concentration range is shown in Fig. 4.1. The same plot for M $\langle 1 \times 10^{-2} \text{ mol dm}^{-3}$ is also given in Fig. 4.2. The observed conductance of dilute ZnCl, solutions shown in Fig. 4.2 is an apparently linear function of $C^{\frac{1}{2}}$ (curve A). Linear extrapolation of this plot from the present data to infinite dilution by the least squares method gave $\Lambda_{ZnCl_2}^{\circ} = 131.34 \text{ cm}^2 \Omega^{-1} \text{ equiv}^{-1}$. This result is somewhat higher than the value of Λ_{ZnCl_2} 129.35 cm² n^{-1} equiv⁻¹. obtained by using the literature data of $\lambda^{\circ}_{7n^{2+}} = 53.0 \text{ cm}^2 \Omega^{-1} \text{ equiv}^{-1}$. (46) and $\lambda^{\circ}_{01} = 76.35$ $cm^2 n^{-1}$ equiv⁻¹. (25). The Onsager limiting slopes calculated from equation (2.8), Chapter 2, using $\Lambda^{\circ}_{ZnCl_2} = 129.35 \text{ cm}^2 \Omega^{-1}$ equiv⁻¹. and 131.34 cm²...⁻¹ equiv⁻¹. are also included in Fig. 4.2 (B and C).


4.1.2 Transference Numbers of Zinc Ion-constituent

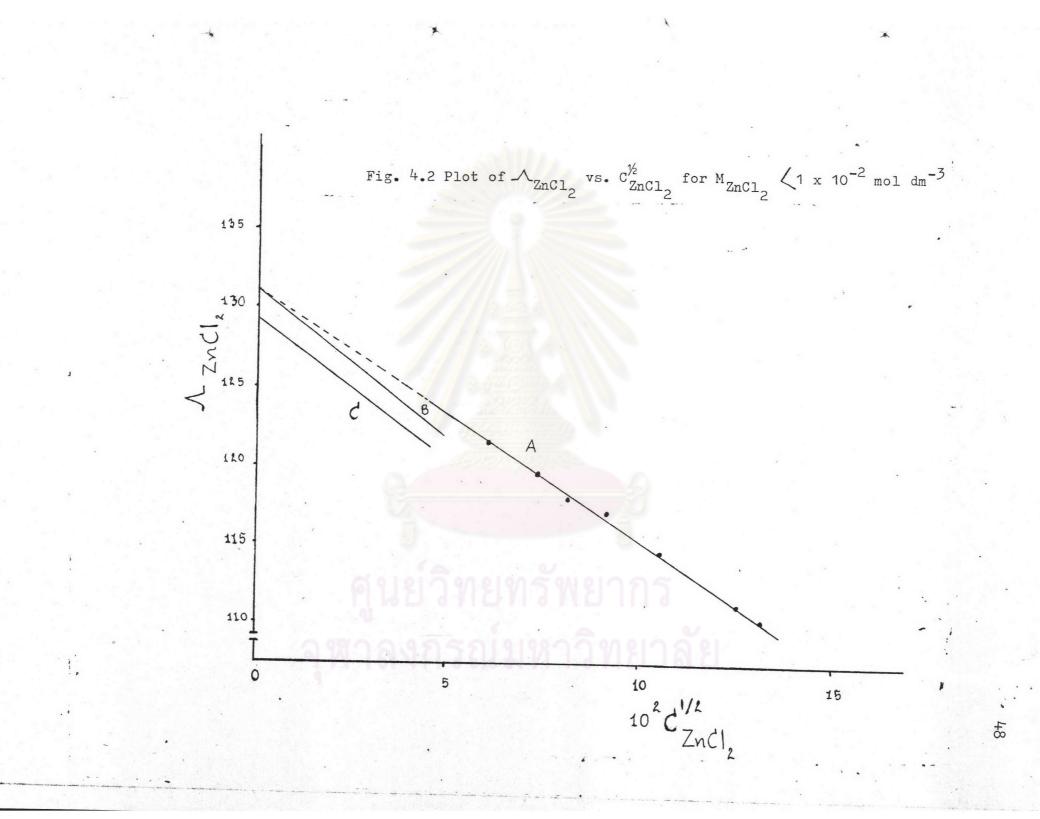

Transference numbers of zinc ion-constituent were calculated from equation (3.3) in section 3.6.3. The error involved in $T_{\rm H}$ is small compared with other uncertainty in this experiment. External analysis of the following solution ($m_{\rm ZnCl_2}$)

