CHAPTER II

ON HYPERPLANE MEANS OF NON-NEGATIVE SUBHARMONIC FUNCTIONS

1. Introduction

Let m be a positive integer and R^{m+1} be the euclidean space of dimension m+1; 0 denotes the origin, and an arbitrary point of R^{m+1} is represented by

$$M = (X,y) = (x_1,...,x_m,y).$$

We put

$$x^2 = |x|^2 = x_1^2 + \dots + x_m^2$$
, $dx = dx_1 \dots dx_m$.

For each real number a, let D be the open half-space

$$D_a = \{M \in R^{m+1} \mid y > a\}.$$

When a = 0, D_a is simply replaced by D.

In D, the Poisson kernel P is given by

$$P(X,y) = 2s_{m+1}^{-1} y(X^2+y^2)^{-\frac{1}{2}(m+1)}$$

where s_{m+1} denotes the surface-area of the unit sphere in R^{m+1} . It is well-known that

$$\int_{\mathbb{R}^{m}} P(X,y) dX = 1.$$

Let f be a function defined at least on the hyperplane given by the equation y = a, such that the function

$$x \mapsto (x^2 + 1)^{-\frac{1}{2}(m+1)} f(x,a)$$

is Lebesgue-integrable in R^{m} . The Poisson integral I_{f}^{a} in D_{a} of the restriction of f to the hyperplane is given by

$$I_f^a(X,y) = \int_{R^m} P(X-Z, y-a)f(Z,a) dZ$$

for all (X,y) belonging to D_a . We note that I_f^a is harmonic in D_a (Flett, [6], Theorem 6).

Let u be a non-negative subharmonic function in D, we define a function $M(u,\cdot)$ on $(0,+\infty)$ by writing

$$M(u,y) = \int_{\mathbb{R}^m} u(x,y) dx$$

the integral being taken in the sense of Lebesgue. Thus $M(u, \cdot)$ exists and is non-negative (the value $+^{\infty}$ being permitted) in $(0, +^{\infty})$.

Recently, Rippon ([19], Theorem 2) proved.

Theorem A. If u is a positive subharmonic function and has a harmonic majorant in D, if $M(u,1) < +\infty$, then either $M(u,\cdot)$ is decreasing in $[1,+\infty)$ or

Here we immediately add the following property (which will be proved in §3).

Theorem 2.1 With the assumptions of Theorem A, if $M(u, \cdot)$ is not decreasing in $[1, +\infty)$ then

(2)
$$\lim_{y \to +\infty} \sup \frac{M(u,y)}{y^{m+1}} = + \infty.$$

We now give some results on Green's potential, which are necessary when we investigate Theorem A in the case that u^p has a harmonic majorant (p > 1).

Let τ denote the fundamental superharmonic function in R^{m+1} , that is, for any M and N belonging to R^{m+1} ,

$$\tau(M,N) = \begin{cases} -\log (MN) & (m = 1, M \neq N), \\ (MN)^{1-m} & (m \geqslant 2, M \neq N), \\ +\infty & (M = N), \end{cases}$$

MN being the distance between M and N. It is well known that the function M \rightarrow $\tau(M,N)$ is harmonic in $R^{m+1}\setminus\{N\}$ and superharmonic in R^{m+1} . The distribution $\Delta\tau$ of τ at 0 is related to the Dirac measure δ by $\Delta\tau=-\lambda_{m+1}\delta$, where $\lambda_2=2\pi$ and $\lambda_{m+1}=(m-1)s_{m+1}$, when $m\geqslant 2$ (Brelot, [1], Chapter 4, §2).

Let M and N be two points in D and M the reflexion of M with respect to the hyperplane y=0. The Green's kernel is defined by

$$G(M,N) = \tau(M,N) - \tau(M^*,N)$$

Similarly, we can define G_a in D_a with M^* understood as the reflexion of M with respect to the hyperplane y = a.

