CHAPTER IV

VECTOR-VALUED SUBHARMONIC FUNCTIONS

1. Introduction

Let (E, || ) BEwas /4.(593 Appendix at the

end of this chaptﬂr “fin raa.l field R endowed
with its absolute va = - \\a\.\\ u 'is an example of a

Banach lattice. ! fi. i ’\\\ ‘1\ is called the
positive cone of E| € T € \\ d positive. We denote

by E' the set of a

tenals on E.

By an extended fBa a &, we shall mean a structure
obtained by adjoining to ot ice E the ideal elements

4+ @ and - = and® ;;:.:’_u -ational conventichs:

A X

X + (+®) = +8 )

ara‘xEE,

0; = 0 % if A = 0 where A€ R;

S f;l.uﬂﬁ“a HINEAN
= ARSI INEAY

Let m be a positive integer and Q1 be a subset of the euclidean
space R". 1In this chapter, we wish to find a good definition of a
vector—-valued subharmonic function f; @ — E in the sense that it
should be a natural generalization of the classical one. We then

use this definition to prove some related theorems on subharmonic
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functions.

To this end, we begin with an attempt to understand how a
sequence lan} in E converges to - ®. In 52, we present several
possible dafinitiur;s that can explain the nature of convergence to
- @, With the motivation from §2, we p;esant a definition of
vector-valued upper semi-continbobs i tion in §3. We study
integration of functionSwwi 1 val é& ;gnﬂad Banach lattices in

§4. Then we shall d afi; alued subharmonic

functions in §5. s on hyperplane

means of wvector-vas

2. Convergence to - J

Let E be a B3 sequence in E. Some

possible definiticns o \ = * are the following:

Definition A. The sequence ] inorized, i.e. there is no

a, E. E such tha'y e e
V

© a5 n—+ @),

Definition B. (VE =

““fmwmmrﬂ%*wﬁ’i [ e

Definition D4J vp€ E_, In, E,H,Vna-n la < p.

Mﬂﬁa‘%ﬂﬁﬂﬂ%’%@%ﬂqﬂﬁ

[a £ -p + q, where ﬂqﬂ-cul

Let {an} and {hn} be two sequences in E. In fact, we need

a definition of convergence to - ® such that we can prove the
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following properties.

operty 1. - @ = - = — 4 ™ ) =+
Pr rty 1 tan—; as n = + ]&[bn-—l as n + )

tan'v'bn—»u“aan—yd-w ) & {anﬁbn—i-“u n-+ + = I

Property 2. (a — - ®asn-+%) & (IME R, yneEN I IoXl < M1

together, we get thg

Theorem 4. 1

(4.1.1) Propertyf 1 i#*trus gfly injthe case of minimum.
{(4.1.2) Pr-::-perty

(4.1.3) !
Y

pe | Ewo sequences in E,

Proof. To prove {-L 1 .
J.Il'

since a Ab < a_, t]f.- (a ADb_ ) is pot minorized if i.’a ) is not

sinorized ﬂ%ﬂ%ﬂ?ﬂﬂ?ﬂn dering the

following exampl e.

amaﬁﬂmummmaﬂ

@rhe space C[-1,1] of continuous real functions on [-1,11],
endowed with its caponical order defined by "f £ g iff f(t) £ gft)
for all t € [-1,1]" and the supremum norm, is a Banach lattice.

Define two sequences {anl and [bn} in ¢c[=-1,1] as follows:
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=1 ' 0 1 e} (-1 € t < 0},
an{tl =
-nt (0 <" €57 35
(=1,-n)y n %n {1,-n)
nt (=1 £ &< D),
hn{tl =
0 0t ),
where n = 1,2,,.. ';7 ] ,‘ it Lhé sequence {an} and {hhl

are not minorized, BUCsvb T 0 @ then (a vb) is

minorized.

For (4.1.2), consid We note that the

space L1{ﬂ,2l of tions on: (0,2) ,endowed

with its canonical® ordegfdefingd g 1ff f(t) < g(t) a.e. on

(0,2)* and L1 norm Jefine two sequences tan]

and (b ) in L' (0,2) as

L =z -1,

Yo < t < 1/(n-1)),

11 (2 - (1/(n-1)) < t <2),

(otherwise),

i ﬂwswawni

(0 < t < 1/(n=1}1,

(otherwise),

where n = 2,3,... We note that the sequence (anj is not minorized,

For, suppose not, we can find g € L1{G,21 such that g £ a_ for all n.

Thus, by definition of a s g(t) < 1/(t-2) for all t € (1,2) and then
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|gte)| > |1/(t-2)| for t € (1,2). Hence

2 2
J |gtt)] at > I [1/7ce-2)|dat = +=.
0 1

This contradicts to the fact that ge :ﬂtn,zl. So, we-have the

regquired result. Moreover,

= 1},

bt Eeetyfae
I e _ > 2):
Hence "b;n 1 £ / y 4 F all n, so
L r o N
tah + b ) is min ' Y

For (4.1.3}, con = Cl[-1,1] as

in (4.1.1). Defi
anft}

. ha S e e g - al . A ¥
It is obvious » cosing e' € E+\{ 0}

to be the evaluatior t 7 2 £(0). We get u'{an)

= 0 for all n. ﬁj e e’ an = as . This proves

ﬂ‘UEJ’JVIEJ‘VIﬁWEJ’]ﬂ‘i

Th em 4.2. For DaEinition E, we have

o TR BRI Bl stk T PX THN

(4.2.2) Property 2 is not true.

Theorem 4. 1.

(4.2.3) Property 3 is not true.

Proof. To prove (4.2.1), let lan] and Ibn} be two sequences in E

which converges to - @ according to Definition B. For each n€ N,

110295825
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we have
annbn € a.
Then, by assumption, we have

-tanhhnl >-a > 0.

£ %
: mta_,_-a

<o n
R\ Consider the Banach

Hence, for each n,
a h,b £ 0 and®

This implies anhh
n—+ * . The case

lattice E = Cl[-1,14fng

(b ) as defined in
A A EE is E" d hn-.—’ -®mag n—=+ =

But a_Vb =0 for ¢ B ooy =.

For (4.2.2), consided thdiBanach debthcalE = C(0,1]). Define two

b_ (t) = —'l(t-1} n;s. 0 T O B0

ﬂum"’ tmmmm. 1

sup

N TN

0 for each n, so an+bn+f+-“..

(1,-1)
For (4.2.3), consider the Banach

(1,-2) lattice E = cl0,1] and define (a )

as in (4.2.2), Choose the evaluation
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map e' € E! \ {0} such that e'(f) = £(0) where f € E. We get that
a'tan1 = 0 for all n. 5o e't’an}—ﬂ- ® as n—y+ ° .

Theorem 4.3. For Definition C, we have

ot

(4.3.1) Property 1 is true only in the case of minimum.

{4.3.2) Property 2 isg R

Proof. To prove (4. two sequences in E

which converge to Then there exists

ME R+ such that, o
+ y .
la ll < :

Since unhbn £ a s th nnbn] >a > 0.

|/ hi —
Hence || [anhbn]"'" £ ||nnﬂ for all ne N.

This proves that Tha GaBe Sf maREmAE L8
not true. ,' -

41 ] and the sequences
(a ) and (b ) as ¢ efined in (4. s easily seen that a_— - ©

andb—»-waanq % Euta\fb l}foralln,aoav‘b-_h- as

i ﬂ’lJEJ’J‘VIEWIﬁWEJ’]ﬂ‘i
‘Qﬁ"lﬂﬂﬂ‘imﬁm‘?ﬂﬂ'ﬂﬁ 4

e 8 as n— + ® and there exists M, such that, for each n,
“bh|| < M,. Then, by Definition C, there exists M, € R_such that

lla:" € M, for all n. We cbserve t.hat.- for each n,

Ha, « o Il = lta, + b+ (2 + )|
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+ - + -
< llagll + logll + llca, + b I

< M+ M, 4+ ||[a +hl|]|
and
fla_+s [l = lla, + o,
tal + bn}"
la <+ b;l[]-
Hence

Ha; + h:“ + bn}_"

h;ﬂ > Ha;[]—b + @

Since ||a: * h:"

as n— + @ ,

ey ) 4 .e\n4+ % . This proves that
an+b — -~ as n 3% ©

For (4.3.3), consider E ,:_:_:2" 7 ine {an'l as in (4.1.1),

we see that a . '--; Sy A e all n where e'

n . -

l y_ A, ‘
is the evaluation '-,-F-l-
4 i)

®Fén DefinitiondDy we have

A A NEINENS
MR SNURTYR ) (05

addition structure,

every norm bounded set is order bounded.