Table 4.1

$10^3 M_{ZnCl_2}$ / mol dm ⁻³	$\Lambda_{\text{ZnCl}_2} / \text{cm}^2 \text{,} -1 \text{ equiv}^{-1}.$
98.378	76.15
93.369	77.25
84.909	78.71
74.943	81.58
74.102	81.87
63.306	.84.79
50.003	. 88.75
48.187	89.50
37.291	93.53
28.835	97.12
18.700	103.69
9.1843	109.89
8.9436	110.23
8.6646	110.61
8.62986	110.55 ,
8.0527	111.26
5.6558	114.61
4.7239	116.19
3.4341	118.18
2.7446	119.74
2.1915	121.14
1.2836	123.18
1.1539	123.28

Equivalent Conductance of Zinc Chloride in Water at 25°C

was capable of giving a result with 0.1% uncertainty. Results of the transference number determination are shown in Table 4.2 . In most cases, the results from the two samples agree within $\stackrel{+}{}$ 0.1%. The results were reproducible, and independent of $\frac{2nCl_2}{2n}$ obtained in this work are thus reported with 0.15% uncertainty over the concentration of solution studied.

 $\frac{\text{ZnCl}_2}{\text{Results of } T_{\text{Zn}}} \text{ vs. concentration of aqueous } \text{ZnCl}_2$ solutions are summarised in Table 4.3.The mean deviation obtained
by averaging the value from independent runs is given. A plot of $\frac{\text{ZnCl}_2}{\text{T}_{\text{Zn}}} \text{ as a function of } M_{\text{ZnCl}_2}^{\prime\prime} \text{ is shown in Fig. 4.3. } T_{\text{Zn}} \text{ of}$ the dilute concentration range (0.003 - 0.009 mol dm⁻³) shown
in Fig. 4.3 is an apparently linear function of $M_{\text{ZnCl}_2}^{\prime\prime}$. Linear
extrapolation of this plot to infinite dilution by the least
squares method gave the intercept = 0.4079 with a mean diviation
of $\stackrel{t}{=}$ 0.0006. That is $T_{\text{Zn}} = 0.4079 \stackrel{t}{=} 0.0006$ with a mean
deviation comparable to the experimental uncertainty of $\stackrel{t}{=} 0.15\%$ in the dilute range.

 $2nCl_2$ vs. concentration of T_{Zn} vs. concentration of aqueous $2nCl_2$ solutions by Partington (22), Harris (23) and the present work are shown in Table 4.4 and Fig. 4.4 . Curve A combines the results at high concentration (0.05 - 0.4 mol kg⁻¹ $2nCl_2$) from Harris's e.m.f. measurements with the results at low concentration (0.003 - 0.09 mol kg⁻¹ $2nCl_2$) obtained by the indirect moving boundary method from the present work.

Boundary System	Current / mA	Time / hr	(A) ^m ZnCl ₂ /mol kg ⁻¹	(B) ^m ZnCl ₂ /mol kg ⁻¹	ZnCl ₂ (A) ^T Zn	ZnCl ₂ (B) T _{Zn}
0.4253 mHCl / 0.1200 mZnCl ₂	10	12.75	*0.09024		0.3550	-
김 영양 영화가 한 것이다.	10	12.75	0.09029	0.09024	0.3552	0.3550
			+0.00075		0.7551	
0.3758 mHCl / 0.1092 mZnCl ₂	10	11.00	*0.08035		0.3574	-
승규는 것은 것은 것이 같아. 이 가지 않는 것이 같아.	10	11.00	0.08038	0.08036	0.3575	0.3574
	11 10 -	23.00.2	State Die in		1	
0.3281 mHCl / 0.0892 mZnCl ₂	10	9.25	*0.07043	-	0.3587	
	10	9.25	0.07031	0.07040	0.3581	0.3585
0.2664 mHCl / 0.0753 mZnCl ₂	10	8.75	*0.05792		0.3630	-
e e e e e e e e e e e e e e e e e e e	10	8.75	0.05793	0.05794	0.36306	0.3631
	Po D O		o tim ti	N N	0	
0.2214 mHCl / 0.0618 mZnCl ₂	10	6.75	*0.04880	000	0.3676	-
9 N. I.	10	6.75	0.04876	0.048755	0.3673	0.3673

Results of the Transference Numbers

Table 4.2

Table	4.2
Table	4.