If μ is a positive Radon measure on $D_{\underline{a}},$ the function $G_{\underline{a}}^{\mu},$ defined by

$$G_a^{\mu}(M) = \int_{D_a} G_a(M,N) d\mu(N)$$
 $(M \in D_a),$

is called the <u>Green's potential</u> of μ in D_a . Either $G_a^{\mu} \equiv +^{\infty}$ or G_a^{μ} is superharmonic in D_a (Helm, [9], Chapter 6). If G_a^{μ} is superharmonic, it is called a <u>potential</u> (of a measure). The use of the word "potential" is due to the fact that the greatest harmonic minorant of a positive superharmonic is identical to zero if and only if it is a potential.

The "only if" is a consequence of the following Riesz decomposition theorem for half-spaces.

Theorem B. Let u be subharmonic in D and μ the measure distribution $\Delta u/\lambda_{m+1}$. Then in order that G^μ be a potential, it is necessary and sufficient that u has a harmonic majorant in D. In that case

$$u(M) = h_{M}(M) - G^{\mu}(M) \quad (M \in D),$$

where h_{u} denotes the least harmonic majorant of u in D.

Theorem B (Brelot,[2], Theorem 8) also holds for D_a provided that D and G are replaced by D_a and G_a .

Now, we shall investigate Theorem A in the case that \mathbf{u}^p has a harmonic majorant for some positive real number p such that p>1. We get the following results which will be proved in §3.

Theorem 2.2 If u is a non-negative subharmonic function and u^p has a harmonic majorant in D, if G^μ is positive and $M(G^\mu,1)<+\infty$, then either $M(u,\cdot)$ is decreasing, convex and continuous in $[1,+\infty)$ or $M(u,\cdot)$ is identically $+\infty$ in $[1,+\infty)$.

The second part of this chapter is devoted to study Theorem A in the case that u has no harmonic majorant in D. We get the following result inspired by Armitage.

Theorem 2.3 Suppose that

- (i) u is a non-negative subharmonic function in D,
- (ii) u has no harmonic majorant in $R^{n} \times (1, +\infty)$,
- (iii) M(u, •) is locally bounded in (0,+∞).

Then

(3)
$$\lim_{y \to +\infty} \frac{M(u,y)}{y^{m+1}} = +\infty.$$

We shall close this chapter by giving two examples. The first example will show that the condition $M(G^{\mu},1) < +\infty$ is necessary in Theorem 2.2; and the second example will show that the condition (3) is best possible in the sense that for each real number $\epsilon > 0$ we can find u satisfy (i),(ii), and (iii) such that

(4)
$$\lim_{y \to +\infty} \frac{M(u,y)}{y^{m+1+\epsilon}} < +\infty.$$

2. Some preliminary results

In this section, we shall prove two lemmas that will be used in proving Theorem 2.2.

Lemma 2.1 If u is a non-negative subharmonic function, $u^p(p > 1)$ has a harmonic majorant in D, and $M(u,1) < +\infty$, then $M(u,\cdot)$ is decreasing convex and continuous in $[1,+\infty)$.

Proof First, we shall prove that u also has a harmonic majorant in
in D. By using the following identity

$$\int_{\mathbb{R}^m} \left\{ x^2 + (y+1)^2 \right\}^{-\frac{1}{2}(m+1)} dX = \frac{1}{2} s_{m+1} (y+1)^{-1},$$

(where s is the surface area of the unit sphere in R and Holder's inequality, we obtain the following inequality:

$$\int_{\mathbb{R}^{m}} \{x^{2} + (y+1)^{2}\} \frac{1}{2^{2}} u(x,y) dx$$

$$= \int_{\mathbb{R}^{m}} \{x^{2} + (y+1)^{2}\} \frac{1}{2^{2}} (w+1) \frac{1}{2^{2}} \frac{1}{2^{2}} (p-1)(m+1) u(x,y) dx$$

$$\leq \left(\int_{\mathbb{R}^{m}} \{x^{2} + (y+1)^{2}\} \frac{1}{2^{2}} (m+1) \frac{1}{p} \left(\int_{\mathbb{R}^{m}} \{x^{2} + (y+1)^{2}\} \frac{1}{2^{2}} dx\right)$$

$$= \left(\int_{\mathbb{R}^{m}} \{x^{2} + (y+1)^{2}\} \frac{1}{2^{2}} (m+1) \frac{1}{p} \left(\frac{1}{2^{2}} s_{m+1}(y+1)^{-1}\right)^{1-\frac{1}{p}}$$