(4.4.3) Property 3 is true.

Proof. (4.4.1) is obvious from Definiticn D.
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For (4.4.2), let (a ) and (b ) be two sequences in E with a_— - =
as n — + =@ and there exists M & R+ such that, for each n, ||b:l < M.

By assumption, we can find g € E+ such that

4 :
(1) hn £ hn £ g (for all n).

Let p € E+, we can find

(2)

For (4.4.3), let —t =™ as N — + @

and let e' € E; number. Since e' # 0,

there exists x € E B ghat &' {x 0@ (x') - e'(x7) £ 0.
This implies that el Wlis there exists y € E_
such that e'(y) > 0. large that e'(n;y) > c.

Hence, by Definition Dy therk eiis such that

- -

.“ : |
We note that a_ “n.y is equivalent to -a_ ¥ngy > 0. Thus

e I

A UHINHRINEINT

U
This proves that e'(a_ ) < -cffor all n 2un. . Hence ghla ) — - = as
o A R IUUNNBUIN Y

q
We observe that it is difficult to find a counter example

for (4.4.2) since there hardly examples for T ® according to
pefinition D. However, there are such examples for Definition E

In fact, -ne — - @ for almost units e of E (see Definition 4.3 in &3
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of this chapter for the definition of unit).

Theorem 4.5. For Definition E, we have

(4.5.1) Property 1 is true.

(4.5.2) Property 2 is true.

Procf. To prove (4.5. é two segquences in E

such that an—- - = ‘.-' en there exists

HER+sunhthat 1.néﬂsuchthat

2

(3) ¥Yn = n., 39 E Al - v q,4 whare 1“ B

(4) Yn ;'nZ’ 3q2 e s q., whe: \ qzﬂé M].

since, for each n, .

{3) that anﬂbn——i- =

as n— + ®, For the case le note that, for each

ny» max{n,l ,nzl. ]

= ﬂﬁm‘?‘lﬁﬂ?’w"&i’mi

Qﬁﬂﬁvﬂﬂifﬂﬂﬂﬂ‘l"%'ﬂﬁﬂﬂﬂ

where |q1| + layl € B ana |l lag| + lay| Il <M + M = 24, Therefore

(5) implies an\.fhh—n- @ ag n—+ =,

For (4.5.2), let {anj and (hn} be two sequences in E such that



a —-= as n =+ = and there exists M, € R_ such that "h+|] <M
n 1 + n 1

for all n. Then there exists Hz A such that for each p € E+ we

can find n, € N such that

(6) ¥n>n,Jq9€E L[ a < -p+q, where lal < m,1.

a +b - @ aszn
n o

For (4.5.3.), let e

Then there exists M @ F . E E_ we can find

n.,':.I € N such that

(7 vn > o all < Ml

v Y )

Since e' is contintbus; | '€ By ||x|| < M} is bounded

;! ¥

by M,, say. Let y E',E be such that e'(y) > 0. (Such a y exists

s S0 L F9 1) BT BRI om o
Qﬁﬁa\iﬂ‘iﬂl‘ﬂﬂﬂﬂmﬂﬂ

Raplar.:a p in (7) by n,y, we can find n, € N such that
vn2>n,, 3r€ El a < -ny+r, where frll < M1,

Hence, for all n > Nyy we get

-a -.{n.ly -r) = 0.

a— ~SEER I+,

41
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Thus
-a‘{an} ae'(niy = r),
and then

a'{an} £ -e‘tn.lyil + q* -a'{n.ly} + M, £ -c.

(i) It fol _ ThetPen 5 that Definition E has all
necessary properti 8 d have for a sequence which

converges to - @ . iition E for the following

discussion,
(ii) Consider the Banach lattiee E - L'(0,2) as in the proof

of (4.1.2). Defig fo ow

oA
-

Y

r.l‘r ¥ l,

¥

where e € R @xfind that a @A - ® as n — + @ according to

s ﬂ{ﬁﬂ X111k Tt p I
P I

choose M = 1. For each n € N, we define
AL = {t € (0,2)] ptt) > nel.

1
Since p€ L (0,2), then mtﬁn‘.ll—- 0D asn— + @ (where m is the Lebesgue

measure on the real interval (0,2)). So we can find nnE N such that
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I p(tldm(t) <« 1.
A

"o

Define g on (0,2) by

Thus g € L (0,2) a
-ne = an £
where "qﬂ 1 % T

L

3. Vector-valued semi S e
Definition 5. st -4l e ‘_ ity subset of R™ and E a

Let

Banach lattice. on. Then f is said to be

(vector-valued ) ipper—semi—eontinuous—turseeel on 0 if

A

x €48 ).

{1]-"{):}{

(ii) sequenc&@Af ) of continuous functions

Ffumnumwmm
AR TSI VT IYE Ty

for each % € 1 where the convergence to - @ means

that it converges to - ® according to Definition E.

A function fi(x) is said to be (vector-valued) lower semi-continuous

{l1.8.c.) on R if -f(x) is u.s.c. on @1 .
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We note some properties of u.s.c. functions. The first one
is very simple; it follows directly from Definition 4.1 and the

properties of Definition E.

Theorem 4.6. If f,l,..., fk are u.s.c. on fI and 11,-,. 3 Jkk

are non-negative real num

By using the relatio ) fafid (71 8in the Appendix, Definition 4.1

Theorem 4.7. &f £ ts “anﬂ,tlmnsoara

gix) = inf fn(x].
n=1 to k

Now, we shall " : or-valued upper

semi-continuity.
Jﬁﬂﬂﬂ'ﬁ“ﬂﬂ’?l“ﬁ SNBINT
h.} Ix ) » - @ J;han. for am:h - there exists a

q HARHRIRH IR0

yxeu ]l - sxn*l <e 1

(ii) If f(xu'.l = - ® , then there exists M € R, such that

for each p € E_ there exists a neighborhood U of X in R



45

such that
Vx e U, 3g(x) € E [ £(x) € -p + q(x), where [[qx) [ < MI.

Proof. Since f is u.s.c. on 1 , then there exists a decreasing

Ia on @l such that
() £, (x)—» ¢l "': : é all x € Q).

. ———
To prove (i), let Atd supposé-that T 8> == Lete>0

sequence {fn] of continuous fun

Since f;1 is contirlo . o "' exist: eighborhoed U of Xy
in f1 such that
I

(3) I, oo - iG] :_:_f' ' (x€ una).

i
-

Hence (2) and (33 4

(4) [|f (x.] - £lx, W\l < z

e o GUEANENINEINS.
R mammwwwm N

and hence

(e UN Q).

+ +
(5) (£(x) - f{xn‘.l} < [fnu{x} - f{xu}] -

Thus (4) and (5) yield

6) ltgoo - £x < £, 6o - fix )| < xeuvna.
ng 0
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This proves (i). Now, we go on to prove (ii). Let Xg € 0 with

ftxn} = - = , Then, by (1), we have
fn{xn}—: ftxnli:—'ﬂ as n— 4+ @

Thua; by Definition E, there exists M € R, such that for each p € E+

éﬂhﬂa lall < M.

there exists a

we can find n, € N such that

(7) ¥n>ng, 3g€ B

Let > 0 be given,

neighborhocd U of

(8) I, o
0

For each x € Q1 ,

g —— ' i +
f_nn (x} - fﬂ 8 -‘r' el ,.-,’; '7 {xuj} -

Hence

Y
(9)  f(x) < £ "G

0!

