CHAPTER 2

MODEL OF SOLUTION :THE INTERMOLECULAR

ons can be a powerful tool for
at the atomic/molecular level.

fulfilling their true potentiaflin. g 3 Seiéntific insights and aiding the industrial
development of new materi ; roblem is that simulations require
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hardware and softwire ( - lj is the accuracy of the

fundamental input into the simulations, Le., the intermolecular model potential, which
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intermoleé¢ular potential. Intermolecular potentials are well known with very high
accuracy for the rare gases. Much current work on deriving accurate intermolecular
potentials is concentrating on small rigid polyatomic molecules. Due to the shortage
of reasonable ixnmmolecularpmmﬁa]s,ﬂmdevdopumhﬂleﬁeldofsoluﬁm
research by means of computer simulations scem to be slower than it should be
according to technological advances. .



8
Early simulation works were aimed at understanding general features of, for
example, liquid behaviour, and so idealised model potentials were appropriate.
Nowadays, many simulations are undertaken in order to model real systems. The
simulations seek to produce results whzch are in agreement with experiment. The first
stage in such a computer simul

\‘ y/ a model for the intermolecular
interactions in the chosen & -

tly realistic to give worthwhile

results. There are, of course, ﬂmre are no generally reliable

simple procedures for g eloping fntermo \ s. Mostly, one must choose
which potentials are suifable’fof by considering the nature of
the system. In order to4 _ 'I irate intermolecular potentials,
which are reliably transférahle : i€ 5t be constructed.

2.2 Definitions ant
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Anmt:rmnlac:ila:pmrpoten {R,ﬂlllsdeﬁmdasﬂmemrgyuf

i “WWWWE i feive separation R and

orientation Q. *fo approach the intermoleculag. potential with ;pairwise additive
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(a) First, molecules are treated as rigid molecules,
which is usually a good approximation for small molecules. Sometimes the potential
isﬂsnaﬁmcﬁonofmchmdmﬂmbmd-lmgthsmdbmd-mgl&sfmmmm
 transfer of energy between translational and vibrational motions. Organic molecules
nrenotusunﬂyﬁgid,soitisumaleodelﬂmirhtennolecularfurmby
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approximating the molecule as a set of fragments and assuming that contributions
from each fragment do not depend on the molecular conformation. This assumption
will only be valid if the charge density associated with each fragment does not change
with the conformation of the molecule.

n

on energy of a many-(N-)

molecule system baseg ximation can be calculated as

i
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Indeed, an exact interaction &fie does not only sum over all possible

pairs, but also other higher<6#dér riori-additive terms. The exact interaction energy of
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where Uy is the previously outlined intermolecular pair potential describing the
interaction of two molecules, and Uy, Uygy Uy are the 3-, 4-, and N-body terms
whose energy reflects the error in the pairwise additive approximation. Many-body
terms certainly play a role and their importance depends on the system, especially
when ions in solution are concerned.
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2.2.2 The Isotropic Atom-Atom Approximation

The intermolecular interaction energy between a pair of molecules is

where atom k, of at 164 a distance Ry from atom | of

type A in molecule j. onential term for the repulsion, a R
dispersion term, and a po A, tro atic te:rm, which are quantified by the
q), respectively, Other
Sth-atom potential can be a

tgard to th@fommn‘mm definition of
the intermolecular pair pair separations and
orientation, mﬂ&&fmwm‘iuﬂ use of an isotropic
atom-atom assmnpuon The _iso -;:Ivgf is a fairly good

i E:]w i lﬂugnisas just the

approxi e

relative positions of the atoms within the molecule as the major factor in determining
the interaction energy between pairs of molecules. In addition, the isotropic
atom-atom approach may allow transfering the potential parameters for a particular
atomhameleculcmaﬂmm.misassumpﬁmeplmlyneglmﬂmeﬂ’emof
attached mm.whichimplimthatevuymismatedasspheﬁcal shape.
Thmfom.cmmyommsunmhuw,hnthﬁemmcmbepuﬂyabmrbedmme
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parameters, according to which parts of the intermolecular potential are sampled in
fitting. There is considerable cancellation of errors between different components of
the potentials, so taking some parts of potentials, and combining them with other
terms, can make the overall scheme be useable. Hence, it is not possible to state that a

given parameter set is best, ex: e jsense that it has been fitted and tested

Jablishing which potential will be

variety of functional forms.