 $-\frac{1}{2}(m+1)$ If we let $K(u,y) = \int_{R^m} \left\{ x^2 + (y+1)^2 \right\}$ u(x,y)dx, then the above inequality can be written in terms of K as follows:

(5)
$$K(u,y) \leq \{K(u^p,y)\}^{\frac{1}{p}} \{I_2 s_{m+1} (y+1)^{-1}\}^{1-\frac{1}{p}}.$$

Hence (Nualtaranee, [17], Theorem B) the inequality (5) implies that u has a harmonic majorant in D.

By making a translation, we may suppose that u is non-negative and subharmonic in a neighborhood, Ω say, of \overline{D} with

$$M(u,0) = \int_{pm} u(X,0)dX < + \infty$$

and that u has a harmonic majorant in Ω . With these assumptions we can write (Nualtaranee, [17], Theorem A), for P = (X,y) in D,

(6)
$$u(P) = cy + \frac{2y}{s_{m+1}} \int_{R^m} \frac{u(Z,0)dZ}{|P-Z|^{m+1}} - \int_{D} G(P,M)d\mu(M)$$

where the value of c is given by (Nualtaranee, [17], page 253)

$$c = 2s_{m+1}^{-1} \lim_{v \to +\infty} K(u,y).$$

Since u^p has a harmonic majorant in D, we can conclude from (5) that c = 0. So (6) reduces to

(7)
$$u(P) = \frac{2y}{s_{m+1}} \int_{\mathbb{R}^m} \frac{u(z,0)dz}{|P-z|^{m+1}} - \int_{D} G(P,M)d\mu(M).$$

But the Green's potential of μ is a non-negative function, then

$$u(P) \leqslant \frac{2y}{s_{m+1}} \int_{\mathbb{R}^m} \frac{u(Z,0)dZ}{|P-Z|^{m+1}}$$

Hence

$$M(u,y) \leq \frac{2y}{s_{m+1}} \int_{\mathbb{R}^{m}} \left[\int_{\mathbb{R}^{m}} \frac{u(z,0)dz}{|p-z|^{m+1}} \right] dx$$

$$= \int_{\mathbb{R}^{m}} \left[\frac{2y}{s_{m+1}} \int_{\mathbb{R}^{m}} \frac{dx}{|p-z|^{m+1}} \right] u(z,0)dz$$

$$= M(u,0).$$

This implies that $M(u,y) \leq M(u,0)$ for all y in $[0,+\infty)$. Thus (Nualtaranee, [16], Theorem A) M(u,y) is real-valued decreasing convex and continuous in $[1,+\infty)$. This completes the proof of Lemma 2.1.

We need the following theorem which is a weak form of a result of Brawn ([3], Theorem 2.2) to prove Lemma 2.2.

Theorem C. Let u be a positive superharmonic function in D. If $M(u, \cdot)$ is finite on $(0, +\infty)$, then $M(u, \cdot)$ is continuous and concave on $(0, +\infty)$.

Lemma 2.2 Let u be a positive superharmonic function in $\mathbb{R}^m \times (0, +^{\infty})$. Then either $M(u, \cdot)$ is finite on $(0, +^{\infty})$ or $M(u, \cdot)$ is identical to $+^{\infty}$ on $(0, +^{\infty})$.