Thus, for each x € W@sQ , (7), (B)gsand (9) imply

ﬂUEJ’JVIEW]?WEJ’Iﬂ‘i

-p+q+(f i.’x}-f {xll,

e YIRS NI ANE VAL,

The proof of Theorem 4.8 is now complete.

Corollary to Theorem 4.8, Let E be a Banach lattice and

f: 1 c R™ —= E. Then f is continuous on 1 iff f _1B u.s.c., and

l1.5.c. on M.
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Proof. If f is continuous on R then, by Definition 4.1, f is both
u.s.c. and l.s.c. on fl. Conversely, let xu & I and assume that £
is u.s.c. and l.s.c. at Xy Then, by Theorem 4.8(i), we can find a

neighborhood U of x, in 0 such that

0

(10) ¥xe U [ ||(£(x) - £(x g/2 and || (£(x) - £(x,))7|| < e/21.

W

Hence (10) implies thase.. = mm—

; i\ £ is continuous on f.

for all x € U N Q.

The conv . Banach lattices which

have some addition lattice which is

Definition 4.2. A r e E is said to be (order)

complete if for [edch non-empty m seBhs/C E, sup B exists in E.
Dufini‘tioﬂbﬁ. ni , "aCh lafitice E is an element

e € E \ {0} such that,e is the sygrgpun of the closed unit ball

e ol ifLEL D VIEW]'?W B1N3
Qmﬂﬁ“ﬂ“ﬁﬂﬂ"ﬁm‘ﬂﬂﬂ‘ﬁﬁ g

e>0, x| < eiff |x| € ee. Let (X, B,n ) be a measure space.
The vector space L “(X) of all essentially bounded functions on X,
endowed with its caconical order and essential supremum norm, is an
example of a complete Banach lattice with unit e {where e(x) = 1,

all x € X). MNow, we are ready to state and prove the partial converse
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of Theorem 4.8,

Theorem 4.9. Let E be a complete Banach lattice with unit
e. Let 0 be an open subset of R". Let f : @ — E be a function
that satisfies (i) and (ii) of Theorem 4.8, Then there is a

decreasing seguence ifn} of continucus functions on 01 such that

Part 1. Assume tha ' .\\‘ S majorized. For each

The funcfion f“ exis orized and E is complete,

i as £ {x'.' < sup {f(y)}
ye f

for all x € O . ~He . 1 prove ‘th pepee (f ) has the

Moreover, the set fnf

required propert ,Z5. In th in We Jhave

i¥ |

(12) f {x}}f l.' )

- AUGINENTNYINT
L aensRM ANt

furalleﬂandfnrallnE,N To prove this, let x € Q and n€ N

be fixed, Then, for each y € {1 , we have

(14) fly) - n|x-yle > fly) - (n+1)|x-y|e.

Taking supremum to both side of (14) through y € 1 , we get (12).



For (13), we note that
£ (x) > f(x) - nlx-x| = £(x).
Hence (12) and (13) yield

(x> fztx};-...}f[x} (xe Q).

Now, we shall show that igus for each n. Let e >0

be given, choose Xy s = » é e/n. Then, for each

y € fl, we have

(15) |x, - vl 2 ¢ e py| =[x, - x| < e/m.

It follows from {

Therefore

(16)  fiy)- n]x 4 y|a < fly) - nlx - yle Fee.

oy vavina o umaﬂﬂm ol b v a1 vo aee
b Qﬁqﬂﬁﬂmﬂﬁ%ﬂmﬁﬂ

By intarcl’mnging the role of X132 Xy W also get
(18} fn(xzi < fn{x.l'.l + E&.
Hence (16) and (17) give

0 < Ifntx,I} - £ (x,)] <ee.

43
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Thus ||£ () - £ ()] < lleell = e|lell . This proves that f_

is continuous on . It remains to prove that
(19) fntxi—lf{x] as n—-+ ® (xe 0 ),

Let x_ € 0 be fixed and suppose sup {fly)} = w . We shall

o

case 1. Suppose that e = = an assume that f{xu‘.* = 0,
(For, if not, we capna@Dldte /Flx) by @i sufilx) £ (x,)). Let € > 0

.6, > 0 such that, for all

where Bix 6) is the BPa -x,;_—y““"‘ = t x and of radius &,

,i-_

Since e is a unit, (20) imp

Thus

ﬂUEJ’J}’I%WI@WEJ’Iﬂ‘i
““*Qﬁqaﬂﬂimﬂﬁﬁ’mmﬁﬂ

(21) ;s | swp  {£*H| € elle].

|:|:---:t'::|I < &

For each fixed n, we always have

£(x) - n|x - x,le < £x) < £07  (x€ Q).



Thus

(22) sup {fix) - n|x - xu|e} £ sBup {f{x:'"'}-

[x-x4]< 6 [x-x,|< &

Let c € R+ be so large that w £ ce. Let X € f1 be such that

|xu— x| » 6. Let n € N be s

e that n > 1/6, then
n|x, =

and thus

Latnﬁe N be so 1

- nnlx - xﬂla <

(23) £(x) - ng %,

51

It is obvious that (23) i' s+ all x € O which lies outside the

ball B(xy, 6) in 3

1;.:_—— Y

ﬁ:f(x]-ﬁ x—xa}
nu : { .I.H I

ﬂumwﬁﬁswmﬁ’a‘“' k]
¢ sup (x) = ng|xq 5 - x|el}
awwmmmmﬁﬂmaﬂ

sup {£x)*1vo.

|:<.-3~:\‘:l < 6

Therefore

0 < f_(x)) < sup {r0*h
0 ]x‘xn < 6
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This last inequality together with (21) imply that
(24) anutxu}" <e|ell.
This proves that fntxu}—! flxul as n— + @ .,

case 2. Assume that fixﬂj = - o Je shall use Definition E to

ove that f (x.)— f(x el g © i.e. we must verif
pr - r;/ 2 Y

[fn{xn} £ -p+q, where

lall < m1.

Since E has a unit e an find c € R+ such

that p £ ce. Thus’
(26) Ve € R _JAngE BB y -{xol-s-ca].

Let ¢ > 0 be gi ang since E has a unit,

e -

we can find & > 08
b |

- ftx}

e ca,

(27)

oo G N AN TNEYINT

{fixH € =ce.

Qﬁﬂﬁ‘ﬁﬂﬁ‘imﬂiﬂﬂﬂmﬁﬂ

Now, le ng & N be so large that

£ =Ce.

(29) n be 2 ce + w,

where w = sup {fix)} Let x € 1 be such that |xn—:| = 6,
xe 01
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then (29) implies
(30) fix) - nulxu - xle £ w --nﬂﬁa £ =ce.

It is obvious that (30) is true for all x € I which lies ocutside the

ball Hlxu, 8) in R". Hence (28) and (30) imply

e have fn(xn] £ -Ce

for all n > Nge @s Part 1 of Theorem 4.9.

Part 2. We shall exteng art 1 to the more general

case, i.e, the image of f : najorized. We employ a useful

device called a par _
o

Let {u w-:l _ Ly ] "n:i.te open cover of

i such that U is ¥ ompact auhae Let j&€ N and x € UJ

soee £ 10 FHRI 84 ) m}s,qwmﬁ@dmm .

fix) is ezthgl' finite or - ®gespectively), |]fi.’x:l+|{ gust be bounded

o R FVARATHIRNR NI B o,

and m::ting that U, is compact, we can conclude that [f(x)¥| is also

3

bounded in Ej and hence in Uj' This implies that f(x) must be

majorized on U {Remember that E has a unit.) But, we always

5

have

flx) € fx)Y  (xen).
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Hence f{UjIl is majorized. By Part 1, there is a sequence {fnj} of
continuous functions on U j such that

(31) fnjtx]‘\.f{x] as n— + @ (xﬁuj}.

Choose a continuous partitiop ty {?j | 3 =1,2,...} such that

...8nd x e 0 ).

