CHAPTER 11

ON HYPERPLANE MEANS OF NON-NEGATIVE. SUBHARMONIC FUNCTIONS
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where 8 e denotes the surface-area of the unit sphere in R

It is well-known that

J' P(X,y)dX = 1.
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Let f be a function defined at least on the hyperplane given

by the equation y = a, such that the function
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Xt= (X"+ 1) fix,a)

is Lebesque-integrable in R". The Poisson integral I in D_ of the

restriction of £ to the hyperpl

for all (X,y) balM e, 'note I. is harmonic in D,

Let u be

fUnction in D, we define

a function M(u,-)
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Here we immediately add the following property (which will be proved

in 53} -



Theorem 2.1 With the assumptions of Thecrem A, if M{u,-)

is not decreasing in [1,+ «) then

(2) lim  sup &:ﬂﬂ i T
yse

Let T denot _.'_--r / ng@ntal ‘F‘* onic function in R
that is, for any 1//,:
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AR M ﬁ HJ:
T(M,N) o e m>2, M# N,
MN being the distance 'bedGaf i SiiMP It is well known that the
function M =~ t(M,N) is haFmonicir i} apd superharmonic in
™. The ais [a;,;;' Ffon At of T fafi| to the Dirac
m '
measure & by At = s RLE ., - (m-1 }Bm+1’ when

m3 2 [Ernlcﬁ, [1], Crapter 4, §2) 4/
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G(M,N) = T(M,N) - T(M ,N)

Similarly, we can define Ga in Du with M  understood as the reflexion

of M with respect to the hyperplane y = a.



If W is a positive Radon measure on Dﬂ, the function G:,

defined by

u
b = f G, (M,N)A(N) MeD),

D
a

is called the Green's potential of M in I}a. Either G: = 4% or

G: is superharmonic in D_ Chapter 6). If G: is super-

harmonic, it is calledsa asure). The use of the

N —
word “potential® is AUE Lo the Fact.fhat the greatest harmonic
minorant of a pos tical to zero if and

only if it is a p

The "only if" is ing Riesz decomposition

theorem for half-

Thecrem B. nnanﬂuthammure

distribution ﬁuflmﬂ “that G" be a potential, it is
necessary and s pajorant in D. In

that case

uM) € h (M) - (M e D),
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where h dﬂ tes the least h:rmcmie majarant of u :|.n D.
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D and G are replaced by Da and Ga.

Now, we shall investigate Theorem A in the case that uP has
a harmonic majorant for some positive real number p such that

p > 1. We get the following results which will be proved in $3.



Theorem 2.2 If u is a non-negative subharmonic function
and u” has a harmonic majorant in D, if G" is positive and
H(G".1} < +@, then either M(u,+) is decreasing, convex and continuous

in [1,+®) or M{u,*) is identically += in [1,+%).

The second part of this pter is devoted to study Theorem A

in the case that u has ge armon fo7 . We get the

nction in D,
{ii) u has {1 ,+=]),
{iii} H{u"} ]i

Then

(3)
we shall close tWis chapte t ffples. The first

example will s -lJ‘ '.TEJ +® is necessary in

Theorem 2.2; and ttﬁmnd examplig/will show that the condition (3)
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2. Some preliminary results

In this section, we shall prove two lemmas that will be used

in proving Theorem 2.2,

Lemma 2.1 If u is a non-negative subharmonic function,

D, and M{u,1) < +=, then M(u,-)

up{p > 1) has a harmonic majori

is decreasing convex an

Proof First, we shé s a harmonic majorant in

in D, By using

f - {x2 ly#1) ,
R
(where s _ . is the sphere in R™') and
Holder's ineqguality, g inequality:
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= f {x‘{y+1l}
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If we let K(u,y) -fm {xzq» ty+1}2} u(X,y)dX, then the above

R
inequality can be written in terms of K as follows:
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(5) K(u,y) < {KP,y} P {‘:sm+1[3r+1l_1} B .