BUICS OF					
Current / mA	Time / hr	m(A) mZnCl ₂ /mol kg ⁻¹	(B) ^m ZnCl ₂ /mol kg-1	ZnCl ₂ (A) ^T Zn	ZnCl ₂ (B) ^T Zn
8	4.75	0.03292	0.03289	0.3732	0.3729
10	4.50	0.03128		0.3765	-
5	8.50	0.03121	0.03119	0.3757	0.3755
10	4.00	*0.02115	0 7	0.3796	E N.
6	5.75	*0.021115	🤊 🐪	0.3790	
10	2.00	*0.01616		0.3878	-
10	2.75	*0.01615	กสะ	0.3875	
8	2.75	0.01613	0.01611	0.3871	0.3866
8	2.50	*0.01321	ปาลัย	0.3884	-
5	3.50	*0.01322	-	0.3889	-
	Current / mA 8 10 5 10 6 10 6 10 10 8 8 8	Current Time / mA / hr 8 4.75 10 4.50 5 8.50 10 4.00 6 5.75 10 2.00 10 2.75 8 2.75 8 2.50	Current / mATime $1/$ hr $m^{(A)}_{ZnCl_2}$ /mol kg ⁻¹ 84.750.03292104.500.0312858.500.03121104.00*0.0211565.75*0.02111_5102.00*0.01616102.75*0.0161582.750.0161382.50*0.01321_3	Current / mATime / hr $\stackrel{(A)}{2nCl_2}$ /mol kg-1 $\stackrel{(B)}{2nCl_2}$ /mol kg-184.750.032920.03289104.500.03128-58.500.031210.03119104.00*0.02115-65.75*0.02111_5-102.00*0.01616-102.75*0.01615-82.750.016130.0161182.50*0.01321_3-	Current / mATime / hr ${}^{(A)}_{ZnC1_2}$ /mol kg^{-1} ${}^{(B)}_{ZnC1_2}$ /mol kg^{-1} ${}^{ZnC1_2(A)}_{T_{2n}}$ 84.750.032920.032890.3732104.500.03128-0.376558.500.031210.031190.3757104.00*0.02115-0.379665.75*0.02111_5-0.3790102.00*0.01616-0.3878102.75*0.01615-0.387582.750.016130.016110.387182.50*0.01321_3-0.3884

Results of the Transference Numbers

S

Tak	le	4.2

lary System	Current / mA	Time / hr	(A) ^m ZnCl ₂ /mol kg ⁻¹	(B) ^m ZnCl ₂ /mol kg ⁻¹	ZnCl ₂ (A) ^T Zn
Cl / 0.0151 mZnCl ₂	4	3.25	*0.01012 ₅	-	0.3923

Results of	the	Transference	Numbers
------------	-----	--------------	---------

Boundary System	Current / mA	Time / hr	(A) ^m ZnCl ₂ /mol kg ⁻¹	(B) ^m ZnCl ₂ /mol kg ⁻¹	ZnCl ₂ (A) ^T Zn	ZnCl ₂ (B) ^T Zn
0.0428 mHCl / 0.0151 mZnCl ₂	4	3.25	*0.01012 5		0.3923	
	4	3.25 6.25	0.01011	0.01012	0.3917 0.3913	0.3921 0.3909
0.0348 mHCl / 0.0101 mZnCl ₂	4	2.75 [.] 2.75	$*8.252 \times 10^{-3}$ 8.250 x 10 ⁻³	8 -	0.3929 0.3928	
	2	5.25	8.225×10^{-3}	8.230×10^{-3}	0.3916	0.3919
0.0380 mHCl / 0.0126 mZnCl ₂	4	3.00 3.00		8.993×10^{-3}		- 0.3921
କୁ M	2	5.25	8.985×10^{-3}	8.974×10^{-3}	0.3918	0.3913