Proof Let h be a positive harmonic function in $R^m \times (0, +^{\infty})$ such that $M(h, \cdot)$ is finite on $(0, +^{\infty})$. (We could, for example, take $h(X,y) = y(X^2 + y^2)^{-\frac{1}{2}(m+1)} \quad \text{then } M(h, \cdot) = \frac{1}{2} s_{m+1} \text{).} \quad \text{For each positive integer n define } v_n \quad \text{in } R^m \times (0, +^{\infty}) \text{ by writing } v_n = \min (u, nh).$

Then each v_n is positive and superharmonic in $R^m \times (0,+\infty)$, and we have

$$M(v_n, \cdot) \leq nM(h, \cdot) < +\infty$$

on $(0,+\infty)$. By Theorem C,M(v_n ,·) is continuous and concave on $(0,+\infty)$.

Since the sequence (v_n) increases to the limit u in $\mathbb{R}^m \times (0,+^\infty)$, it follows from Lebesgue's monotone convergence theorem that

$$\lim_{n\to +\infty} M(v_n, y) = M(u, y)$$

for all $y \in (0, +\infty)$, Hence $M(u, \cdot) \equiv +\infty$ on $(0, +\infty)$ or $M(u, \cdot)$ is real-valued on $(0, +\infty)$. This proves the lemma.

3. Proof of Theorem 2.1, 2.2, and 2.3.

Proof of Theorem 2.1 We work by contradiction. Suppose that

$$\lim_{y\to +\infty}\sup y^{-m-1}\;M(u,y)\leqslant c$$

for some c > 0. Then there exists $y_0 > 0$ such that

$$M(u,y) \leq cy^{m+1} \qquad (y \geq y_0)$$

Thus

$$\frac{y}{M(u,y)} \geqslant \frac{1}{cy^m} \qquad (y \geqslant y_0)$$

and then

$$\int_{y_0}^{+^{\infty}} (\frac{y}{M(u,y)})^{\frac{1}{m}} dy \ge c^{-\frac{1}{m}} \int_{y_0}^{+^{\infty}} \frac{1}{y} dy = +^{\infty}.$$

This contradicts (1). Therefore

$$\lim_{y \to +\infty} \sup \frac{M(u,y)}{y^{m+1}} = +\infty$$

Thus Theorem 2.1 is proved.

Proof of Theorem 2.2. We shall prove by cases.

Case 1. Assume that $M(u,1) < +\infty$. Then, by Lemma 2.1, we can conclude that $M(u, \cdot)$ is decreasing convex and continuous on $[1, +\infty)$.

Case 2. Assume that $M(u,1) = +\infty$. By making a translation, we may suppose that u is non-negative and subharmonic in a neighborhood, Ω say, of \overline{D} with

(8)
$$M(u,0) = \int_{\mathbb{R}^n} u(x,0) dx = +\infty,$$

 $M(G^{\mu},0) < +\infty,$

and that u^p has a harmonic majorant in Ω . With these assumption, we can write (Nualtaranee, [17], Theorem A), for P = (X,y) in D,

(9)
$$u(P) = \frac{2y}{s_{m+1}} \int_{\mathbb{R}^m} \frac{u(z,0)dz}{|P-z|^{m+1}} - \int_{D} G(P,M)d\mu(M).$$

With the assumption that $M(G^{\mu},0) < +\infty$ then, by Lemma 2.2, $M(G^{\mu},\cdot) < +\infty$ on $(0,+\infty)$. Thus (9) and Fubini's Theorem imply

(10)
$$M(u,y) = M(u,0) - M(G^{\mu},y)$$
.

Hence (8) and (10) implies that $M(u,y) = + \infty$ on $(0,+\infty)$. This proves Theorem 2.2.

Proof of Theorem 2.3. Let a > 1. We prove first that

(11)
$$|\lim_{|(X,y)| \to +\infty} u(X,y) = 0.$$

$$(X,y) \in \mathbb{R}^{m} \times [1,a]$$

Suppose (11) is not true. Then there exists $\epsilon > 0$ and a sequence of points $(P_n) = ((X_n, y_n))$ in $R^m \times [1,a]$ such that $|P_n| \to +\infty$ as $n \to +\infty$ and $u(P_n) \geqslant \epsilon$ for all n. By working with a subsequence, if necessary, we may also suppose that $B(P_n, \frac{1}{2}) \cap B(P_k, \frac{1}{2}) = \phi$ whenever $n \neq k$ (where B(P,r) is the open ball of center P and of radius r). By the volume mean-value inequality, for each $n \in N$, we have

