CHAPTER IT

THEORY

2.1 Basic Theory

2.1.1 Conductance ‘ euce Number and Ton-

constituent

Two of the in solution are

Conductance and.tran r a solution
containing ions 1, uence of an applied
electric field X, d direction with

a constant velocit;

vy (2.1)
where u, is the mebility Of iou : is related to the
equivalent condaiﬁ____‘_ he 1 ) ,f"

,Iﬂ J
= u,F {2.2)
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After time t seconds,lvita Mi/1000 mole of i in the
volume vita passes across the plane, where Mi is the molar .

concentration of i. These ions transport an electric charge of =
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law, the condudbivity K, by 1ts deflnltlon (25) is thus,
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where"Ci is the equivalent concentration and

c = Ma1a]

For a single electrolyte solution thus,
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, the charge carried

1000 faraday.
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Jﬁeﬁﬁs i %4 or zero and

When an electrolyte such as KCl dissociate completely

into XK© and Cl™, the transport propert

directly obtained in practice. That is

ies defined above are
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C = A C &« ‘A ‘T
KC1l  KC1 K+ K+ c1™ ¢l
T = A .C / ¢
K+ K+ K+ KC1 KC1
T = A C / J\-K
c1” c1™ c1 C1 KC1

and ' il

However,/ 1itrcul es when we consider a

solution in whic agueous oxalic is a typical

2-

example. This so Ox and H20x in rapid

dynamic equilibria is the transport properties
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arising from the tr 8. and not of those of the

By, B

hydrogen and oxalate ‘are experimentally

measurable. the above i fhe transport properties are
thus insufficidnd digtrolyte systems. It is’
essential to iﬂ é,. ‘Ofi-constituent ", defined
‘electrolyte Qithout
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dissociated 8tate. Thus in aqueous ac:.d the 1on-const1tuent ;o

exlsta Wﬁ} a:g&ﬂﬁj mﬂw Cr‘}wm anElthe molecules

HZOX, while the ion-constituent Ox exists in the form of the -

!
as the possible 1on-form1ng portlon of =

species Hox , 0x° " and szx. Electrolysis of this solution results

in opposing flows of positive charged jon (H") and negatively

charged ions ( HOx , Oxaﬁ). Consequently, only the net flows of

v
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ion-constituents, and thus the transport propertiés of the ion-
constituents and not those of the individual ion can be
practically determined. This lead to the formal definition of

the transference number.

The " transference number " of a cation-or anion-

constituent is defined (6) net number of faradays carried

by that constituent inythe dilre 5u¢ of the cathode or anode,

é'xed with respect to the

passes across the plane.

\\\
‘SQ?\\\\ d supposing that each
; }\ ﬁ\\.‘- onstituent R, the

pssing the plane as part

respectively,
solvent, when
Following the
mole of ion 1
number of moles
of the ionic speo j taM, /1000 The

algebraic sum of the

electrical charge

Eakamie e 4 .
charges of its component-ion-col uents, that is,

Thus the net num;ﬂr of moles of R crossiga the reference plane is
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The factor !ZJ F Zi specifies the opposing directional effects

(2.5)

from the cations and anions carrying a given ion-constituent,
while the facter Zp f ]Zﬂ is required to distinguish between

cation and anion constituent. The transference number of ion-
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constituent R, T, can be obtained by multiplying (2.5) by ‘Zﬂ
and dividing by the total flux of charge transferred across the

plane in both directions, :lei‘ vitaMi/1OOQ faradays. Thus

(2.6)

Transference Numbers

The equ ompletely dissociated

T

electrolytes at ‘ow concentration is fodJ: to be a decreasing

linear funﬁlﬁ Et] eaﬂeﬂﬂczf ﬂ gjms. Extrapolation

to zero con@éntration ylelds the limiting equlvalent conductance

i AN Mﬂ‘im UNIAINYAY

% /C _AW {2.7)

as was first observed by Kohlrausch. The theoretical prediction

of constant A was made by Onsager, from which he found that
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J\L A -(311€+32)ﬁ (2.8)

known as the Onsager limiting law. In the equation (2.8)

Fe2
and , . ﬁ>
6T 1
where [ = [8’ﬁ v ‘ andsg, g are valencies

of the cation and ¢ Onsager limiting law

equation (2.8) is g ilute concentration

range and is mostly s dissociated electro-

lytes.

Transference nuibees }3: entially ratios of
oncentratlon than

r;rion dependence of the

to conductances lﬂemp‘
i

transference nambe?s of most com letely dissociated symmetrical

electrolyteﬂ f‘HJE} ’}ﬁﬁdﬁﬁ%%}ﬂ ‘§Jte solutions.