Boundary System	Current / mA	Time / hr	(A) ^m ZnCl ₂ /mol kg ⁻¹	(B) ^m ZnCl ₂ /mol kg ⁻¹	ZnCl ₂ (A) T _{Zn}	ZnCl ₂ (B) T _{Zn}
0.0326 mHCl / 0.0097 mZnCl ₂	3	3.50	$*7.779 \times 10^{-3}$		0.3953	-
	3	3.50	7.775×10^{-3}	7.767×10^{-3}	0.3951	0.3947
	2	4.50	7.746 × 10 ⁻³	7•755 ₄ × 10 ⁻³	0.3936	0.3941
0.0264 mHCl / 0.0081 mZnCl ₂	2	3.75.	*6.330 x 10 ⁻³	6-	0.3967	
	2	3.75	6.318×10^{-3}	6.320 × 10 ⁻³	0.3963	0.3964
	1	7.00	$6.305_6 \times 10^{-3}$	6.297 x 10 ⁻³	0.3955	0.3950
0.0215 mHCl / 0.0069 mZnCl ₂	2	3.00	*5.164 × 10 ⁻³	ากร่	0.3975	
	2	3.00	5.163 $\times 10^{-3}$	$5.163_4 \times 10^{-3}$	0.3973	0.3974
٩ %	1	6.00	5.147 × 10 ⁻³	5.144 × 10 ⁻³	0.3961	0.3959

Results of the Transference Numbers

Table 4.2

Table 4.2

	RESULUS	01 0110				
Boundary System	Current	Time / hr	(A) ^m ZnCl ₂ /mol kg ⁻¹	(B) ^m ZnCl ₂ /mol kg ⁻¹	ZnCl ₂ (A) T _{Zn}	ZnCl ₂ (B) ^T Zn
				- 10 K		
0.0159 mHCl / 0.0052 mZnCl ₂	2	3.50	*3.843 x 10 ⁻³	-	0.3995	-
	2	3.50	3.839 × 10 ⁻³	3.841 × 10 ⁻³	0.3991	0.3993
	1	6.50	3.830×10^{-3}	3.826 × 10 ⁻³	0.3981	0.3976
0.0126 mHCl / 0.0041 mZnCl ₂	2	2.00	*3.043 × 10 ⁻³	2 -	0.3988	-
	2	2.00		1		0.3988
	1	4.50	3.036×10^{-3}	3.0315 × 10-3	0.3978	0.3972
	1000	1000	high all all		1	

.

Results of the Transference Numbers

* refers to a single sample was to be analysed.

54

-

Table 4	+.	3
---------	----	---

Cation Transference Numbers * in Aqueous Zinc Chloride Solutions

		2				
10	2 m	ZnCl ₂		Zn ^T Zn	Cl ₂	
0.3039	+	0.0004	0.3982	+	0.0005	
0.3836		0.0006	0.3987		0.0006	
0.5156		0.0007	0.3968	+	0.0006	
0.6314	+	0.0009	0.3959	+	0.0006	
0.7644	+	0.0009	0.3945	+	0.0005	
0.8239	+	0.0009	0.3923	<u>+</u>	0.0006	
0.8990	+	0.0006	0.3920	+	0.0003	
1.011	+	0.001	0.3916	<u>+</u>	0.0004	
1.322	+	0.001	0.3886	+	0.0002	
1.614	+	0.002	0.3872	+	0.0005	**
2.113	<u>+</u>	0.002	0.3793	+	.0.0003	
3.123	+	0.005	0.3759	+	0.0006	**
4.877	+	0.003	0,3674	+	0.0002	
5.793	+	0.001	0.3630		0.0001	
7.038	+	0.005	1980090		0.0003	
8.036	+	0.002	0.3574		0.0001	
9.025	<u>+</u>	0.002	0.3551	+	0.0001	

 $m_{ZnCl_2} = 0.003 - 0.09 \text{ mol kg}^{-1}$

* These results were obtained by averaging the values observed from independent runs.