$$\int_{B(P_{n}, \frac{1}{2})} u(x, y) dxdy \ge v_{m+1}(\frac{1}{2})^{m+1} u(P_{n}) \ge v_{m+1}(\frac{1}{2})^{m+1} \varepsilon$$

where v_{m+1} is the volume of B(0,1) in R^{m+1} . Hence

$$\int_{\mathbb{R}^{m}\times(\frac{1}{2},a+\frac{1}{2})}u(X,y)dXdy\geqslant\int_{\substack{n=1\\n\neq 1}}^{\infty}B(P_{n},\frac{1}{2})}u(X,y)dXdy=\sum_{n=1}^{\infty}\int_{B(P_{n},\frac{1}{2})}u(X,y)dXdy$$

On the other hand, since $M(u,\cdot)$ is locally bounded in $(0,+\infty)$, we have

$$\int_{\mathbb{R}^{m}} u(X,y) dX dy = \int_{\frac{1}{2}}^{a+\frac{1}{2}} M(u,y) dy < + \infty.$$

Thus we have a contradiction. So (11) is true.

Now let $\eta>0$. (For the moment, think of η as fixed.) Define I_u in $R^m\times$ (1,+∞) by

$$I_u(X,y) = \frac{2(y-1)}{s_{m+1}} \int_{\mathbb{R}^m} \frac{u(Z,1)dZ}{\{|X-Z|^2 + (y-1)^2\}^{(m+1)/2}}$$

and define J_u in $R^m \times (-\infty, 2\eta+1)$ by

$$J_{u}(X,y) = \frac{2(2\eta+1-y)}{s_{m+1}} \int_{\mathbb{R}^{m}} \frac{u(Z,2\eta+1) dZ}{\{|x-Z|^{2}+(2\eta+1-y)^{2}\}^{(m+1)/2}}.$$

Thus I and J are half-space Poisson integrals and I + J u is harmonic in $R^m \times (1,2\eta+1) = \Omega_\eta$ say. We next aim to prove that

(12)
$$u \leqslant I_u + J_u \quad \text{in } \Omega_n$$

It follows from (11) and the upper semi-continuity of u that u is bounded on $R^m \times \{1\}$ and $R^m \times \{2\eta+1\}$. Hence there are two decreasing sequences (f_n) and (g_n) of bounded real-valued continuous functions on R^m such that

$$\lim_{n\to +\infty} f_n(Z) = u(Z,1) \text{ and } \lim_{n\to +\infty} g_n(Z) = u(Z,2\eta+1)$$

for all Z in R^m . Then, for each n, I_f is harmonic in $R^m \times (1,+\infty)$ and J_g is harmonic in $R^m \times (-\infty,2\eta+1)$. Also

$$\lim_{n \to +\infty} (I_{f_n} + J_{g_n}) = I_u + J_u \quad \text{in } \Omega_{\eta} .$$

Hence, to prove (12), it is enough to show

(13)
$$u \leqslant I_{f_n} + J_{g_n} \text{ in } \Omega_{\eta}$$

We have

(14)
$$\lim_{\substack{(X,y)\to(Z,1)\\(X,y)\in\Omega\\\eta}} f_n^{(X,y)} + J_{g_n}^{(X,y)} = f_n^{(Z,1)} + J_{g_n}^{(Z,1)}$$
$$= f_n^{(Z,1)} + J_{g_n}^{(Z,1)}$$
$$\geqslant f_n^{(Z,1)} \geqslant u(Z,1).$$

Similarly, we have

(15)
$$\lim_{\substack{(X,y)\to(Z,2\eta+1)\\(X,y)\in\Omega\\n}} (I_{f_n}(X,y)+J_{g_n}(X,y)) \geqslant u(Z,2\eta+1).$$