For these el ctrolytes, thg transfeﬁgfce number &}udtlon for
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( + ) - ok .
T {{zi ]z[ T lzl ", (2.9)
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Equation (2.9) accurately predicts the limiting tangents for most

of 1 : 1 electrolyte (11, 20) such as HC1l, KCl, KI, KBr, NaCl,
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NH401 and CH_COONa in aqueous solutions. It was also found that

3
for uni-univalent electrolytes, TA increased with concentration
when it exceeds 0.5, decreased with concentration when it is
less than 0.5, and changes hardly at all when it close to 0.5.

In the case of higher valent-salts or unsymmetrical electrolytes

for e.g Na,80, and CaCla(ZO)

he observed TA value do not
\ :

approach the limiting i

‘ ; on (2.9) even at extreme
dilutions. For associa ect& a complicated concentration

— .
dependence of the e nUMbEPSHC result. A change in the
ﬁ;gt\é es in solutions lead to a

proportion of th

marked change in

2.2 Theory of th€ mg@V

The moving hundars sg~d‘is known to be the most

precise technique ava mining transference numbers

in solution (6). Genera-ﬁqu“T? = moving boundary theory can

be found elsewhekhe 1 ;;Qplained with

A

reference to Figf2 m: a rising boundary

i

experiment. Suppdse the boundary is firsgﬂformed at position 1

e TN SRS 4

(AY in short) and a following or indigcator solut&’pn ﬁ of an

e AV UN RN JRY A8 v

concentrations respectively.



Fig. 2.2 Schemg
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ndary Experiment

If a cons t cu S passed EL rough the solution

in the mov1 bou ndﬁitube of aMJ.form cross~sectional area

EleddhELIL T W) B daracay o2
electr hen he boundiry betweefinthe two solitions will
move agﬁ’] ]El‘i)gu ﬂ\malm&l‘q alﬂnltlal
position 1 through an observed volume V - to a position 2.
The effect will be to sweep out 2 M \Y p

A"A obs

ion-constituent A across the imaginary plane KL and replace the

a for a tlme

.equivalents of the

011288 3

15
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same amount of ion-constituent B in the region between the
position 1 and 2. This gives the observed transference number

of the leading non-common ion-constituent A :
ol o
o T -
T,(obs) = \ZAlMAvbaF/J. = lzdmv . ¥/1¢ (2.10)

where Z, is the algebraic, herge number of A. This equation

transference numbe
constituent and n
special case of a

ion-constituent R

\\x equation for a given

z\ - lz\mﬁ—qt- £Z2.11)

where R is present on both a boundary (27, 28).

-,E,}:;z:z.*.::;:;;::;.;;::;:,; ral equation (2.11)
“Vj Y ‘ !

reduces to (2.10,“ Im

Therefore, as

In equatiom £2.10) the yelocity of the boundary, Vi

— upoﬂtu E}}%Q‘H@Mﬂ’]ﬂﬁmon only and is

usually 1ndependent of theftype and gnitial congentration of the
ror1oMn b Gk S S Wl i dadbd LELE B Bhensn seseny
wide lj%its if the cell is properly designed. Under a steady
state condition, the concentration of the indicator solution
near the boundary adjusts itself automatically to a new value

such that
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(2.12)
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This is the Kohlrausch equation and MBﬁ is the Kohlrausch

concentration which usually differs from the initial

e

concentration MB . The extent of this adjustment was

demonstrated with the ai ot 5 hiieren scanning camera by

Longsworth (29). It _wa , ime: " y.observed that under the
influence of a co - ' at the mov1ng boundary
moves with a ste: ntration distribution

M, of any ion-c

R urhood of the

boundary remaine : s met: )f coordinate x

(distance along t _ time & \\ﬁ ectrolysis. That is

It follows from.the

integration tha L

E
o LA quﬂmw AN, o eon
”QWWQ‘ﬂTﬁW’WT’JWH’]aH |

QA For the system where the non-common ion-constituent

|
+ K

M v

o
disappear across the boundary i.e. M;s = 0 and MB = 0
in the pure P and « phase respectively, AKA = KB = 0

such that
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That is, the indicator ion-constituent at the boundary must move
at the same rate as the leading ion-constituent. This can occur
only at one concentration for a given concentration of the
leading solution. Therefore, under a steady staﬁe condition,

the automatic adjustment must be achieved and the Kohlrausch

equation (2.12) must hold.

The moving bo require volume corrections

This fundamental

However most of ne assumption about

the constant par w*:‘ t which was
experimentally u y' o t \\ her and Spiro (12)

have pointed out be overcome simply by

returning to the Lewis and employing

apparent molar nolar volumes.