Then each fn is con 4 By, {3 - have

and

£0— 2 @G (x€ Q).

j=1
This completes A_J;_ 4
Ve X

4. Integration of flunctions n extended Banach lattices

» BT T

properties of vector-valued subharmonic functions. To do this, we
P o L o . W

= WA TR NN TIN T R ===

latticd] which is a slight modification of Eha usual Bochner integral

that appeared in the book of Diestel and Uhr ([4], page 41-52), The

basis of this material is an extended Banach latt.’l_.ce E and a o-finite

measure space (fl, # , w), for instance fl is a subset of the euclidean

space R" and p is the Lebesque or surface area measure on il
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A function s : 1 — E is called simple if there exist Yyse-ns

Yo £ EanﬂB11...,EEE such that s = £ ° 1}*15 wharexﬂ (x)

i

called p-measurable if there exists a sequence of simple functions

= 1if x € B, and x; (x) = 0 if x £ B,. A function f : R — E is
i

(s ) on @ such that
5 {x]_,_

(ph —almost averywher otherwise as in

Definition E, is called measurable

if for every open sg in B .

e funcfions.
Theorem 4.10. t o %} C E be p-measurable,
then

(i) f + §=is j-mea=ural

(11) Af is pimes W -
| .

L

fiii) Assume eithﬂr fl is a l:onq:act metric space and p is a

AHH A TAEN o o

p is the Labeigue meaau:r:e on §l.. Le f } be a

q W'ﬂqﬂn@ﬂ?ﬁ&%ﬂ R Ei%lﬂ ana. supppose

that f (x) = £f(x) as n—= + @ for all xée 1 (the value

of f is in E). Then f is p-measurable,

Proof. For (i), let {snl and {s; ! be two sequences of simple functions

on I such that
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(1) sn{x}—r fix) asno + = (pointwise on @ ~ Z)
and
; /
(2) s:l{xl—- gix) as n— + = (pointwise on @~ 2 ),
where Z and Z are two measura ts of 0 such that pu(Z) = p(z )

(3} {sn + s;)[x} s pointwise on n\zuz 5

it iz obvious from (1)

and (2) that (3) holdf. fu6"suppOte that Bix) = - = and g(x) ¢ E.

It fullaw? from (2) find n, € N such

that TRITE
IIs! 0 it €
n :" ﬁ
Thus —‘5& b A7

ﬁﬂ,.:{ ‘i"’ .,'7? {n > nu}.

1l <

This proves that { IR 0t is bnunded Hende, by Theorem 4.5(ii),

o o UG AURING T 7 - =

Then it is ofWious from 1), ‘;21, and Dafinitiun E l:hat {3) holds.

e LRI AN AR B

of u am-ability.

Finally, we shall prove (iii). We divide the proof of (iii)}

into two parts.

Part 1. We assume that (fl,p) is a compact metric space and p is a
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positive Borel measure on fi . Let [fn} be a sequence of continuous
functions from 1 into E such that fn{x}—: f(x) as n— + = for all
x € fl. Let n€ N be fixed. Since fn is uniformly continuous on

N , there exists 6(n) > 0 such that, for all x, y e 01 ,

plx,y) < 6(n) =3 [[£ ( £ ()| < 1/

It is obvious that 0 =™ N E /ﬁiﬂ since Nl is compact,
——

(4)

Put U, = B(x,, 6 (n

{j = 14...,r). TheF O inio 5 subsets Uj- We define

-
-

\,

-,"“',,I-‘ Let x € 0 , then

where xu is ther "Ei
3 Ul

X E UjC B(x., 6(nY) for exactly one j € {1, ...,r}. Hence

AUBANENINYANS.
= ARARANT UM INY1A Y

(5) Iffn 4 snll sy 1/n.

As fn—r f pointsise on @ , then s — f pointwise on 1 ., To prove

this, let x€ 1 and we consider three cases.
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case 1. Let f(x) € E. Let € > 0 be given, by using the assumption

that fn(xl—vf{x} as n— + ® and (5), we can find n,€ N such that
£, 60 - £ < e/2 and e, ) - s 00| <e2  (m3ng.

g for all n ;-nn.

g -~ et

ich that for each p ¢ E+

Thus we have [£(x) - ﬂn{xl"

Case 2. Let fi(x) = - -

(6) ¥n >n lall <™ 1
Let € > 0 be giva, such that
(7) (P2l > n,).

follow 7) th — =
it fo s from (7) .-"95: AT

(8)

for some gfle) € E l h that qtz] £ E,

e ﬂﬁ‘ﬂ'ﬁﬂ’ﬂﬂ“ﬁﬂﬂ"l"ﬂ“ﬁ

s (x) £ -p& g + qle) g, (n ;rﬁhu

amaﬂ‘n]‘ WRHINEAD

where i+ g(e) € E and £ M. This proves that

ny = max {n_, “2}

an{xlﬁa fix) = —® agsn— + 2.

case 3. If fi(x) = + ®, the proof is similar to case 2.

Combining all three cases, we can conclude that an{x}—l- f(x) as n— + =



This proves (iii) in the case that 1 is a compact metric space.

Part 2. BAssume that 1 is an open subset of R" and 4 is the Lebesgue
measure on fl., We may assume that {I] is a countable union of closed

balls E(xk,ﬁ'l for some 6 > 0 and k = 1,2,... . We put

where ﬂ'; means

compact set 0 =t of measure zero

k

for each k # j. = restriction £|_ of

g

f to each @ is p-m z ere is a seguence

Esj“ﬂl {(§ = 1,2,...7 off sin ‘_{_{._ on ﬂ which converges
r“:pé 4 "‘J ,';
pointwise to f'ﬁ . We defime—=_—by € following values:

k
% = % O
|

= ‘ 1fx¢uu.. un

then eadh’s Fl.‘u ,EJ,SJ %ﬂmm m.ﬁ (s, ¥ csuvesges

almost eve hare to f. Thisfproves Parg,2. Thus (igii) is proved.

e wﬂf’l&mm @ daklindd VIE 18 E

It follows immediately from Theorem 4.10(iii) that every
vector-valued upper semi-continuous function on sets f1 as in
Theorem 4.10 (iii) is up-measurable. Next, we shall define Bochner

integral which is a straight forward abstraction of the Lebesgue
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integral with absolute value signs are replaced by norm signs.

A p-measurable function f:Q = E is called Bochner integrable

if there exists a sequence of simple functions t’an‘.l such that

(9) R f Is, - f”du = 0.

n-r+"

(We define [l+=|| = | this case, we define

(10 ' j'n fan

where J s dy is dad

We note

(1) llL du

tllau + [ loq - tllaw
Hence, if f is Boehn egrable - R 1) imply that the
seguence {f 8. !*"_ s ?’ﬂ therefore it must

converge to some paeint of E, | fdH say. var, let ta ) be

s “““ﬁmﬁ*ﬂ iy wm N9

2) Ila - f£llau = 0.
o @ﬂﬁm NWTJVIE]’]@EJ
(13) lim I s, - s llau = 0.

n—++ = 1]

Since, for each n € N, we have

(14) an s du - jn siau] < fn Is, - s, llau,
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It follows from (13) and (14) that the integral in (10) is
independent of the defining sequence tsn}. This proves that our

definition in (10) is well-defined.

For a p-measurable function f: Q —hE_I_ which is not Bochner

Y

__.ﬂ
| —

integrable, we define

(15) f
Finally for a p-measy bt an B, we define

(16) fn £a,=. J .r ;\\

. on, the right-hand side

\

tegrable functions is given

provided that ei thex
of (16) is finite.

.rrc-.,.

2k #

A concise characterizal

next.

; ,31" '
Theorem K., 7 measurable function

I
|

f: A= E is Bo-c!me J.ntagrable iff J HEH au™~ 4,

e then mﬂu EJ;] ﬂﬂl{lﬁ W & A dodner integrar

QWA TEHH LRI

m[ faw = [ fau + [fam (A, BE€B anda A N B = ),
AUB A B

(ii) faull « | €] aw
”ﬂ fn '

(iii) for each e' € E', e'f := e'oc f is p-integrable and



£2

e'( J fdu ) =f e fdy.
a n

The proof of Theorem A and B can be found in ([4]) page 45-46 (with

some minor medification). It follows from Theorem A that a

continuous function on a comp: §gt 4is u-Bochner integrable.