against the widest range of
best for the purposes of a

lecular Potential

The intermole 3 At & an ¢ ‘ origin and are fundamentally
the same as the forc g al. bonding; although magnetic and
] e v neglected. There is no general
description of what componexts aro compesédin a potential. Thus, it is dependent
erdest: ial which is derived from

empirical data ma}ﬁ" ~one derived by fiting

quantum-mechanical em;gms In pnnc:ple each mtcm:nl:cular potential consists of
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interaction, whilé the repulsion dgminates the short-range intgraction. In general,

W% ¥ R ﬂé%ﬂs’%l% B d Bhlsive potential, a
dispersioh term, point-charge Coulombic interaction, and sometimes general
polarization terms. Morokuma [42] has successfully developed a method of separating
the Hartree-Fock energy into several components, including electrostatic, exchange
repulsion, charge-transfer, and polarization components. The importance of what
components represent the main interaction varies from system to system. In
hydrocarbon systems, the hydrogen-hydrogen repulsive forces dominate the
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interaction energy [43]. On contrary, hydrogen bonding interaction is most important

in water.

2.3 Classification of Intermolecular Potentials

Intermolecular pg als fal l[&um three classes namely, model

potential, empirical poteAHal" 4id ¢ %pmmml The model potential
intention of showing that the

is the most simple on

.
(s

structure of simple i .could be well approximated

by the interaction of rigid cdmthccaﬂy literature of
Molecular Dynmnicsrl 430 onterCado [4647 * as presented in the
work of van der Waals andl alfo 4 the Hard:Spher® gllisses built from ball bearings by
Bemal [48]. As time went ¢ : ster € more powerful, the focus of such
simulations shifted awa}r fmm i gen - perties of liquids to the more specific,
i - : m:_=;-=-:-=+i: extent. At present,
intermolecular poteritials  en Simlations are  empirical and

quantum-mechanical ln%rmalucular pntentm!s The latter one seem to be of
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Model intermolecular potentials have been also known as "idealized"
intermolecular potentials for the reason that they do not represent realistic interactions
between molecules pair. For the purpose of investigating general properties of liquids
and solutions and for comparison with theory, they may be, however, of value. Thus,
itisverycammnntuusethmhoomputersimulaﬁm.mmmthmfurms of the
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model intermolecular potentials; the hard-sphere potential, the square-well potential,
and the soft-sphere potential. Because of their simple mathematical form, many of the
mmiricalhtermolcculzrpomnﬁalsa:cdtﬁwdﬂ'amﬂmwﬂhmfhm;of
experimental data.

as shown in Fig. 2] ” 0. T 3 .:'** the short-range repulsion
which is always mﬁngy arge ace dfi@mulomﬂesphere Due to its
smmlmform,uhasthq greatest advantage compared to other model potentials, so

o s Yo Ve e e 1y o

such snnulamﬂs give a good qualitafive picture ofithe effects of fholecular collisions.
o i o) G el i hpemded bk bt have enough
hncucencrgyﬂmtthcyenmumﬁmamlytheupperpumonnfﬂmnpqﬂmvﬂme
Mostufthepnnmplesofhncncthtorymhedw:lupedwnhnnlyﬂﬁsmodd.
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(a) (c)
Fig. 2.1 (a) hard-sphere ft-sphere model
This is one of't] ‘ ding both attractive and repulsive
contributions, as shown in F, ,ff’ .sﬁ::muudedbymatu'active well

ofcunstmtdepﬂm.'l‘h:squ' ‘ defined by the equations

AUEAEANeNg
SO N R e oo

(c) Soft-sphere model

with the
between r

Amwhﬂmmemaﬁsﬁcrcprﬁenmionnfﬂmreplﬂsiwmgyisgivmby
the potential
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V(R) = cR7¥,
Fig. 2.1(c), where c is a positive constant and the index of repulsion & must be larger
than 3 (values between 9 and 15 are usua]ly found) [49]. This model recognizes the
fact that more energetic molecules can ach other more closely before being
repelled, and thus can représe s0 dependence of properties.