** The high uncertainties of these results were due to the effect of 50% variation of current used for electrolysis.

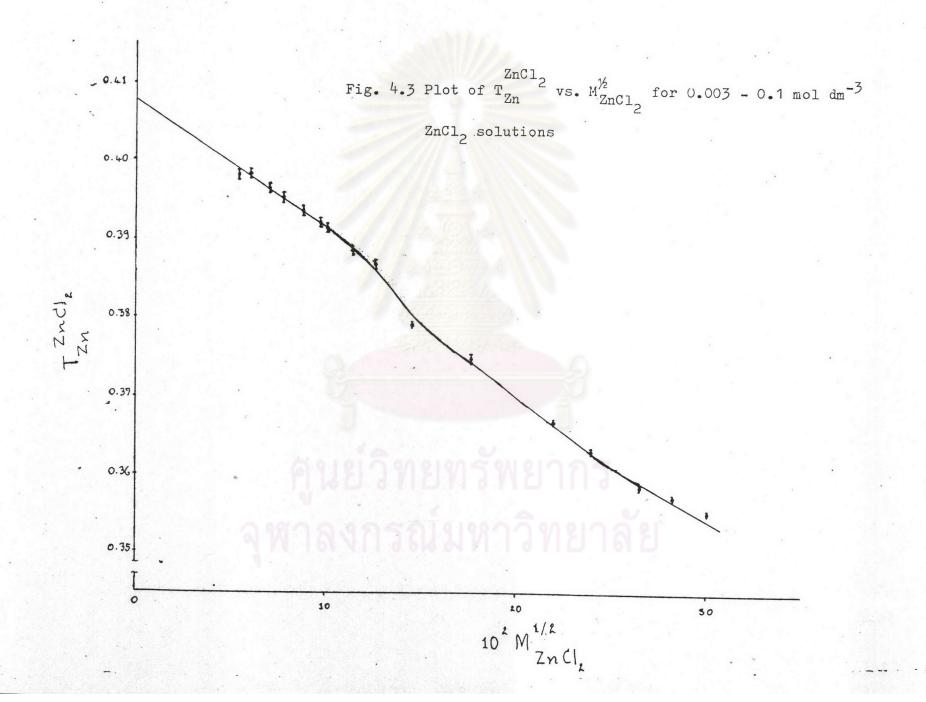


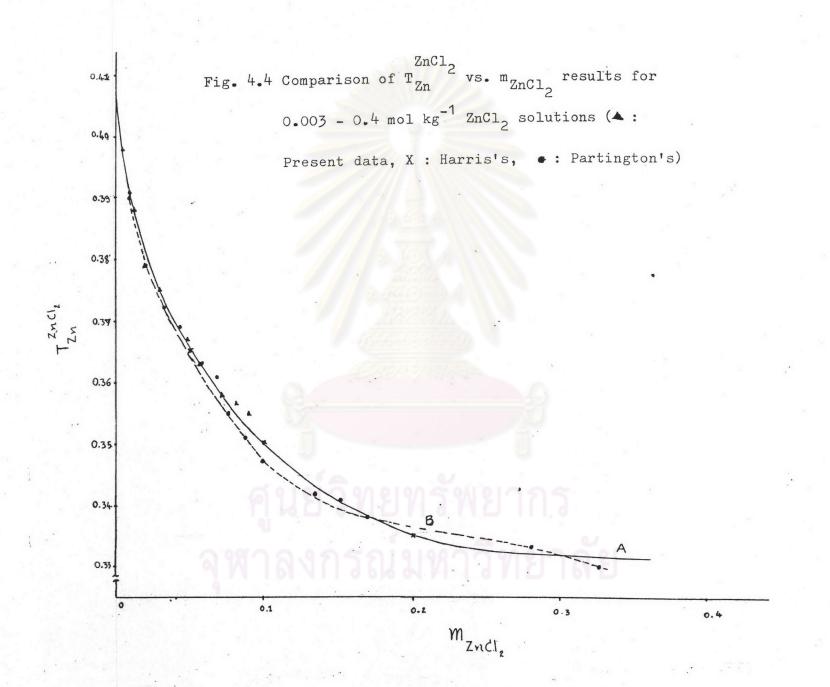
Table 4.4

Cation Transference Numbers in Aqueous Zinc Chloride Solutions

 $m = 0.003 - 5.0 \text{ mol kg}^{-1}$

m ⁽¹⁾ ^m ZnCl ₂	ZnCl ₂ (1) T _{Zn}	m ⁽²⁾ ^m ZnCl ₂	ZnCl ₂ (2) ^T Zn
general and the second s		1.	
0.003039	0.3982		
0.003836	0.3987		
0.005156	0.3968		
0.006314	0.3959		
0.007644	0.3945		
0.008239	0.3923		
0.008990	0.3920		
0.01011	0.3916	0.0097	0.390
0.01322	0.3886	0.0210	0.379
0.01614	0.3872	0.0327	0.372
0.02113	0.3793	0.0431	0.369
0.03123	0.3759	0.0500	0.365
0.04877	0.3674	0.0581	0.363
0.05793	0.3630	0.0672	0.361
0.07038	0.3584	0.0750	0.355
0.08036	0.3574	0.0862	0.351
0.09025	0.3551	0.0986	0.347
0.1	0.350	0.1344	0.342
0.2	0.335	0.1500	0.341