Hence (Nualtaranee, [17), Theorem B) the inequality (5) implies

that u has a harmonic majorant in D.

and that u has a 4 these assumptions we

can write (Nual P = (X,y) in D,

)  u(e) = ey ¥ UL ..-:: 705\ ) s@maue

where the valua of ¢ 1s anee, [17], page 253)

since uP has a o ic majorant in D, we cam‘conclude from (5)
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(7 u(p) = M [ G(P,M)AN (MY y
Qi e R TTRrT]

But tha Green's potential of u is a non-negative function, then

ulP) <
Bm+1 Lm |p-z]m+1 i
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Hence

2y u(z,0)dz
o <2 [ [f, s o

m+1 R |p-z
=fm [—sz g 1]utz,ﬂ]dz
R" L%ms1 "R" |p-z|™

This implies that M{u i} 9) for-all in [0,4=). Thus
(Nualtaranee, [16 valued decreasing
convex and continug ez the proof of

Lemma 2.1.

We need s a weak form of a

result of Brawn ([3 yve Lemma 2.2.

Theorem C. e superharmonie function in D.

If M(u,-) is fi tinuous and concave

a‘ﬁ Wﬁ‘ﬂﬁjﬁﬁ?‘;ii‘f“:“
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Lat h be a positive harmonic function in R {0,+%=) such

on (0,+™),

that M(h,*) is finite on (0,+®), (We could, for example, take

:
- ={m+1)
hX,y) = y(X2+ y2) 2 then M(h,*) = ~

5 sm_n‘.l. For each positive

integer n define v_ in R™x (0,+%) by writing v - min (u,nh).
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Then each v_ is positive and superharmonic in R™x (0,+=), and we

have
H(vn,-} £ nM(h,*) < +=

on (0,+®). By Theorem c,H[vn, *) is continuous and concave on

(0,+®).

Since the sequece (v ) iférfafCarto the limit u in
R™x (0,+=), it folloWE™FFeH Lebe '-"'-“"' e convergence theorem
that |

for all y € (0,+=) @) or M(u,:) is real-

valued on (0,+=).

]
lim “sup y -m=
e € o
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for some ¢ >0, Then there axists yu:s IJ such that
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Mia,y) 2 _crm (y > y4)
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and then

.'.ﬂ
f oot A,
M(u,y)
Yo

This contradicts (1). Therefore

Case 1. Assume tha nma 2.1, we can conclude

that M(u, ) is deCreafige nd cont! “;\ us on [1,+%).

Case 2. Assume that | a translation, we may

suppose that u is non-fleggtiy rmonic in a neighborhood,

n say, of D with
(8) M(u, 09/ -

M(c*,0)

ﬂum"v’mﬂ%" N3

and that uP Hds a harmonic ma jorant in th these assumpt:.un »

Wﬂwmm WTTRE N NEP =

(9)  u(p) = —-"— ulz,00d2 _ [ cep M)au(M).
Sme1 jm Ip_zlll-l-t -L . :

With the assumption that H{G“.D} < +* then, by Lemma 2.2, HIG“,-]

< 42 on (0,+=). Thus (9) and Fubini's Theorem imply
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(10) Mlu,y) = M(u,0) - M(c",y).

Hence (8) and (10) implies that M(u,y) = + ® on (0,+ ®). This proves

Theorem 2.2.

Proof of Theorem 2.3. Let a > 1. We prove first that

(11)

Suppose (11) is > 0 and a sequence

)\Nx\
\\\\“ \
\

of points (P ) = | at [P | » + = as

n—++ @ and utPn‘.l a suhnnquanéa, if
necessary, we may {P ,%) = ¢ whenever

n # k (where B(P,r) ) 3 snier P and of radius r).

By the volume mean-valile fragualit r @ach n € N, we have
f ulx, y YaX ]mﬂx:
B(Fn,ﬁ} S

R (s, ‘*ﬂ u%w ﬂnnjaw%}% e B(P A gy
QW'] aﬂﬂim URIANYINY

On the other hand, since M(u,+) is locally bounded in (0,+ =), we

have

a+hy
j u(X,y)dxdy = f M(u,yldy < + =.
RT % (%,a+k) s

\



Thus we have a contradiction. So (11) is true.
-
Now let n > 0. (For the moment, think of n as fixed.)