But it again neglects

interaction, and has mainly
just mathematical co

tentials

tials has been developed in

(.re -

order to fix the problems of f ;_i: stie ‘model i ttmulecula.r potential for many
years before the ah-uuu} d@ﬂé&;@ € possible. for calculating molecular

"5 potentials are derived by

fitting only one n s Tat @nsmnts [50], or vibrational

spectra [51], to a potmp function. Thoge potentials are usually not sufficient to

describe the uﬂaw%mwm Eshabeed it complxisy. However,
fitting a wide vanety of experimefital data is mjr difficult I::MEI observed

properie) beind ik Yook s hikeeerd e

to mmbnu: several different types of properties in one potential [51,52], but this has

ve been made

been done only for a small class of systems. Need of a large amount of experimental
data for highly accurate potential hinders development of the empirical model.
Moreover, there are no experimental data available for large classes of systems.

To determine an empirical intermolecular potential requires,

(i) some experimental data for some properties of the molecular solid, liquid

013218
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or gas, which is sensitive to the intermolecular potential,
(ii) a quantitative theory to forward those properties to be an intermolecular
potential, and
(iii) an assumed functional form for the intermolecular potential which

contains some adjustable parameter |
Most of the early moé

form

which has only two par the pinifum cnéry separation p and the well depth
e. It has a reasonable b range, as the dominant term in the

dispersion energy is R®. The R**tern for' pulsive wall was chosen purely for

Th:smudelpomnm@; en f @dmbyﬁmmmguuuﬂ

values for € and p, caleulating the propesty from the guessed potential, comparing
: | K3

withthe explibapla ok ohd hdbyicais sl imbroved estimste of € and

using some ﬁta]ngcﬂteriasuchas‘hmsquamminimizaﬁmﬂc set of parameters

et A ISR T

then be used in the simulation.
2.3.3 Quantum Mechanical Intermolecular Potentials

According lo difficulties in obtaining highly accurate empirical
intermolecular potentials, the advantages of modem and fast computers is utilized
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mnremdmomfnrthemergycalmlnﬁmnfchﬂnicalsystum,aud
quantum-mechanical intermolecular potentials now become a helpful tool to
computer simulations. In the view of quantum mechanics, the intermolecular energy

hmumdtohcﬂxdiﬁummoflhes,liunmhmlc{dmmcomplex)energyand

the energies of its constituents
E(intermoleculas, uler E(constituents)

Since the in \ he simulations of this study

have been derived ll! < \\\}‘\\ pllowing two sections some
details of quantum m l' , \\\ \ are p

resented.

2.4 Quantum Me

sulvingSchIBdinger
wﬂummmwmm
The ool 5 b mummm N

E = <¥YHI¥>,

where ¥ is the nomalized total wave function of the system. To calculate the energy
nfndmﬁcﬂsymhymmofqnanmmhmﬁcsnwﬂmdhpmcﬁce,ﬂm
following is done: |
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a}deﬁninganappmxjmateHamiltmﬁnnnpermqrfmﬂ:esystcm,
b) selecting some mathematical function ¥(q,,95.93,...) als trial wave
function, where q;,q,,qs,... are finitely variable parameters,
¢) minimizing the total energy, with respect to variations of the parameters
until the change of energy is loweths it (e.g. 10 Hartree).

This procedure or Hartree-Fock SCF method
[53,54].

The total Hamilfoniin Sperafor () c “the fan | electron system can be given
as sum of all possible Cogl inetic energy operators of the
electrons and nuclei of the fi

Y]
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i .