A detailed accol ;ﬁ’employing apparent

molar volumes form:he equati 10 an%2.12) was then given.,

Any changes in the fpartial molargyolume of the solvent ( 6

| um NSNS ot e s

of the solute ). This iﬁllows frem the bas1cui ation for.the

m—le SRRbLIET b LEkaR

nAY mole solute :

ent and
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Vo= on by 8y = 08 +n
1 = My +m 0, = MF = Wyw §AY

where § denotes partial molar volume

and @Z is the molar volume of pure solvent

The Kohlrausch equatio ‘ sgtherefore corrected to

B *p * P
I lzgl My (1 _‘ZB\ g {3,793
TZ‘ IzAlM 44 AR

quation (2.13)
Milios and Newman (32),

e ) .
The volume corres hirsusch equation (2.13) is also
subject to a solye ;jbtion will be discussed

in the method of/e X )

23 Determinatiogﬂof the Transference Nu%&ers by the Indirect

o Bourﬁ%gyw NI gN9

Ther are two maln‘appllcatlons of mov1q€hboundary theory

to trQ Wqﬁ@nﬂw Hﬁg‘}m%quae&lto as the

dlrect oving boundary method. In this method, an electric current

maintains and moves a fairly sharp boundary between the solution
under investigation (the leading solution) and a solution of a

suitable following solution. The volume traversed by the boundary

is measured when a known quantity of electricity has passed
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through both solutiéns. The observed transference number of the
leading ion-constituent can be calculated from equation (2.10).
The indirect moving boundary method is complementary to the
former method in that the solution following the boundary is the
solution under investigation. The transference number in this

solution is determined by measuring the adjusted or Kohlrausch

concentration behind the bou and making use of equation v
(2.12) or (2.13). ILudeex : as sometimes been called
| —
the adjusted indi ¢ ‘Q‘\‘\\
General e 'v“ i Q\ﬁﬁ\\: 5 for the moving boundary

uthors (6, 26).

AN
technique have HEenglid ,\t\s\

requirements are & sed-- 2850

The conditions and other experimental

2e3.71 Conditi

Stable boundariﬁﬁéégpag_ ed for moving boundary

_experiments,. Tg-v__qw-um"“uq;m"_—un—er ------ ;god by considering

the so-called eTegtr ‘

.2 this cffect operates automatically

(6, 26, 34). With

reference to Flg

Zhenever trﬂnuﬁf% 7] Ejbmiw Ejﬂcﬂ'ﬂ? ion-instituent

is greatd@ than that of the follow1ng constltuent B in both

QR RN TRILATINGVG - e

uA 2 uB
wt P owr

=<3 o« P
and LY up
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where &P refers to a mi#ed phase. In most cases, the passage

of current will cause a greater potential drop in the following
solution than in the leading solution. This is also shown
diagrammatically in the Fig. 2.3, where values of the electromotive
force are plotted as ordinates and distance along the measuring

tube as abscisae.

force

Electromotive

-
ot
L)
s

i

|
[

Dlstance along measurlng cube

ey Dﬂyﬂ Ilil'.ﬂmeﬂ'lﬂi ¢ soins sovmte

ammfmmumaﬂmaa

usion or convection occurs, any ion-constiuent
A may drift into the BY solution, they will encounter a high
poteﬁtial gradient and will be sent forward to the boundary.
On the other hand, if any trace of ion-constituent B diffuses

or is carried by convection into the AY solution, it will
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experience a lower potential gradient and move slower than ion-
constituent A nearby, and will finally be overtaken by the

boundary. This requires that

E PR g
By ? Y% Y v

o p
when E and E are pote

respectively. Under sus e tal conditions, a steady
e

state can be achieyed by=£hig rew action counteracting

_,

~ .1te thickness, of

L4\ \\

the convective an

Boundarie

the order of 0.01 th (26) have derived

an equation for thij

It is obvious gnge between the

aosiitties oo -constituernts, the

sharper and faotjn the boundary. High cud

the boundar ﬂall r] Ter factors may
come into plEy, the or assoc1at10n effect whlch causes the
“°bllﬁyﬁﬂ‘ﬁiﬂﬂ‘§fﬁﬂﬁ'ﬁ“’ﬂﬂﬁﬂ*ﬁl“mr“

It is therefore essential to recognise the possible

ent therefore sharpens

disturbing effects which may destroy the boundary stability.
Many experimental investigations have been carried out to

develop suitable experimental conditions. Certain disturbing L
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factors can be largely eliminated by proper design of apparatus

and suitable technique.

2.3.2 Experimental Conditions

The indirect moving boundary method requires the usual

moving boundary conditions as well as precise analysis of the

indicator solution.