Also, by (11),

(16)
$$\lim_{\substack{|(X,y)|\to +\infty\\ (X,y)\in\Omega}}\inf(I_{f_{n}}(X,y)+J_{g_{n}}(X,y))\geqslant 0=\lim_{\substack{|(X,y)|\to +\infty\\ (X,y)\in\Omega\\\eta}}u(X,y).$$

(13) now follows from (14), (15), (16), and the maximum principle. Hence (12) is true. In particular, for all $X \in R^{m}$

$$u(X,\eta+1) \leq \frac{2\eta}{s_{m+1}} \int_{\mathbb{R}^{m}} \frac{u(Z,1) dZ}{\{|X-Z|^{2} + \eta^{2}\}^{(m+1)/2}} + \frac{2\eta}{s_{m+1}} \int_{\mathbb{R}^{m}} \frac{u(Z,2\eta+1)dZ}{\{|X-Z|^{2} + \eta^{2}\}^{(m+1)/2}}$$

$$\leq \frac{2}{s_{m+1}} \eta^{-m} (M(u,1) + M(u,2\eta+1))$$

$$= C_{2}, say.$$

Also there is a constant C_1 such that $u(X,1) \leqslant C_1$ for all $X \in \mathbb{R}^m$. Now put

$$H_{\eta}(X,y) = \frac{\eta + 1 - y}{\eta} C_1 + \frac{y - 1}{\eta} C_2$$

where $(X,y) \in \mathbb{R}^m \times [1,\eta+1]$. Then H_{η} is harmonic in $\mathbb{R}^m \times (1,\eta+1)$. Also, $H_{\eta} = C_1 \ge u$ on $\mathbb{R}^m \times \{1\}$, $H_{\eta} = C_2 \ge u$ on $\mathbb{R}^m \times \{\eta+1\}$, and by (11)

$$\begin{array}{lll} & & \inf H_1(X,y) \geqslant 0 = \lim & u(X,y). \\ |(X,y)|_{\neg +\infty} & & |(X,y)|_{\neg +\infty} \\ & & (X,y) \in R^m \times (1,\eta+1) \end{array} \qquad (X,y) \in R^m \times (1,\eta+1) \end{array}$$

Thus

(17)
$$H_{\eta} \geqslant u \quad \text{in } R^{m} \times (1, \eta+1).$$

Let h_{η} be the least harmonic majorant of u in R^{m} $\times (1,\eta +1)$. If $\eta > 1$, we have

(18)
$$h_{\eta}(0,...,0,2) \leqslant H_{\eta}(0,...,0,2)$$

$$= \frac{\eta-1}{\eta} C_{1} + \frac{1}{\eta} C_{2}$$

$$= O(1) + \frac{2}{s_{m+1}} \eta^{-m-1} M(u,2\eta+1) \text{ as } \eta \rightarrow +\infty.$$

Now $\lim_{\eta \to +\infty} H_{\eta}$ is either harmonic in $R^{m} \times (1, +\infty)$ or identical to $+\infty$ in $R^{m} \times (1, +\infty)$. Since u has no harmonic majorant in $R^{m} \times (1, +\infty)$, we must have $\lim_{\eta \to +\infty} h_{\eta} \to +\infty$. In particular, $h_{\eta}(0, \dots, 0, 2) \to +\infty$ as $\eta \to +\infty$, and (18) now implies that $M(u, 2\eta + 1)/\eta^{m+1} \to +\infty$ as $\eta \to +\infty$. This proves Theorem 2.3.

4. Examples

In this section we shall present two examples. The first example will show that we cannot relax the condition $M(G^{\mu},1)<+\infty$ in Theorem 2.2 to obtain such results. The second example will

assert that the condition (3) of Theorem 2.3 is best possible in the sense that for each $\epsilon > 0$, there exists a non-negative subharmonic function u in D which has no harmonic majorant in D and

$$\lim_{y\to +\infty} \ \frac{\underline{M}(u,y)}{y^{m+1+\varepsilon}} \ < \ + \ \infty.$$