(ii) AC B impl £al S\ N, (A, B€ B).

simple functions on

Q such that (9) s s % o 1 n\e M, we have
0< [ls 0] -

and hence
o< Il o %

u-almost evarywhani Therefore ( } implies

ﬁUE}’JmW]@W BIN%

n=s+ =

. ARIALNIBURI INENAY

In fdp = lim J.nlsn‘d" > 0.

n-—s+ =

Thus (i) is proved, Part (ii) follows immediately from (i) via a

suitable characteristic function. This proves Theorem 4.11.
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Next we shall state and prove two theorems concerning

monotone convergence in a Banach lattice.

Theorem 4.12. Suppose f :0 — E+ is p-measurable for

n = 1,2,'-'; f1 }fz b - = ®

f (x) —f(x) as n— + ® for every

x € 01, and f.l is p-Bochner . Than f is p-Bochner

imost everywhere)
and, for each n € N,

e, 00 - £eoll <3 2 flg, ol

{ p-almost eve ‘ nated Convergence

Theorem, we

ﬂu%.l’fsfi YINENS

Hence f is u- ochnar integrable and t.he (17) follow immediately

o QLB IDIUHAIINH AR o

Theorem 4.13. Let H:‘n} be a sequence of H-Bochner integrable

function on {1 and suppose that

(i) ﬂ¢f1{x}-ﬁfztxl~s-..\sf(x}~£+" (x € Q).
(ii) fn{xl-if{xl asn—+° (x€ ),

(iii) There exists a positive real number C such that, for
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for each n,

Jn lI£,1l an < c.

Then f is p-Bochner integrable and

lim J'fd!lﬂ

n—=+ @

: ﬁas n—+ = for each xefl.

onvergence Theorem

Proof. By asamnption.,.

/

imply Hf" is p-inteqg

The condition (iii

lie, - <l

and
1im  PMs7i o W-a.e.),

n—s+ @ ; ]

then, by the ‘;

11 fit:
|

L "”"“ﬁumwﬂw'swmm

ition 4.1, Asag,m E is an nL—apaaa{aaa Appendix for its

QR BT BRI

I jn faul = fn lell aw.

Proof. Since f is positive (this means that f(x) > 0 for all x € Q),
there exists a sequence of positive simple functions Inn] on £ such

that
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lim LJlsn - £]|au = 0.

n—++ =@

We note that

| fls 0 - el | < Nls, - £l

n—+

ﬂUEJ’JYlﬂ'mw N3
W’?ﬁ“ﬂﬂﬁmuﬁﬂﬂmﬂﬂ

5. suhharmnic function

Definition 4.4. Let @ be a domain in R" and E an extended

Banach lattice. A function f:f1— E is said to be (vector-valued)

subharmeonic (s.h.) in 1 if
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(i} £ is w.g.c. in 2 .

(ii) If x, € @ and r > 0 satisfies ﬁ{xn,r] — Q, then

=1 _-m+1
r

{19) ] flxg) < s f(x)da(x),

Bleu,r]

e, surface area element on &Hh:u e

Let us disc { de st 6 \of ‘thelintegral on the right—

hand side of (19). g u.s.c. on ﬂE{xn,rJ.

‘\\ of continuous functions

Then there exists
on BEItxﬂ,r} such

fn{xl—r f(x

b
- -

This implies that/

f (x) 3‘15 (%) 2 uve ;-,f (x) >0,

» F’TUEJ’WIEW]?WEJ’]H‘?
Qﬁﬁaﬁﬂfﬁﬂﬂdﬁﬁ’}ﬂ‘ﬁﬂﬂ d

So £ is o-Bochner integrable since f‘ is, cf. Theorem 4.12. Thus

0 < I fF(x)dolx) < + =,
ﬂB(xu,rl

Moreover, by lower semi-continuity of f , we get that f i
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g-measurable on 8B(x,,r) and

0
0 < _|' £ (x)dalx) € + @,
aB(x.,r)
0
Thus
| £(x)da(x) = *(x)do(x) - | £ (x)do (x)

ﬂB{Ru,r} ﬂﬂixﬁ.ri

may be finite or - = s#he right-hand side of

(19) always exists apd

Definitiof 4 " and E an extended

Banach lattice. 1 ‘ At M = is acall 2d lwes ly (vector—valued)

subharmonic (w.s.h

(i) £ is u.f. ¢, in

(ii) If x. € 0 andw— fles 'ﬁ[xu,rlc N, then

o

(20) ve'NewEtie (fc 3V = F——J/ e'(f(x)do(x)].
- .}lj u,r]

(We dﬂ:ma e' (- ®) = - ®», yhere ’3] (4 E'.}

« UHANUNSWHARS « 1o vem. 1

The converse is true if f isfcontinuousger E is an AlLyspace.

prova bl o s 9l iele LV Bhonnes

Lemma 4.1. Let E be a Banach lattice and e, £ E.

Iif e'[un} 2 0 for all e' € E}, then e, = 0.

Theorem 4.14. Let f:N — E be weakly subharmonic. Then f is

subharmonic if f is continuocus or E is an AL-space.
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Proof. We begin by assuming that f is continuous on {I. Let xue 0
and assume that E{xn.r} — fI. Since f is continuous on the compact
set BB(xu,r}, f is o-Bochner integrable. Hence (20) and Theorem B(iii)

imply that

e' (£(x;)) < s_oal e' (f(x))da(x)

flx)do(x))

On the othergfa - upF 7:;:4 th ﬁ_ ds and E is an

m-:.-apane. We wish o If ﬂxnl = - =, then

(19) is trivially tru iow AssumeMthat f(x ) > - . We shall
show that
(21)
Y
Let {f ) be a decréas » functions on {1 such

1
.Li JJ-'

that f (x)— £i{x) aer — 4+ @ for aa xefl . Hence, by (20) and

e n14] HHORSNINYNS
QW’I‘&NT‘I'&’&U igaangdy

g™ (e'£,) (x)do(x)

" 3B(x,,r)

=1 _-m+1
r

=e'l(s f (x)dolx)).
m n

ﬂE(xo.r}

Thus we get from Lemma 4.1 that



ﬂxﬂl £ sm_1r"m+1 J f (x)doix)
ﬂfou,rJ
and so
- =1 _-m+1 -
£(xs) >a r | £_(x)7do(x).
Moreover,
(23) [ “rloan(x)] <mmmr |l £x)7|| = c.

(24) f

Hence, by Theorem _‘ 135 ‘ og that f is o-Bochner

i¥

integrable. Then {2.0} and Lemma 4.1 imply {(19). This proves

e o f U INUNTHEINT
"= s @

Thaorm 4.15.

k are g.h. in 1 and t.1,... ’tk. are non-negative
k F
real numbers, then f = En-i tnfn is s.h.

(i) 1If .f1 piowesE

(ii) If £, ,...,f, are s.h. in @1 then sc is f(x) = sup £ (x).
1 k N
n=1 to k
2

(iii) If fe€ c° in O, then f is s.h. in Qiff Af > 0 in Q.
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Proof. (i) is obvious from Definition 4.4 and Theorem 4.6.
prove (ii), we note that f_l'q.ff2 is u.s.c. by Theorem 4.7.

E{xn.r} C Q. Then, by Theorem 4.11(i),

1:‘1 (xq) € am”r'm'ﬂ £ (x)do(x)
EB{xu,rJ

[f ‘u’f Y (x)dao(x);

Therefore

{f1Vf21{xﬂ} , 1Vf2}{x}dd{x}

The general case followa By ¥nduc

e

Finany, a ,‘- e'€ E.

the functional e'c is also C” in . By a

s quﬁiwﬂﬂ%’wmm
LAMAAIUNNTINENE,

f is s.h. in 0 iff Af > 0.