where V2= a’ﬂ"uﬂr{l% m@ﬂﬂmm respecuvcl}' A

E@iﬁ“‘ﬁﬁfﬁ T ir i 1

ahoveequaﬁmthcldmﬁccmrgyofﬂnnuchtcmbenegiectedmordingmﬂm
om—Oppenhehnuappmxhnaﬁonwhichassmnﬁﬂutﬂmnudcimsuheawthat
ﬂmkmnﬁmsmvmyﬂowmlnﬁvetothmufth:dMMhstmﬂm
mpﬂsimbﬁwmth:mdaﬁmbemmﬁmmmandmbemmbcﬂcm
Cmsoqumﬂy.nnlyﬂ:ercmainingtemzsfonnﬂmelecnmicﬂmnﬂmﬁm,ﬂd.
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2.4.2 Independent Particle Model, Molecular Orbitals and
Linear Combination of Atomic Orbitals (LCAO) Approximation

is still beyond practical useability or ar systems. This gave rise to a much
more drastic simplificatios - DWn as’ g Particle Model or Orbital
: it is -Iri_-_u tion of independent electron
in the field of the
others, without having jiffno# nt : unentufﬂ:cothm‘s{forthis
rcasontheenorinth;-. ta ¢l of approximation compared
to the Bom-Oppenheiraér v ‘d s "torrelation energy"). For the
Hamiltonian, this means #fsplitirig of he ti‘#lectrof) Hamiltonian into n l-electron

) - : 1;1

= ﬂuﬂqwﬂﬂswswni
ammmmw wmaﬂ

H™™ (i) = _ r
iA

Hm(i}hﬂmmeﬂmﬂmﬁmupmofmmmuwthekimﬁc

m;yofanelmmdi:sinmﬁmwimaﬂmdﬁnfm:sysmm.
Forﬂrw:vefunctim,thisappmximaﬁunisequivﬂmmmﬁngnpm

n-dmwobahﬂhyﬁnwﬁmuaprodumufnl-dmfumﬁmu,ie.
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the so-called Hartree Product.

However, since this form of 1on does not guarantee thar it correctly
follows the Pauli antis P

functions for the n-elegs 18 widely knoewn as Slater determinants:

¥a (1)

Va (2)

................. Wy, (n)
The l-electron {(_ Consisling of a spatal p \J spinfunction c¢ or B are
known as spin orbitaly or r orbi are still faily complicated
funmonsmdﬂmsmapproamnrc tg pbtain them is to construct them from a

set of simple %W&]W%ﬁl atoms of the system

and thus known s atomic orbitals (§). A molecular orbital (V) is.then obtained by a

e SRk s Y bl MlcAO A8 o £

= Zy Cuiby

whmcﬁmthclhmmmbimﬁmmﬂicimmwtynfthcmhmlum
isrdatedmthaqualhynfﬂ:ebasisMMTheaaﬂymbuisﬁmcﬁm{Slatﬂ
Type Orbital) introduced by Slater [55], is based on approximations of hydrogen-like
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atomic orbitals according to empirical rules. They were mostly used for the
calculations of small molecules. Although the advantage of using a few functions of
STO satisfies us for its simplicity and more accurate representation of atomic orbitals,
themtegr&honsofﬂmﬁmcmnsmvm]rmm-cmmg The typical form of STO is

Yo A St i o s
angular part of the wavgfunétign/ » \
S the ns u\ ;TO {GaussmTypeﬂrhltal}basw
\ functions of the form

&5 v

According to it am:mptionabuve the larger the expansion of GTOs , the

more aqmmxﬂeumw WWC orbital is the GLO

(Gaussian LobélOrbital) [57,58] which is the 3m1plest form of basis fanctions. Its

e WIANN I UN1INYAY

¢°% = Nexp(-p?)

Themgularpmismhteilnsmd,GLﬂsmmbinndmgeﬂnrmrepmdncethe
conventional orbital shapes.
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2.4.3 Minimization of the Total Energy ( Self-Consistent
Field Procedure )

TheHam-ec-Fugkeqnaﬁunsforalhorbimlsasuuﬂimdinﬂnpmviuus

Solving this variation
the spin orbitals leads
for all ab initio molecular

eservation of orthonormality of
lich is the fundamental equation

.