Example 1. Let $d\mu(X,y) = dX \ d\delta_1(y)$ for all (X,y) in D, where δ_1 is the Dirac measure placed at 1 in the real line. Then the support of μ is the hyperplane y=1 and

$$G^{\mu}(X,y) = \min \{1,y\} \quad (y > 0).$$

To see this, we note that

$$G^{\mu}(X,y) = \int_{R^{m}} G((X,y),(Z,1))dZ$$
$$= \frac{1}{2} (y+1-|y-1|)$$
$$= \min \{1,y\}$$

where the second equality is due to equation (8) in ([13]). Hence $M(G^{\mu}, y) = +\infty$ for all y > 0. Now, let

$$u(X,y) = y - G^{\mu}(X,y).$$

Then u is a non-negative subharmonic function in D with

$$M(u,y) = \begin{cases} 0 & (0 < y \le 1), \\ +^{\infty} & (y > 1). \end{cases}$$

Example 2. Let $\epsilon > 0$ be given. Then, by Theorem 2.2 in [16], there exists a non-negative subharmonic function u in D such that

$$M(u,y) = y^{n+1+\varepsilon/2}.$$

For this subharmonic function u, we have

$$\frac{M(u,y)}{y^{n+1+\varepsilon}} = y^{-\varepsilon/2} \to 0 \text{ as } y \to +\infty.$$

It remains to show that u has no harmonic majorant in D. In fact, such a function u is given by

$$u(X,y) = \begin{cases} \rho^{k} F_{m,k}(\theta) & (0 \leq \theta < \theta_{0}) \\ 0 & (\theta_{0} \leq \theta < \frac{1}{2}\pi), \end{cases}$$

where $k = 1 + \epsilon/2$, $F_{m,k}(\theta) = F(-k,m+k-1; \frac{1}{2}m,\frac{1-\cos\theta}{2})$, θ_0 is the smallest positive zero of $F_{m,k}$, $-\pi < \theta < \pi$, and F is the hypergeometric function of x (-1 < x < 1) with parameter - k, m + k - 1, $\frac{1}{2}m$. We let s_m denote the surface area of the unit sphere in R^m ; and do denote the surface area element on the sphere |X| = r in R^m , where r > 0, Then

$$\int_{\mathbb{R}^{m}} \frac{u(x,y) dx}{(x^{2} + y^{2})^{\frac{m+1}{2}}} = \int_{0}^{+\infty} \int_{|x| = r} \frac{u(x,y)}{(x^{2} + y^{2})^{\frac{m+1}{2}}} d\sigma(x) dr.$$

Since, for each r and y fixed, the function u is constant on the sphere |X|=r, we have, by using $\rho=y$ sec θ and the change of variable r=y tan θ , that

$$\begin{split} \int_{R^{m}} \frac{u(x,y)dx}{(x^{2}+y^{2})^{\frac{m+1}{2}}} &= \frac{1}{\rho^{m+1}} \int_{0}^{+\infty} [s_{m}r^{m-1}(\rho^{k}F_{m,k}(\theta))]dr \\ &= s_{m} \int_{0}^{\theta_{0}} [y^{m-1}tan^{m-1}\theta \ \rho^{k-m-1}F_{m,k}(\theta)y \ sec^{2}\theta]d\theta \\ &= s_{m} \int_{0}^{\theta_{0}} [y^{m}tan^{m-1}\theta \ y^{k-m-1}sec^{k-m-1}\theta \ F_{m,k}(\theta)sec^{2}\theta]d\theta \\ &= s_{m} \int_{0}^{\theta_{0}} [y^{k-1}tan^{m-1}\theta \ sec^{k-m+1}\theta \ F_{m,k}(\theta)]d\theta \\ &= s_{m} y^{k-1} \int_{0}^{\theta_{0}} tan^{m-1}\theta \ sec^{k-m-1}\theta \ F_{m,k}(\theta)d\theta. \end{split}$$

Here the integral is a positive constant since, by Theorem 4 in [16], the integrand is positive, real-valued and continuous in $(0,\theta_0)$. Hence (Kuran, [14], Theorem 4) u has no harmonic majorant in D.

าสาสหารณ์มหาวิทยาลัย