1. Gravi sl Y dient. TFor rising

boundaries, the : 5 \_f ~must Nave higher density

than the leading ng boundaries the

reverse must hol hat, for rising

d _caﬁﬁru. ntrations should be equal to
Llrausch ey ition so that the system

is gravitationally stabile-For®
T T

use initial concentration-equal: ess _than the Kohlrausch

boundaries, initi
or greater than thelfKg
ng boundaries it is safer to

- -
concentration.

‘ﬂk }“
2 Difﬁsion, i © from@he concentratio.n

gradient around an® @lectrode orldn the vicinity of the

cc:>ncentr'a’ciaql uﬂgﬂﬂmﬁwﬂ&ﬂl thickness of the
boﬁndary but not its rate Jf otio 5 i rﬁ‘ ce can bhe.
reducea@qmgcaagitlimeﬂtmj ;ﬂﬂﬁn ﬂreasing the
time of electrolysis. This point is very important for the

analysis of the indicator solution in the indirect method.

3. Joule heating sets up a radial temperature

distribution with maximum temperature at the axis of the moving
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boundéry tube and the resulting density differences cause
convective mixing. This disturbing effect can be decreased by
using tubes of small bore (i.d. between 5-2 mm) and the current
is kept small (€5 mA). In solutions of low conductivity (low
concentration, ion association) temperatures may rise by several
degree so the transference numbers must be measured at several

values of current and e ’k’/

current variation sho e 1 o SO. for every system and

| — .
the results of the t ( numbe emain constante.

of zero current. A twofold

L. Tem the boundary. During a

determination he & medsuring tube and the
following soluti an the leading solutione.
Thus the two solu 3" - the boundary are at slightly
different temperat o _tL gradient between them

V. i ; : el
sets up thermal convectibn“6f Ll Li¥ions in ‘the wvicinity of
the boundary. This e by the restoring action

depending on thé V - :" the current.

5. IV1echml1ca1 vibration of the mparatus may be
avoided by m ﬁ Bfate ro ther mechanical
devices. @M ﬁgﬂﬁ tj}]aﬂ iability towards
mecha %r‘g ﬁjﬁ%ﬁﬁtﬁ E»lx,t] éﬂgl bore than
i :ae aiﬁ lj

in a

6. Electrical migration of ions introduced by the
electrode reactions to the middle compartment can be reduced by
increasing the volume of electrode vessels, which a certain

distance away from the middle section. A minimal interference
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from hydrolysis in either solution is required to allow precise

analysis of solution.

2.3%+3 Analytical Method

One of the most important basic requirements of the

indirect moving boundary technique is the analytical method of

techniques for the" ohlravsch concentration.

interferometric (36) and

een prominent. The

Among them, conduc
the potentiometri
refractometric me tly limited to the use
of Tiselius cell f "~xfmponent systems.

Details of these me# eleswheres (6, 8, 9, 10, 29)

Muir, Grahs oointed out that the

Kohlrausch relation rz;ﬁ%@¢§5£iﬂ nt correction. They consider
. Ll 2 2 L

a KC1l/NaCl syst@s_which save "“t;,;_;;;;_%; g with those

othod within 0.03% .
!

Their results were corrected for solvent impurity by carrying

out blank ﬂéﬂﬂ% ﬁW&g ﬂﬂﬂﬂﬂ of amounting to

110 £ 10 . 12depcndent of solute (NaCl)

~ARARINTUUNIINYINY

Recently, Gwyther and colleagues (37) have discussed

obtained by the‘lﬁr'

the solvent correction for the indirect moving boundary method.
The equation used by Muir, Graham and Gordon was disproved and

a new equation derived, such that
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)
n oL
B B P
d_(corrected) = - (observed). . s
T a1 P
A A
Pd' KAY
where ! = = K°°
AY . solvent
similarly Sl & e 5
— e e
| — L —
where K refers
The solvent corre
K s o
solvent
Kpy
%
solvent
AY

1
¥ |

The value of K olf to be us in the solvent correction is

necessaﬂlugqmg%jm HAF G e ot en

bulk solvent Contamlnatloqrcan be i troduced eliyer in the

ors WA Tl BARHA B e

solutlons the effective solvent conductivity cannot be reduced

much below 1 x 10—6 J£1. cm-1 (37).

For the analysis of the indicator solution, it is

necessary that the Kohlrausch concentration should prevail



over a fairly long section of the tube. These point have been
investigated by same workers (29, 36, 37). Quantitative checks
on the extent of Kohlrausch adjustment have been carried out

in this work and will be discussed in detail later.

In short, the accuracy of the indirect moving boundary

he above precautions and

asdbeenwsuggested that (6) each

e

system should be te with respect to the

determining factorg

AU INENTNEINS
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