CHAPTER I1I

ON THE FUNCTIONS THAT PRESERVE HARMONICITY IN THE EUCLIDEAN SPACE

1= Introduct.ia;n : ”#/

Let m be_ &

a non-negative integer, and

fl be a domain inf \ denote by H({l) the space

of all real . be another domain in the

euclidean spac that may not be equal to

m.) and let C° % nuous maps from @ into o’

for which each c  has continuous partial deri-

vatives up to order r//in  the s gase, when r = 0, we shall simply

o

write C[ﬂ.n!} instead | also C(f) for C (Q,R).

Now, 1t ¢ € C(A) and wieh ¢ #0, i.e. ¢ is not

rit
18

identically ZB.E. We wish to characterize.the couple (@,f) such that

& ﬂ%’ﬂ WEJ%% WG vo.

s“a‘ia func

m=mn=2and ¢ = 1; and he showed that either f or f must be holo-

behaviour

(lM81) in the case

morphic where f is the complex conjugate of f.

Some properties of the couple (¢,f) can be easily derived as

follows: First putting h =1 in (1), one gets ¢ € H(R) . Moreover,
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if we write f = tf1,...,fn} and put hty1,--..ynll = yj. the j th
coordinate, we get g¢f 5 € H(R). Hence qu is analytic; In other
words ¢ and tpfj are necessarily real analytic. A more delicate

characterization of the couple (¢,f) is contained in the following

theorem.

domains in R™ and R"

e c2ca.n') witn

Theorem 3.1
respectively. Let
f= Ht"“’fn]' ient condition that the

couple (9,f) satis

(i) @ is hagmo

(ii) for eact

QAf + ﬂ'

5 gian, V- gradient),

(iii) for each j # k, we have

VE .
{iv) |‘Ff Uy, 19 | RY |

.

This thmrm can be raqarded as the kay theorem to this

. R AR PR

Theorem 3.1 afe contained in ‘;'.hu follawing theorem .

a4 WARY NIUANND LENAS. ¢ e

tiwly. Let ¢ € C(A) with ¢ #0 and f € c? (0,0°) with € = (£, ,...f ).
) 1 n

Assume that the couple (9,f) satisfies the condition (1). Ti:mn

(i) if m = n, the map f must be conformal (i.e. preserve

angles) at all points puE i such that ?f,lipu} # 0,
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{ii) if m < n, the map f must be constant.

The proof of Theorem 3.2 is given in §3.

2. Proof of Theorem 3.1

Assume that the function g = ¢(h o f) is harmonic for all

, -...xnl.-...f,n(x‘.---.xm}l
.;Ynj,

where Yj = fjf;
To prove (i), pu For (ii), let

j € {1,...,n} and |

Hence g = ¢f 3 g 'J'fj‘

5

Since ¢ € w;

+ !-?:I:' snmn

z mﬁwmmamwmn el
"ra@nimw“ﬁ‘v‘lmaa

? $ee.y
I2], 0= &g = QA(f f

v -
i k} + ﬁfffjfk] + 2Vg ?[fjfkl.
Since 49 = 0, ﬁEfJf ) = fjﬁf + {ﬁfj}fh+ E?Ej ?fk, and
?{fjfk] - f ?f + t?fj]fk, then (2) implies
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= = ; . v . v »
(3) 0 Ag fjlvﬂfkl + fkl?ﬁf:’] + ij{ L] ?fk] + sz[ P ?fjl

L' PR
+ 29( fj fk}.

Applying the result from (ii) to the equation (3), we are left with

(4) P(VE * VEDENQ in 0.

It follows from { C &ﬁoint p € 1 where ¢ip) # O
we have Vf_.* Vf poRRL P, E |

3 k ;
as we have alread 1 = romcnicsin fl and since ¢ is not
identically to
B(p,»6) centered aifp /oy of radius 6 " Thus there exists a
sequence (pl‘] of points

?(pl} # 0 for all 1.

the continuity of ?fj e i WU get ?fj{pul . ?fk(pu] = 0.
Thus

{5)

This proves tiii} "ipally, we [i\r} Let j, k € {1,...,n} and

take h(y,. ﬂ“g;@ﬁ m‘; w E’Iﬂ iﬂf o i) s hence
q W'l“ﬂ\“ﬂ‘ﬁt‘ﬂﬂ AT B

-fu.—qczf +2lvf|}-4fvv- "

- zﬂi?fjlz- lve, |%) + 0 - o,

and by the same argument as in (ii), we get |?fj|zl '|?fk|2. Thus
l?fjl = |vfk| in N, This completes the proof of the necessity in

Theorem 3,1.
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Conversely, assume that properties (results of

Theorem 3.1) hold. We shall prove that the couple (¢,f) satisfies
(1). Let h be a harmonic function on n' then g=9¢ x (hof) clearly

belong to szﬂl- Its Laplacian with respect to the variables x .