Define I_ in R"x (1,+®) by

2(}*—1? u(Z,1)dz
3gtdard j - (1172

Thus Iu al i gre ¢_gphaee Poisson ntegrals and 1 + J

is harmonic in R : ) = L Be v =} aim to prove that
{12)

It follows from 11 ity of u that u is
bounded on Rmu ."-'.5 are two decreasing

sequences {f ) and ;E ] of bounded real-valuéd continuous functions

ﬁuﬂqwﬂwswawni

f (2) = wu(2, P and lim (z} = u{z 2n+1)

’&lﬁlﬁﬁﬂ‘imuﬁr’i’“ MPIAL,

for alj 2 in Then, for each n, I_ is harmonic in

cmR such

and an is harmonic in R™x (- s2n+1). hlsu

lim (I. +J_ ) = I+ 4J in Q
n—4= £ % L n

Hence, to prove (12), it is enough to show

012549
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(13) u € I + J in 8

n % 1
We have
(14) lim Le (X,y) + 3, (Xy) = £ (Z,1) + 3. (Z,1)
(X,y)=(2,1) n %n R qa,
(X,y)e ﬂ“

2 ntZ,” 2ul(Z,1).

ﬂ“, by {11}’

(16) lim i
](x,y}l"-i-‘“
(X,v)E ﬂ“

{13) now follo h'l

Hence (12) is tgle — :E; R

u{Z 1) d2

ﬂuﬂ’fmw‘sw’mm s

T (M(u, 1+ My, 2n4d)

QW’T"ﬁﬂﬂ‘iﬂmﬁﬂmﬂaﬂ

— 2! say.

ul(Z,2m+1)d42

u{x,ﬂ+11 'C

Also there is a constant c1 such that u(X,1) € c! for all X € R".

Now put

. I -1
Hx,y) = ~2o"Ye + L=—c,,
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where (X,y) € R™'x [1,n+1]1. Then H"I is harmonic in R™x (14n+1).

Also, H =€, >uon R™x {1}, = C, >uon R"x {n+1}, and by (11)

lim h inf H (X,y) 20 = 1lim ulX,y).
[ tx,y)|=+e " | (X,y) | =+
(X,yle R x h,ql-ﬂ (X,yle R™x (1,n+1)
Thus
(17) s Win SREestiyn)
Leth“bathal T a(1,TH1). IEM > T,
we have
h“{u'iil'ﬂ }
(18)

“TM(u,2ne1) as N =+ =,

Now lim H_ isidf! A\ gr identical to + ©
n-‘b“ 'Fi 'krili
orant in R"x (1,+%),

e mﬂﬂmﬂﬂw‘i“’“ il

in RMx (1,+%). &% muhan no harmonic majc

as n =+ = %nd (18) now imp}ies that H(u,2n+11f -4+ ®as
n*%ﬁﬂﬁ*&ﬂﬁ*ﬂﬂ"ﬂﬂqﬁﬂﬂqﬂﬂ

In this section we shall present two examples. The first
example will show that we cannot relax the condition H{Gu.'l}{ + =

in Theorem 2.2 to obtain such results. The second example will



assert that the condition (3) of Theorem 2.3 is best possible in the

sense that for each £ > 0, there exists a non-negative subharmonic

function u in D which has no harmonic majorant in D and

where the second &4 ality is due to aquation 18) in ([13)).

““""“ “‘“ﬁﬁﬁl”mﬂﬂ‘ﬁﬂﬁ"m‘i

06 .
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Then ulis a non-negative subharmonic function in D with

0 {ﬁ <y £ 1),
M(u,y) =

+= (y > 1).
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Example 2. Let € > 0 be given. Then, by Theorem 2.2 in
[16], there exists a non-negative subharmonic function u in D such

that

Miwsy) . = yn+1+¢f2 .

It remains to show harmoni jorant in D, In fact,

such a funection u i

where k = 1 + £€/2, F

smallest positi g__;-a e e A ——. S . - F is the hypergeo-

metric function -:I x -kym+ k-1,
i

%—m We let s denﬁtn the aurfaca area of the unit sphere in R;

o HHANERTHEARS 1 -

uharar:-ﬂ

AN’ mmma

KI-r
lx+y] (x+yl

do(X)dr,
=

Since, for each r and y fixed, the function u is constant on the
sphere |x[ = ry we have, by using p = ¥ sec © and the change of

variable r = y tan 8, that
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" me+1 m+1 0 m m,k
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(X"+ v )
oF
= 8 j [ym-itanm_'iﬂ pk'“-1F (B)y seczﬂldﬂ
m <y myk .
Eﬂ
= J’ “tah a0y p t&‘:ssczﬂldﬂ
0 ] m,k

|

~ de=m+1
e © T, (07199
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¥

Here the integral . ince, by Theorem 4 in

[16], the integr i and continuous in
(D,Bu}. Hence (Kuram, has no harmonic majorant

in D.
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