¢ a s ,
wher i oo Wb, o ) ot combinin
coefficients, S qlhea;wre:rlapnmtntamiE thes,matrix of the’ 1-electron-energy

wwmmmumwmaa

Opthniznﬁonofthutnuimm'gyisperfonmdbyvmingthevalues of the
mﬁcm,cﬂ.mmmmmhghswﬂlmemofmhﬁﬁﬂmof
c’sMWaﬁrﬂmﬂhﬁfﬂ:ﬂFockmmF.Thedmofﬂnmﬁme:

= Hpy® + I (Pyy(ih0)-172(bvo)



The matrix of the elements of the core Hamiltonian contains the one-electron
Hamiltonian, H®.

and,

(urvo) = Mo "o (1) 1,
it

“m‘“’cﬁ“‘ﬁmﬁl‘ﬁﬁww

Since the system consisting of one Zn(II) in liquid ammonia was chosen for
this study, two kinds of intermolecular potentials, namely Zn(II)-ammonia and
ammonia-ammonia, are required. The ammonia-ammonia intermolecular potential
was taken from literature [33] and details are given in Table 2.1. In order to allow
studying intramolecular properties of ammonia, a flexible model for ammonia by



Spirko [59] was chosen.

Table 2.1 Ammonia-ammonia intermolecular potential; energies are gieven in units
of 10" J and distances in A.

Tncnnstmct Zn(IT)-amme enﬂapmpomnualbymmsof
quantummechamealcalwlﬂons the following steps are required: (i) selection of

v 83 oo ol ) b o b cteutaons, i

ﬁtnfﬂ'tccumpﬂadmtemmm ﬂ}testnfdm

i) RIAINIU AR INE T

(i) Selection of geometries

Themnmmiawﬂhﬂ:ebondleng:hsmdmglesﬁumexpeﬁmt[ﬁﬂ](N-H
= 1.0124 A and H-N-H angle = 106.7° ) was fixed at the origin of Cartesian
coordinate system M,Zu@mﬂmdmmpoﬁﬁmwiﬂ:hdmw



around ammonia, where 0°S © <180° and 0°< ® < 60° (according to its C,,
symmetry) as shown in Fig. 2.2.

The number of energy points needed to construct the intermolecular potential
is determined by the complexity of thc‘ system. Due to the C;, symmetry of the
ammonia molecule, it is | ss2 » (I) around the whole space, only
one-sixth is required. v ways to arrange the positions of
T——

the Zn(Il) around the agmenia Znglecule. The pointsimay be chosen by gridding the

71 | NN
three-dimensional spaceil / -» \\ , it is easier to evaluate the

potential keeping some'™Vag g another. For instance, in this
study the angles © afic

-

varying the distance. The
frequency of chosen goings jn is), 2 pendent on the "chemical
importance” of those regic 7 + 1 ninimum energy has a strong
1 e but also for the simulation results,
therefore more points are;né:ljd'f ine. To _where the distances should be

extended to depends In fact, it is necessary
to extend the pnmtsjo 2 dis nter: energy approaches zero,
Normally, the longest should be ag least equal to the cut-off limit employed
sty %@%ﬂ%’%ﬁi zer0 before reaching
this cut-off I.mm

onleni) NSUUN DANAAY i

general, my energy points above 50 kcal/mol are unnecessary for low-temperature
simulations for the reason that molecules can never reach such configurations.

(ii) Performance of the SCF calculations

SCF calculations were performed for the aforementioned configurations by
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using the HONDO VII program [61]. A modified ECP basis set was selected for
Zn() [62], and the DZP basis set of Dunning [63] was used for hydrogen. For
nitrogen, the basis set was taken from literature [64] for both core and valence shell
elemonsmdwasmgmmmdbyad—typcpolmza&mfmcdonwﬁhmbitﬂmm

] /-
iEAneningIns
HIRIATUAMINYIAE

Fig 2.2 Définition of geometric variables for configurations of Zn(Il)}-ammonia
(iii) Fit of the computed interaction energies

Aﬂahavingcalcnlmedanmnberofh{ﬂ}-mmﬁnmuﬁgumﬁm,the
interaction mrgiesufﬂlepairwmﬁmdmﬂm},nWamulndimmonﬂ' i
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non-linear least-square procedure, to an analytical function of the form,

f(r)