Table 4.4


Cation Transference Numbers in Aqueous Zinc Chloride Solutions

(1) ^m ZnCl ₂	ZnCl ₂ (1) ^T Zn	m ⁽²⁾ ^m ZnCl ₂	ZnCl ₂ (2) T _{Zn}
0.5	0.331	0.1724	0.338
1.0	0.171	0.2102	0.337
2.0	0.000	0.2800	0.333
3.0	-0.137	0.3271	0.330
4.0	-0.256		
5.0	-0-364		

 $m = 0.003 - 5.0 \text{ mol kg}^{-1}$

 $m_{ZnCl_2}^{(1)}$ vs. $T_{Zn}^{2nCl_2(1)}$ are results obtained from the present work by the indirect moving boundary method for dilute $ZnCl_2$ solutions (0.003 - 0.09 mol kg⁻¹) and those obtained by Harris from the concentration cell transference number measurements for $ZnCl_2$ solution above 0.09 mol kg⁻¹.

 ${}^{m}ZnCl_{2}$ vs. ${}^{T}Zn$ are Partington's results obtained by Hittorf measurement.

.

Partington's results for the concentration range 0.009 - 0.3 mol kg⁻¹ are plotted as curve B.

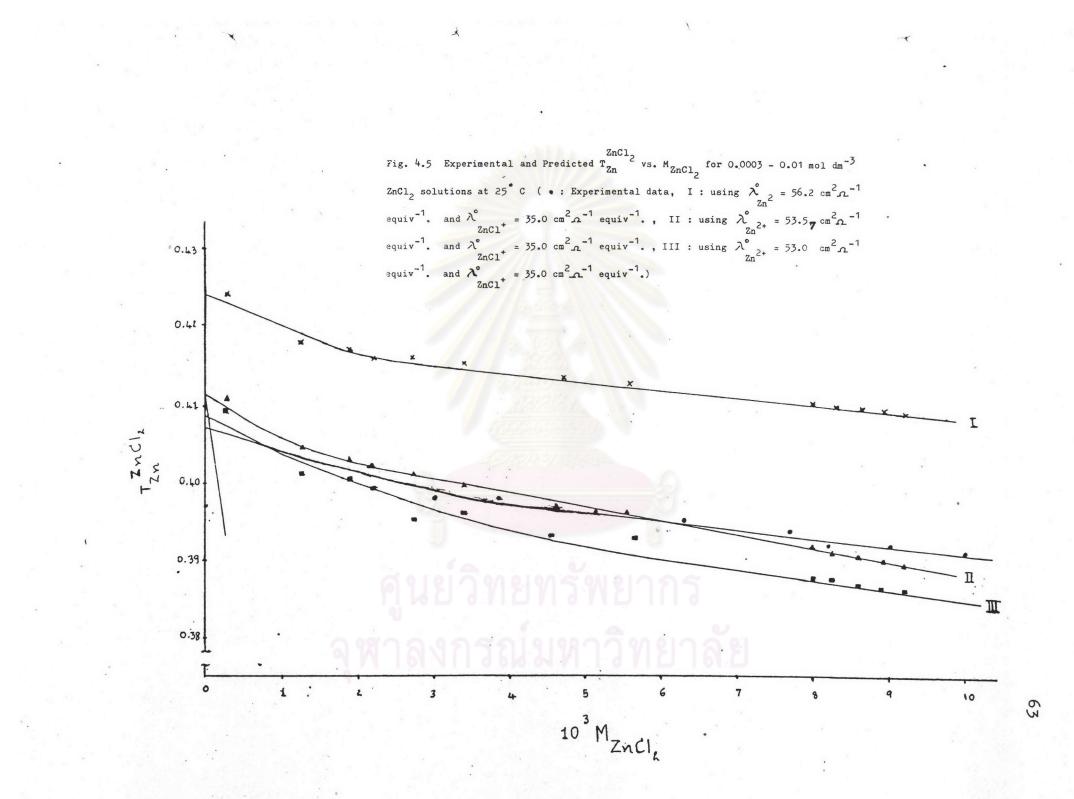
4.2 Theoretical Analysis of Transference Numbers for Dilute