§ Pl
is determined as follows:

(6) Ag = ehlh o

= phlh ayd

because ¢ is ha m}, we have
3 (hof) of
i o |
Therefore
Vg~V (hof) L BT L

T

¥

el
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] INYINT
amaﬁﬂ% ﬁ’ﬁ'nwmaa

e ~5els

E ——-(?q-?f )
ju1 Y5 3
Hence
N an
{8) 2Vg:-Vi(hof) = 2 E — (Vo:VE.),
j=1 %5 3



Moreover, we get from (7) that

2 2
e mory . m U5 e Oy
o’ W ol O3 ol
i i
Of, o0 BE, | b B

Formula (9) all

(10) A(hof)

|vg, 2 |ve, |2

ﬂuzf‘iwsw%’ NYINT™

2 of
n

2
+ |Ff 12

I aqmﬁfﬁwﬁ S

e z Vi
+ + 3y {

j=n aynu1 j

n-1

By using the assumptions (i),(iii),and (iv),

(11) Mm;.ﬂﬂ+ﬂﬁ+m+ﬂaf-

dy, 1" By, 2 3y,

v WE.).
j}

{10) reduces to

26
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Now multiply (11) with ¢ and add it to (8), we get

n n
(12) 5g = I ¢ %5- M+ T 230 (VevE)
s R A :
n
- DR (o AF 4 2VgeVEL).
ju1 ¥4 ] J

Applying assumption (ii 2), we get Ag = 0. Hence g

is harmonic in 0, THis eciipletes Bf of Theorem 3.1,

3. Proof of The

+ 5 any
(s B "«..“. R
| !
,

3 .> ¥ 1 \“
?f1lp°} #£ 0 (and _ \ \x ,) # 0). Choose the
- tion on the x‘-axis. the

ants p = (e.0,...,0), = (e cos 8,

origin of axes O in ections from O at angle 8.
Without loss of gene;
other in the X ,xz-pl g

€ sin 8, 0,...4 )

7

£, (see the figure below).

Let A = £(0), B

3
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Thus
!
A= ‘f,‘ “};... ]ﬂ]'ilnjf [u, ..,ﬂ]} E n
B = {f_l EE,'D,...,CI], f [G ﬂ, .. :uil (=5 ﬂ

C= -If,l (e cos 8,e sin 0,0,...,0),...,f h‘-‘ cos 9,e sin 0,0,...,0))€ ﬂ

By using the Mean-Value Theorem jthe vectors AB and AC, with its end

points given as above, amn

- -,ﬂ]-fn{ﬂj-'-,ujl

AB = (f_(%,0
ﬂf1
L {B-?n_. {" F R | u}};
1
AC = (f_(e cos © O)sesp
f (e cos 8, -._,0))
ﬂf1
: x4
:50) )y i (co 50, . ..,0)+

i¥

F&Jﬁﬂmﬁmwmm
g LG SR IV T =

anuch that “j’ 1.'-'0 as e -~ 0. Now, if-t1 is the angle

between vectors AB and AC, then



= AB-AC
cos T T Ac]
n n ﬂf
cos O( I t-ﬁlmn ) + sin 0( I = m} Exiz“’”
=. oot N =1 + o(e)
n af of .
[E {—1“]}} jE (cos a-—icn} + sin a--ltunz
A e %,
Using the fact th e “& the warcach < luJ.:l nxn
. are orthonomal, thes"sg'arel the column jectors, we let
ﬂij = A\ 1.---.“].
Then we get that
R ﬂf T : ! :
£ (20002 ATE6) 1A, (0) =3(0) = 0,
j=1 %) '

\Z
and sl

ﬁcuﬂﬁmmiwmm
8 W0 ASUUAVINY NS B o

angle T is B.in cosine form. Ignoring * sign for angles (as we

should), we get conformality, This proves (i) of Theocrem 3.2,

We note that (ii) follows immediately from Theorem 2.1(iii).

In fact, since there are n orthogonal vectors in Rm with m < n,
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then there exists j; € & i n} such that vfj'- =0 in Q. By
0
Theorem 3.1 (iv), we get |Vf | = ... = |1?fn[ = 0 in . Hence f is

constant in fl as we wish to prove, This completes the proof of

Theorem 3.2,
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