This prove (iii).

To

Suppose

*

Thus

70

stalar property of s.h.,
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Next, we proceed to study vector-valued harmonic functions.
Let O be a domain in R" and E a Banach lattice. Let f:1—E be a
function. If £ is C° in @ and Af = 0 there, then £ is said to be

(vector-valued) harmonic in 1 where the Laplacian operator A is

defined to be

Every harmonic func A #"it is continuous and

' - / /i K‘\\\\
weakly subharmonic (sg -, et an @1 and suppose
; .\\ 'I"\\ in B(x,,r) is given by

'7]’\'

1 for each fixed x. Now

that ﬁtxu,r] [l 1

(25) K(x,E) = " € 3 B(x,,r) x Blx;,r)).
It is well-known that K

we shall prove the Poisso a for harmonic functions.

'Vf- ) and continuous

Theorem 4
in E{xu.rl. then f& emh EE le ,r] HE have"

o Ay um V] Htﬂ?’t%’ﬂ&lﬂﬂ‘i

(xg.r)

- %ﬁlﬁﬂ:ﬂﬁﬂl@kﬂ?@ NHIAY o v

E E.thu.rl since the integrand is continuous on a compact set.
One can see that this integral is equal to f(E) by utilizing a
corollary of the Hahn-Banach Theorem and the scalar Poisson integral

formula.  In fact, for each e'€ E_;_, we have



a'(f(E)) = { e'o £)(E)

- Kix,E)(e' o f)(x)do(x)
BB{KU,IJ

= j e’ (K(x,E)f(x))do(x)
ﬂﬂlxu,r}

| K(x,E)f(x)da(x))

Hence, by a corolla em, we get (26).

We proceed : 4 that the Poisson integral can be used

T2

to solve the probl :‘"-1 £ for\ 4 balll, We have more precisely
. ! —= | \\.\ -
Theorem 4.1 SEppose rhiat L \\ ot ion f(x) is continuous

x)do(x).

Then u(E) solvess ), i.e. uis

n

harmonic in B[xu, '..1. And , =“with boundary wvalues
| -

|
4

fix).

S @um DANITHENDT o i e
T =m¢mﬂwﬁwmﬁﬁ

Now, we shall state some equivalences for scalar-valued subharmonic

functions. The proof of this theorem can be found in Krantz ([10],

page 71-72).
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Theorem C. Let RCR" be a domain and f:0— RU{- =} be

u.s.c. Then the following statements are equivalent.

(i’) £ is subharmonic in Q.

(ii’) For every x; and r > 0 satisfying B(x ,r)c @ and for

{iii;] If Kcn , CIK) is harmonic on the
g then h ;‘- f on K.

(iv " . egquence of subharmonic

(v’ ; g P ‘0 &and |l i8 any positive Borel

f(xu+rE Jdo(E)duir).
1! 1)

(vi') For 1 : -;' ﬂc:l > 6, there
i ' u
exists o.na positive Bora}. measure M on [0,6] with

ﬂ%dﬁl‘@“’fl WY WS

(vii’) ﬁ{xu,r]Cﬂ and‘K{x E) is thﬂ Poisson arnel for B{xn.rl

awamﬂimum'mmaa

£(E) < f K(x,E)E(x)da(x), (V E€ Blxy,r)).
aB(xu.rl

(viii’) 1f B(x,,r) < @ then

1

f(xul < fx)dx

EN EIKD.I}

where vm denotes the volume of the unit ball in Rm.
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The following theorem is a generalization of Theorem C to the
vector-valued case. All statements are almost the same as of

Theorem C and its proof will be based on it.

Theorem 4.18. Let §§ C R" be a domain and E a Banach lattice.

Let f:N— E be u.s.c. sume \f er; that either f is continuous or

E is an AL-space. Then, tl Towipf#takements are equivalent:

(i) £ is s

(ii) For e ing B(xﬂ,r} < fi and

for e function h on E(xu s}

that, isg sfies h 2 f on

B (x il , too.

0’

(iii) If xKch m\ E) is harmonic in the

féndK then h > f on K.

(iv) ng sequence of subharmonic

(v) X 2 ,] positive Borel
I

measure ?1 [0,6] then

GUEANIIENINNT e

8B(0,1)

QAR FFRb NS W) B . oo

exists one positive Borel measure u on [0,§] with

(supp ®) N (0,8] # ¢ such that (*) holds.
(vii) If ‘ntxﬂ,rlc fl and K(x,E) is the Poisson kernel for

B(xﬂ ,r) then



.‘...

il
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flg) < Kix,E)f (x)do(x)
aﬂtxu.r‘.l

for all E € B{xu,r}.

(viii) If ﬁ{xu,r}l: f1, then

fixldx

(iv) —

(v) = (vi). Trivial. the Lebesgue measure on [0,6].

(vi) =>(iii). Let K.E wpact subset £t h € C(K,E) vhich

] L)
is harmonic on thie i 7-'"‘ on K. Let e'eg E_;_

Hl ,
and apply e' to --"-i side of (*) of Theorem #18. Then, by Theorem C

o ’*’“FI'TJEJ’WI EJ'VI?‘W gIN3

e'oh e'o f

T ARIMNTUNAINEAY

since ®7) is true for all e' & E:' then, by Lemma 4.1, h

(iii)={ii). Trivial.

(ii) = (wiii). Assume (ii)holds. Let fn on E{xu,r} be continuous

with fn ~ f (Definition 4.1). Let hn be the solution to the Dirichlet

problem on B(xu,r} with boundary data fnlﬂﬂixu,ri'



Then, for E € B(xu,r},

(28) ££) < h_(E) = j' K(x,E)£_ (x)da ().
BE{xu,ri

The assumption that f is continuous or E is an AL-space implies

(29)

(i) = (iv). For each

(iv) = (ii). Let h > , and h harmonic.

Let {fn] be a decreasing -—; fics harmonic functions that

converge pointwise to (e'a fn] is also a

Ty —_—

decreasing seque ;*ﬁ? & It .:i' (e'o t'n} —

(e'o f) as n— + = pointwise. Hen 5% Thegrem C ((iv’) = (ii”)),

.I.l'

o ﬂum NYNIREINT -

Since (30) is true for all e'€ E',

ammﬂifuum'mmaﬂ

h > £ on B{xu,r}.
(i) = (viii). Suppose ﬁ{xn,ﬁ}C fl. Since

fix.) £ fix)do(x) (0 < r <6),
S m-1 jf-lﬂix »r)

76
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other inplimtl. ol -_

17

then
& 1 _
j s £lxy)dr < I f (x)do(x)dr
[ 0 3B (x,,r)
and
m
5 r
f(x)dx,
Hence
flx ) & f(x)dx.

(viii) = (iii). S
{i) =+ (v). Integraté o completes the proof

of Theorem 4.18.

Remark 4.3. We use the asgumption i is continuous or E is an

Al-space only iricthé proof of the implicatiom fii) — (viii). The

@ithout using this

i¥

assumption.

mﬂu&llﬁﬂ HNT WY UAT v s o

¥fon 1. In

) AL NIRVE (e PR TN

Proof. Let U = {x € f| f is Bochner integrable on a neighborhood of x}.

Let x . €0 \ P

0 £ Then, for r sufficiently small,

-] o
(31) -@ g ﬂxu} < m-1 fix)dolx) < +

s ﬂntxu,rl
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where the third inequality comes from the fact that the Bochner
integral of u.s.c. functions on a compact set is always finite or - =.

By integrating (31) with respect to r, we get

fix)dx < + =,

To see that
Then there is a

antraﬂ:l,cts to the

Next, we shadl _ - \\ 1f U° = ¢ we are done.

We shall prove that theFe gwists 0 ¥ such that f£(x) = - @ on

such that ﬁ(xn ) Q.