Aqueous Zinc Chloride Solutions

The relationship between the cation-constituent transference number and the equivalent conductances of ionic species present in solution is given by equation (2.6) (Chapter 2) The Lee and Wheaton conductance equation, which has the usual form,

$$\Lambda = f(\lambda_{1}^{\circ}, ---, \lambda_{s}^{\circ}, R, C, K_{A}^{1}, ---, K_{A}^{X})$$

allows the equivalent conductances of several ionic species, λ_{i} (i = 1, 2, - - -) at any concentration in dilute solutions to be evaluated from known λ_{i}° values. These data thus permit the calculation of T_{Zn}^{-2} at different ZnCl₂ concentrations by equation (2.6). Owing to the limitation of the application of the theory, the analysis of the transference number data were considered up to about 0.01 mol dm⁻³ solution.


Various sets of $\lambda_{2n}^{o}_{2+}$, $\lambda_{2nC1}^{o}_{+}$ and R were used to $\sum_{2nC1_{2}} \sum_{2nC1_{2}} \sum_{2nC1_$

shown in Fig. 4.5. From this analysis, using $\lambda_{2n}^{\circ}{}_{2n}^{2+} = 53.5_7$ cm² $_{\Delta}^{-1}$ equiv⁻¹. which is the best value, curve II was obtained. Curve I was obtained by using the values of 56.2 and 35.0 cm² $_{\Delta}^{-1}$ equiv⁻¹. for $\lambda_{2n}^{\circ}{}_{2+}^{\circ}$ and λ_{2n}° respectively. This set gives z_{n}^{2+} $z_{n}^{\circ}{}_{2+}^{\circ}$ $z_{n}^{\circ}{}_{2+}^{\circ}$ respectively. This set gives equation. Curve III was obtained by using the literature $\lambda_{2n}^{\circ}{}_{2+}^{\circ}$ value of 53.0 cm² $_{\Delta}^{-1}$ equiv⁻¹. and the value of $\lambda_{2n}^{\circ}{}_{2+}^{\circ}$ = 35.0 cm² $_{\Delta}^{-1}$ equiv⁻¹. Using $\lambda_{2n}^{\circ}{}_{2+}^{\circ}$ = 53.5₇ cm² $_{\Delta}^{-1}$ equiv⁻¹. the value $z_{n}c_{2}$, z_{n}° was calculated to be 0.4121. The limiting slope of the zinc ion-constituent transference number was then calculated from these values using equation (2.9), Chapter 2, and is included in Fig. 4.5.

Τa	able	4.5
70	TOTC)

Predicted T _{Zn} vs. M _{ZnCl2}					
10 ³ M _{ZnCl₂ /}	ZnCl ₂ Predicted T _{Zn}				
mol dm ⁻³	I	II	III		
0.3044	0.4247	0.4125	0.4098		
1.283	0.4181	0.4045	0.4107		
1.915	0.4173	0.4032	0.4004		
2.199	0.4166	0.4023	0.3994		
2.744	0.4159	0.4011	0.3952		
3.434	0.4151	0.3997	0.3967		
4.724	0.4136	0.3973	0.3943		
5.656	0.4126	0.3957	0.3938		
8.053	0.4100	0.3916	0.3882		
8.271	0.4098	0.3912	0.3881		
8.630	0.4094	0.3906	0.3874		
8.944	0.4090	0.3901	0.3866		
9.185	0.4088	0.3897	0.3865		

(1) $\lambda_{Zn^{2+}}^{\circ} = 56.2 \text{ cm}^2 \Omega^{-1} \text{equiv}^{-1}$; $\lambda_{ZnCl^+}^{\circ} = 35.0 \text{ cm}^2 \Omega^{-1} \text{equiv}^{-1}$. (II) $\lambda_{Zn^{2+}}^{\circ} = 53.5_7 \text{ cm}^2 \text{ }^{-1} \text{ equiv}^{-1}$; $\lambda_{ZnCl^+}^{\circ} = 35.0 \text{ cm}^2 \text{ }^{-1} \text{ equiv}^{-1}$. $(III)\lambda_{Zn^{2+}}^{\circ} = 53.0 \text{ cm}^{2} \Omega^{-1} \text{equiv}^{-1}$; $\lambda_{ZnCl^{+}}^{\circ} = 35.0 \text{ cm}^{2} \Omega^{-1} \text{equiv}^{-1}$.

