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CHAPTER 3

MOLECULAR DYNAMICS METHOD
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In the view of computer simulation, the integration of the above equation is
practically calculated for a long finite time. In fact, the equations of motion are
usually solved on a step-by-step basis, i.e. a large finite number 1, of time steps, of
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length &t = t, ./ 1, are taken. In this case, we may rewrite the equation into the new

form

tmnperatu:e'[ﬂpm‘poseufth:s‘mgemtu byremnvmgﬂm
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renormalization of the velocities to ensure that a true equilibrium state is reached. The
input temperature in Molecular Dynamics simulation is not a control parameter: in the
micro-canonical mmhlememtalenergy,thgvolume,andﬂmnmnhuufpmﬂclas
To perform a Molecular Dynamics simulation, the following four steps are
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required:
(1) predict the positions, velocities, accelerations etc. at the next time step;
(ii) evaluate the forces, and hence accelerations a= f;/m;, from the new

positions;

(iii) correct the predicied | ities, accelerations etc., using the
new accelerations; |

(iv) calculate as the energy, virial, order

‘before returning to (i) for the
next step.

All of particlegfused i ' diied in an imaginary box with
a constant density.
overcome the problem a

space to form an infinite laftic he s of si ulation, as a molecule moves in

:hmughmeoppomf@l ere are t'the bouidary of the central box, and
thus no surface molecules,. This box simply forms a convenient axis system for

messin o 3rdesof Ykl N b debdnons version of s

pcnad:csymnmshowang3ld"Ihcdnphcmbox¢sarelalﬂbdABC etc., in

an m&mmn ﬁ Miﬁ&ﬂmmu 1, 1g, etc.

(where t:'hc subscript specifies in which box the image lies) move across their
corresponding boundaries.

The use of periodic boundary condition keeps the number density in the
central box ( and hence in the entire system ) constant. It is not necessary to store the
coordinates of all the images in a simulation (an infinite number!), just those of the
molecules in the central box.



Muluculm-Dyns‘mmsmulanon on the assumption that the motion of
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mﬁrm%latndsysmcomgosadofﬂp icles, the tranglational motions are
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Cut-off h:mt

In principle, the potential energy (and force) should be calculated by
mmhgmaﬂﬂuiﬂumﬁmsinﬂwinﬁ:ﬁmpeﬁudiesyﬂm[ﬁﬂ].lnpmcﬁu,the
long range van der Waals interactions, proportional to RS are usually truncated at a
dismdlmﬂxmme—halfﬂnbm—lmgﬂ:,mﬂndmt-oﬂlhnit, .. Therefore, for
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each pair interaction only the nearest image needs to be considered in calculating the
potential energies and forces [69]. However, this approximation breaks down for a
very long-range Coulombic interaction. Fortunately, this study employs an infinitely
dilute system which contains only one ion, and due to these comections for the

the cut-off limit introduces
e, i.e., of the function V(r--)

es this boundary, the total
ed-furce.r'putenhz[ method is

W= ket A/ i\ \\
discontinuity at 1= r.. 4 _

energy will not be conse;
introduced; the potentials hs : ¢ following expression:
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where V’S{ri ﬂnd'u’ are the shifted potential and potentigly at cut-off limit,

m&%ﬂﬁﬁﬂ kbl dols| oo | et 5 e cut-oft i,
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equations of motion.
Neighbouring algorithm

Although the cut-off limit leads to the reduction of time to calculate forces
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and potential, it still needs time to examine all pair separations whether they are
within cut-off limit. The amount of time used is proprotional to N2, Verlet [70]
suggested a technique for improving the speed of a program by maintaining a list of
ﬂmnmghboumnfapmuculnrmlccule,whmhmupdmdatmﬂs During

To perform ; «l / ar Dynamics simulation, one

of the finite differencg .l mnectormuhnemsulmd

The trajectories of parti l nuous, then an estimate of the

positions, velocities etc. atfiméfedi may d by Taylor expansion :

aP(r+6¢) = a(t)-liﬁrb (£)+...
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pusmons, velocities, accelerations and the third derivatives of r. After the motions
have been done, the correct accelerations a_(t+8f) can be calculated and then
compared to the predicted value aP(t+0¢) to estimate the size of error in the prediction
step:

Aa(r+5r) = a(1-+5¢)-aP(1+5¢).
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This error, and the results of the predictor step, are fed into the corrector step, which
reads, typically,

The idea is that r°(r+36) eif. drg'n ow.better, approx s to the true positions,
velocities etc. Gear [71 is discugsed the ‘best’, choice for the coefficients ¢, ¢;,
Verlet [70] propo ore accurate positions, velocities

ﬂﬂ.uﬂiﬂgﬂlﬂm nositions r ._ T
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(i) Static properties

Translational kinetic (K,;) and potential energies (V) of the system can be
easily calculated by:
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(RDF), since it expresses the structure of the solvation shell or solvent structure. The
RDF,maﬂywﬁﬂenasg“ﬁ{r).givﬂﬂrpmbabiﬁtyofﬁnﬁhgpmﬁdepnﬂm
distance r away from particle o. The function is usually normalized to 1 at large r, The
RDF can be calculated by dividing the interval within r=0 and r=r, into segments of
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size dr and counting the number of atomic pairs («,8) with distance falling in a given
range. The results are averaged over different time steps. Let N(Ar) be the number of
pairs which are r; to r;+8r apart, then

D]'nmnic Droper *I’ ‘F.:.) ) ” via the time correlation
function which relates a prdpefty

is calculated at discrete time

a property B at a later time. It
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Col0) = <vy(0).vy(1)>

is often of great interest because its time integral relates to the self diffusion
ooeﬁciem,whmmimwmpoanmniﬂumsfnmisammmufﬂm‘dmsityof
states’. The self-diffusion coefficient D obtained from the velocity autocorrelation



function can be written in the form:

Four kinds of sysiefhs#vérs st \\\:\ ar Dynamics simulation. The

EINMOSW Were g ///, ‘ '\\&\ o 235 K and 266 K using

Zn(I1)-NH,4 v gent o were performed at the same
temperatures using the Zn(J } ential including three-body
corrections. Each system c@nsistéd” of omes Zn(Il) and 215 NH; at atmospheric
pressure.

Table 3.1 Simulation dem]aofﬂm work m
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pmr-l-ﬂ':ree-body corr. 20.66
pair+three-body corr. 266 IJ 643 21.08
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