H{xu,ru}. Suppose that wi ch an r, then there exists

a sequence {:n: ) gfSpoints in Bix r) such thatix/— x, as n —+ @
(7 :
and f(x ) >-=foa

r.) &B(x

ﬂuaﬁﬂawswﬁﬁni

for some r <r. Let r, > 0 Be so smallgth

ﬁwmn’mummmaa

B{x ] = B{x ;r b ] = B Ku,r -
ﬂ
Hence
vo = [ ltcollac < [ lecollax <+ =,
B{xu.rzl a{xn .r1}

o
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where the second inequality follows from the fact that f{xn }] > 2w
o

and f is subharmeonic at Xg- This is a contradiction. Hence
f(x) 2 - =@ in some neighborhood of Xg- so U is open. Since Q1 is
connected, U = $ . Then f is locally Bochner integrable on Q.

This proves Theorem 4.19.

subharmonic and not

"

Theorem D. Let £:§

identically - =, anl:'l_' e

The proof of Theor #of e “round i ([107) page 74. We shall use
it to prove
Theorem 4.20 Lo £:953 8L  be Bubharmonic and not

identically - =, and ¢

y:' :
This theorm generalizes Theorem 4.1 £ it means that if f

iy

is subharmonic then &fz3 0 in the digstribution sense.

. AUEINENING N3

the support of ¢. Then, hy Theorem 4. 19,

Qﬁﬂﬂﬁﬂiﬁu 311&331&8'1@8

Let e' & E_;_, then

Proof.

(33) -a»-rj;I fAgdx) = _I;I{a' o £)Apdx > 0

where the last inequality comes from Theorem D. Since (33) is true
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for all e' € E_L,.Lam 4.1 implies

fApdx > 0.
e e

'I'hi:a proves Theorem 4. 20.

Theorem 4.21. If f ig el c on @1, then ||f"p is s.h. for

all p > 1.

Proof. Let xu € 1 ans

HEI‘IEH, h’ym am Hi1

[I1£ 00 |

This proves that ||f.|] is : aus, by the scalar Jensen's

inequality, we

Theorem "',5" ! -+ B ie - phic, then |f| and

"f” Pis subharmonig for all p > Ty,

ﬂuEJ’JVIEmTWEJ’mL”

Proof. Let e " Then e’ o is

mﬂ”ﬁﬁfﬂ*&ﬂﬁmﬂﬁﬂﬂmﬂﬂ

Ale'o f) = e'(Af) = 0,

is true for all e' & E;_. Then f is harmonic. It follows from
Theorem 4.15(ii) that |f| = £V (-f) is s.h. and then Theorem 4.21

implies that ||£]| P is s.h. for all p > 1. This proves Theorem 4.22.
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6. The hyperplane means of positive vector-valued subharmonic functions

Let D denote the half—nphca ™ x (D;+ @), form = 1,2,...,

a typical point in D being of the form

TP = (X,y) = (x

[ =

We put

. |x[ \ e ax . . .dx .
Let E be a Banach i 10 Ut E _:\ \ psitive vector-valued
subharmonic functi :\- Ku, +) on (0,+ ®) by
writing

where the integral being - _sense of Bochner with respect

to the Lebesgue méas afid its value is an

element of E_ U i{ . A J
The bahaviou; f these hype ane means has been studied by

it oﬁuum,m RS BTN e ontr

the scalar case. i.e. the Bangch lattice.E is the regl,field R. 1In
e okl WY SR 5 B

means in a more general setting, i.e. in the vector-valued case.
The following results on the behaviour of M(u,-) (for a given

non-negative real-valued subharmonic u:D — R+:| are known.
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Theorem E. If M({u,*) is bounded on (0,+ =), it is decreasing

and convex (Kuran, [11], Theorem 4).

Theorem F. If M(u,-) is bounded on (0,+ =), and in addition

oF is subharmonic for some r satisfying 0 < r < 1, then M(u,y) —0

Theorem G. If_u &t a& harmonic on D and

e Btant (Kuran, [111],

Theorem H. JT ! 7 »-comstapt, ahd finite, then u is

M(u,y) is finite ever

Theorem 6).

Theorem I. I, 1yl och interval of the

-

form (0,a] and M(u,y) = oy @ then M(u,+) is decreasing

and convex (Flett

Y o 27
We note soii@ res e bmhaviour of M(u, -) for

ll P iJ
¥ d
a given positive vacior—-valuad subh nic u: D—rE , which are

e v RIS F PR Fr et o o
a@ﬁaaﬂﬁs‘mwﬁmm )

dﬂﬁrﬁﬂﬂ

Proof. Since M(u,y) is norm bounded on (0,+ @), then u is Bochner
" integrable in R" for each fixed y on (0,+ ®). Let e'¢ E_:_, by

Theorem B(iii) of %4, we have

M{e'ou, y) = e'(M(u,y)) for all y € (0,+ ®).
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Hence M(e'o u,.) is also bounded in (0,+ «). By Thecrem E, we get
M(e'o u,.) is decreasing and convex. Since e' is any positive
element of E', then, by Lemma 4.1, M({u,y) is also decreasing and

convex. This.proves Theorem 4.23.

addition (e'o u)’ be pme r satisfying 0 < r <1

and for all e' € E'. v — 4+ @, then auzﬂ.

Proof. Let e' £ E’ is bounded on (0,+ =)

subharmonic. Thus
(1)

It follows from (1), 4, and the continuity of

e' that

(2) 0= lim %/ ' Wld,y)) = e'(lim  M(u,y)).
y-+ y—+ @

U

Since (2) is true t‘ﬂll e' & E',qthe

ﬂ‘lJEJ’J‘VIEW]ﬁWEJ’]ﬂ?

N ammn‘ém Ny 18

Theorem 4.25. If u is (positive) harmonic on D and M(u,y) is

finite everywhere, then M(u,-) is constant.

Proof. Let e'€ E', then, by assumption, €'o u is harmonic on D
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and M( e'o u, y) is finite everywhere. Hence, Theorem G implies

{3} M({e'ou,*) = e'"(M{u,-)) = constant.

Since (3) is true for all e' &€ E', then M(u,-) is constant.

Theorem 4.26. If M gogetant and finite then u is

harmonic on D.

Proof. Let e' € E', o u,+) is constant and

finite. Hence, by Thedfeuf | '@ Ui rmor on D. Since e' is

arbitrary, e'o u is W Thus, by [7]

{Chapter II, §3.3)5 u

Theorem 4.27. nded on each interval of

the form (0,a] and || M( @, THen M(u,:) is

decreasing and convex.

Procf. Just appl ?‘:_ lf’. u and use .'I'hqﬂrm I

together with Lemma 4. '§5, we get the reg -'J- ed results.

o TR o

. necessary for e proof of oug next rasult, i.e. Thaa 4.28. In D,

ene pa&m&ﬂﬂﬁﬂéﬂmﬂmﬂﬂﬂ

P(X,y) = 28 2y%(me1)

; 1y{x + ¥

1

where B el denotes the surface area of the unit sphere in g, NE

is well-known that

_rRm Ptxjy}dx = 1-
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Let f:D = E be a function defined at least on the hyperplane of the
equation y = a such that the function
(4) xi—= (X2 + 1N71™ e (x,0),

the Lebesgue measure in e

The Poisson integral Ig-t , : : =) of the restriction of f

a)dg

for all (X,y) € D_. e EEem \\ ) (x,yi is an element
of E for all (X,y) monic in D,- To see

this, let e' € E',

a Vs ;
(6) e’ {If (X,¥)) T—h a)e'f(Z,a)dz.

The right hand sf ett, [6], Theorem 6).

d
Hence e'Ig is ha ; ‘.'!J Th is also
i

harmonic in D_ ([7],#Chapter II, §3

ANBNENIN mﬂzm e
st W’ﬂwﬂmmﬁﬂmé’ﬁm S

of E. It can be proved that if lx is a decreasing sequence in an

order continuous Banach lattice E with inf {x } = 0, then lim x, =10

n n—s+ =
([15], page ‘H- A simple example of an order continuous Banach lattice
is the space Lpﬁ1} with 1 £ p < + ®. We need the concept of an order

continuous Banach lattice in the following theorem.
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Theorem 4.28. Let E be an order continuous Banach lattice and

u:D— E be continuous function. Suppose that

(i) u is a positive subharmonic function in D,

(ii) u has no harmonic majorant in R® x (1,+ ®),

Then the set

T _y m=2
(7) — — (xa}.