A\ l
2
where f(r;) denotes for potential ¢ -1;: ﬂ-md:smncebctwun the i-th

atom of ammonia and | cl'/n \ \ can be any mathematical

equation. Each compong - . s:blc. a reasonable physical

dt‘*
meaning. \
i G L
Details of the fdncgior '& m . ms and adjustable parameters

will be given in CHAPTER 4 &"L“ \\

..a*.:#

fmprovement of the function

— X
--u-n , mtwulﬁtedusmgthc
Bew.ndge et. al [66] Interaction energies by means of SCF

‘*’*“FTWWW‘H‘W‘]%“MWW

calculated and @bmpared with those obtained fmm the optimized function, AEgr.
Stmdﬂﬂw ol Beph gd%’r}%sﬂﬁﬁ}ﬂfﬂe function. To

qualltynfmcfuncuon,theaddmumlSCFpomtswmﬂ:mmdudndm
mcﬁmgpronwnm.AnunPruMsmof&mpmmbehgnmmm
cunﬁgumﬁunswzmtmedmdinclududinﬂmfuncﬁoninthesmwaynntﬂ
cmmtmqufﬂmﬁtﬁngpmmwﬂhinamgeufﬂ%[ﬁ?]andasufﬁcimtlylﬂw
standard deviation was reached.

procedure suggested b

Inaddiﬁan,thcmergypnintsnmundalucalmhimumofamcrgydinm
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cunremciﬂ]lydﬂmmequﬂityofﬂmﬁmcﬁm.TheﬁﬁngmdSCFmgyu
uchminhnummaydiﬁerﬂighﬂy,?hﬂemcequﬂibﬁmdimﬂmﬁrtheminima
have to be equal.

The intermole€llaufau i tigl | fom section 2.5.1 was examined
by Monte Caro sirfiul s hat the pairwise additive
approximation of the g l afe,nof. sy sient to répresent the interactions between
Zn(Il) and ammonia maf ),
of 9 was predicted.

term, had to be taken into ac:

4 wrong coordination number
onsadditive term, i.e. the three-body

y%%s‘“? y-body Effects

To evaluate h?ﬂmch t'he tlm:e the intermolecular
potential, SCF E’qu:ﬂs’l M n=1,2,34 and 6 were
Ammnma molecules w with 1

— RIDAS miw m@

ammonia molecule, AE,,,, is computed as:

AE,,, = ( E[ML,]- EM] -E[L] } /n ,

whmMandemumZn(ﬂ}mdammiamulmﬂe,mspucﬁvely.Aﬂmgimm
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the right hand side of the above equation are total energies, ligand-ligand repulsions
are already eliminated in this definition.

In order to evaluate possible errors of the assumption of pairwise additivity
of interaction due to many-body effects, average pair interaction energies between
Zn(II) and ammonia molecules i 1), configuration were calculated and

defined as :
AEpen
where ML, denotes any Zh. the Zn(I1)-(NH;),, complexes.
The results of thif cfalfiation arshéporfed'anddiscussed in CHAPTER 4.
‘k
1on of the Three-body Correction
Function
ous postions around the
Zn(IT)-NH; complex, g geometrical pa:mtms )°S © <180° and 0°< @ < 60°
i/ 5"?11!8’3’?1“87?’%%%} 1 s
d configuratiéns of arrun‘oma were k:ept fixed and SCF calculations were
wﬂwmﬁ\&ﬂ"m A 44K B e come
function, same procedure was repeated for rl

1.s,1.95,2.z,z.4,3.n,4.n,ﬁ.n and 8.0 A, thus leading to a total of more than 1,500
configurations of the Zn(II)-(NH;), system and 4,500 Zn(IT)-NH; and NH;-NH; pair
interactions. The definition of orientation is shown in Fig. 2.3 .

The three-body interaction energies were calculated according to



30
AEg,g = ( E[ML,L,] - EMM] - E[L,] - E[L,] }
| - { E[L4L,] - E[L,] - E[L,] }
- ¥2_, { E[ML;] - E]M] - E[LJ] )
and these energies were fitted then to an analytical function. Details of this three-body
correction function are also reported\aé diSghssed in CHAPTER 4.

J : )
AusInghineans
RN ING A D

Fig. 2.3 Definition of orientaion of two ammonia with Zn(II)
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