—=

We have, by Theo: :="i: 6 in 3 . rgl

i

v A Rend e
™ SV RONRIY) YARNAY

Kix,E)

q r|E - x[m

Hence (9) implies that

g2 - p2 R2 _ o2

(10) < s K(x,E) <
R(R+p)™ " R(R -p)™
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Also setting p = 0 in (10) and using (8) we obtain

1) ulx,) = "lE:T | u(x)da(x).

By multiplying (10) by u(x), integrating (10) over EE{xu,R], and

using (8) and (11), we get (I} YR instead of r. We obtain (7)

Lemma 4.3..ue®F be on brder cont sibous Banach lattice.

Suppose that (un] 5 ag vector-valued positive

harmonic functions™ Then either the

sequence (uﬂ (x})

uniformly in every comj | u is harmonic in f.

Proof. Let quﬂ and suppoie ~that - ence '{un{xn]} is majorized.

Since E is orde ; ' -nnwrga (in norm)

to some point of E,ju(x,) ave (for n > k > Mg (€)

i

Ausdnsndngns

Suppose B(x ,r) C Q. We _nqt:e‘t.bat u -ugais a positives harmonic
M R Wl HRES]
e(r+p]rm_2

0 < flu ) - u < (n >k > My(e)),

(x-p)™"

Thus u_(x) converges uniformly in E{xu,P] for p<r to a limit u(x).

Thus u(x) is finite and continuous in E(xu,PL
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Similarly from the left hand inequality of Lemma 4.2 we see
that if tun{xun is not majorized then (untx}} is not majorized in
B(xﬂ,r}. Thus the sets where tun(x}} is majorized and l‘.un{xﬂ is not

majorized are both open in 0l and so one of these sets must be empty.

If the sequence (i (x)) is/Wfj€pized for each x € 0, we put
R — /J

TIPS S T Q).

;l u act subset of f1, then

u is continucus. Wefaiph e thatt & @ harmonic in {I. Let xue 1]

ulx) .

Since the convergeng

and suppose that B(x 4.16, for each n&€ N

and each € B(x,,r) :

u (g) = F] ==

where K(x,E) is ‘=‘“ _kerpel given by eaUdtion (9). Letting
n tend to inﬂnity - IV': deduce that

ﬁﬁﬂ%m&ﬂ%‘ﬁ‘ﬂ‘fni

uf Theorem 4.17 wé deduce thag u(E) is hagmonic on B{xﬁ.rl.

e HARSD SHLTAAT NN e

Lemma 4.3.

Let f(x) be a vector-valued continuous function on BB{xD 5 3

For each E € B{xo,r}:- B, we put

PI(f,B)(E) =f K(x,E)£(x)do(x).
ap
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Then, by Theorem 4.17, PI(f,B) is harmonic in B{xu.r} and continuous
on E{xo,r} with boundary values f(x). The following results

concerning PI(f,B) are known (Helms, [9], page 69).

Theorem J. Let f: } C R" — R be a continuous subharmonic

Then (i) f£ g on (i4 d (iii) g is

subharmonic on Q1.

It should also true in the vector-

valued case. By usi see that (i) follows

from Lemma 4.1, (ii) folloWws from (£#}, Chapter II, §3.3), and (iii)

follows from Thed! orem : ' f is).

ey

© Lemma 4.4. et an order continuous

i E ¥

Banach lattice, and i,at u:fi — E ba continuous subharmoniec function.

<o AHHPRER PABAN G e

majorant in ﬂ

A0 U ANEAY

(i) 'ﬁ c 0 for all n,

{ii) U B = M,
n=1

(iii) for each n, B occurs infifiitely often in the sequence {En}.
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Define

By the remark at the ave , by induction,

u _4€u on 1, u s subharmonic on f.

n n

Let h be a t:i:-!l 1 . : ’. e. _E.:'. £ h on fl. On B

1!

u, =P1(u:j 2 <

Moreover, u =u £ honf < h on @1 and by induction,

u < h on @ for aly

e

is majorized for
each x € Q. Furthérn ) is increasing

b |
|

and E is order con®

AusInnIneINg
- QRGN FRU T ANV

u, is Harmonic on . Consider a fixed n. Since B occurs infinitely

nunus, we can define iy

often in the sequence of balls, there is a subsequence t‘EnkJ such

thatBnaﬁn for all k > 1. ﬂnﬂn,welmveuw = lim u .
k kas+ = k

Since u is harmonic en B = B and the sequence (u_(x)) is
nk n, n n :

majorized for each x € @, u_ is also harmonic on En by Lemma 4.3.
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Therefore u_ is harmonic on Q since it is harmonic on each balls B_-
Finally, we shall prove that u_ is the least harmonic
majorant of u in . Let h > u be a harmonic function on fl. We have

already proved that u < h on R for all n. Since E is order

lemmas.

Proof of Theorem 4. ] - (F on nt, think of n as

fixed.) Define Iu i

LX) 2, @a1)/2

;..‘\1‘*-& 1)

o142
_y}i}{mﬂ /2

and define J_ in R x

"':rhl“":"""F -"'

. vl
where s denotes ! e surface area of the unifl sphere in Rm+1.

S

m+1 _ :
Thus Iu and J  are hﬁﬂe ce mias&fintﬁxﬁ

e B TRV WELIS., oo
» ARIAIAIUNRIFNYINY

and (iii) of Theorem 2.3 in Chapter II. Hence, by relation (12) of

Chapter II, we get

(13) e'lou<ge'o Iu + e'o Ju in ﬂn.
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. B xo{ntl:

92

since (13) is true for all e' € E, by Lemma 4.1,(12) is true. In.

particular, for X € R

ulX,n+1) £ — ZI'I f u(z,1)da 2n J" ul(Z,2n+1)d2

. +
St {]x-z[zm?}{"""”'fz S+

Gl g watd $d 2n+1))

Alsc there is a constaae® Cesndh| thal "\'\ ﬁ" c .for all X € i
Now put ’
where (X,y) € o S A ha! c R™ x (1,n+1). Also

m
Hn—c1;.unrnk ®

i iy 2 .
Then E'H“ =e'(C) >e' ";“’“"" 3 and e'H = e'(C,) > e'(u) on

" x {n+1}. Let e' € El.

5i ‘i : i' i} of Theorem 2.3 in
Chapter II, then) by relati 71, we get
il FI
J
inf e'H (x,y] = lim e'ulX,y).
| (x,y) |-

u.mﬂua'mﬂmwa‘m%
RSN TR TN TR

(14) ¢'H > e'u in R™ x (1,n+1).
Since (14) is true for all e'€ E‘;_, we get from Lemma 4.1 that

(15) H 3 u L0 - s O € % T

R ([x-2| 2enZ} ™11/2
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Let hn be the least harmonic majorant of u in Rm x (1,n+1). (Such

a function h“ exists by lemma 4.4.) If n > 1, we have

h RN ¥ ¢ [
“Eﬂ :0,2) g Hn( 2)

(16) Lo M S

; M(u,2n+1) as n— + =.

Now, by Lemma 4.3, ither not majorized

for each (X,y) € R=#
h (X
n

"% ‘monic function in

for all (X,y) €
R x {(1,+ #). ESince E.ng hatm ma ant in R" x (1,+ =), we
must have the sequence jh 7;;';,7'3 magjorized for each (X,y) €

Rln » (1j+ -]t

In partigidar, "t 2)) is not majorized.

3 i"
L p
It then follows f: ,\ 1 : —

.l

ﬂu NI HeNS

is not majorizad Thus (17) dmplies that the set

IR ASDapAAIANENAY

(17)

is not majorized. This completes the proof of Theorem 4.28.
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