

## PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are :

Z is the set of all integers,

Z<sup>+</sup> is the set of all positive integers,

$$z_0^+ = z^+ \cup \{0\},$$

Q is the set of all rational numbers,

Q<sup>+</sup> is the set of all positive rational numbers,

$$Q_{0}^{+} = Q^{+} \cup \{0\},$$

R is the set of all real numbers,

R is the set of all positive real numbers,

$$R_0^+ = R^+ \cup \{0\}.$$

Definition 1.1. A triple (S,+,•) is said to be a right [left] seminear-ring if

(1) (S,+) and (S,·) are semigroups

and (2) for all  $x,y,z \in S$ , (x+y)z = xz+yz [z(x+y) = zx+zy].

The operations + and • are called the <u>addition</u> and <u>multiplication</u> of the right [left] seminear-ring, respectively.

If S is a right and a left seminear-ring, then we call S a semiring.

Throughout this thesis we shall only study right seminear-rings.

All definitions and theorems stated for right seminear-rings have a dual statement and proof for left seminear-rings. So from now on the word "seminear-ring" will mean a right seminear-ring.

# Example 1.2.

- (1) Z,  $Z^+$ ,  $Z_0^+$ ,  $Q^+$  and  $R^+$  with the usual addition and multiplication are semirings and hence they are seminear-rings.
- (2) Let (S,+) be any semigroup. Let

  M(S) = {f : S → S | f is a map}. Define + and on M(S) by (f+g)(x) =
  f(x)+g(x) and (f•g)(x) = f(g(x)) for all x ∈ S. Then (M(S),+,•) is
  a seminear-ring which is not in general a semiring.

Definition 1.3. An element x of a semigroup S is said to be a right [left] zero if for all y  $\varepsilon$  S, yx = x[xy = x]. S is said to be a right [left] zero semigroup if for all x  $\varepsilon$  S, x is a right [left] zero.

Definition 1.4. Let S be a semigroup and x  $\varepsilon$  S. Then x is called right [left] cancellative (R.C.)[(L.C.)] if for all y,z  $\varepsilon$  S, yx = zx [xy = xz] implies that y = z. The element x is called cancellative if x is both R.C. and L.C.. S is called R.C. [L.C.] if for all y  $\varepsilon$  S, y is R.C. [L.C.]. S is called cancellative if S is both R.C. and L.C..

Example 1.5.  $\mathbf{z}^{+}$  with the usual multiplication is a cancellative semigroup.

Proposition 1.6. Every finite cancellative semigroup is a group.

See [ 5 ], page 8.

Definition 1.7. A semigroup S is said to satisfy the <u>right</u> [left]

Ore condition if for all a,b  $\epsilon$  S>{0} there exist x,y  $\epsilon$  S>{0} such that

ax = by [ xa = yb ] where 0 denotes the zero of S if it exists.

Remark. Every commutative semigroup satisfies the right and the left Ore condition but the converse is not true.

Example 1.8.  $S = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x, z \in \mathbf{Z}^{+} \text{ and } y \in \mathbf{Z} \right\}$  with the usual multiplication is a semigroup. Let  $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ ,  $B = \begin{bmatrix} d & e \\ 0 & f \end{bmatrix} \in S$ .

Let 
$$X = \begin{bmatrix} ad & d+ec-bf \\ 0 & af \end{bmatrix}$$
 and  $Y = \begin{bmatrix} a^2 & a \\ 0 & ac \end{bmatrix}$ . Then  $X, Y \in S$ 

and AX = 
$$\begin{bmatrix} a^2d & ad+aec \\ 0 & caf \end{bmatrix} = \begin{bmatrix} da^2 & da+eac \\ 0 & fac \end{bmatrix} = BY.$$

Hence (S, •) satisfies the right Ore condition and (S, •) is noncommutative.

Definition 1.9. A seminear-ring (S,+,\*) is said to be additively [multiplicatively] commutative if (S,+) [(S,\*)] is commutative.

S is said to be commutative if S is both additively and multiplicatively commutative.

# Example 1.10

(1) Let  $S = \left\{ \begin{bmatrix} x & y \\ z & w \end{bmatrix} \middle| x, y, z, w \in \mathbf{Z}^+ \right\}$ . Then S with the usual

addition and multiplication is an additively commutative semiring.

- (2) Let (S,\*) be a commutative semigroup. Define x+y=x for all  $x,y \in S$ . Then (S,+,\*) is a multiplicatively commutative semiring.
- (3)  $\mathbf{Z}^{\dagger}$  with the usual addition and multiplication is a commutative semiring.

<u>Definition 1.11</u>. A seminear-ring (D,+,\*) is called a <u>ratio</u> seminear-ring if (D,\*) is a group.

# Example 1.12.

(1) Let  $D = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x, z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \right\}$ . Then D with the

usual addition and multiplication is a ratio seminear- ring.

(2)  $\mathbb{Q}^{\dagger}$  and  $\mathbb{R}^{\dagger}$  with the usual addition and multiplication are ratio semirings.

Definition 1.13. Let (S,+,\*) be a seminear-ring and x & S. Then x is called right [left] multiplicatively cancellative (R.M.C.) [(L.M.C.)] if x is R.C. [L.C.] in (S,\*). The element x is called right [left] additively cancellative (R.A.C.) [(L.A.C.)] if x is R.C. [L.C.] in (S,+). S is called R.M.C. [L.M.C.] if for all y & S, y is R.M.C. [L.M.C.]. S is called R.A.C. [L.A.C.] if for all y & S, y is R.A.C. [L.A.C.]. S is called M.C. if S is both R.M.C. and L.M.C.. S is called A.C. if S is both R.A.C. and L.A.C..

Example 1.14.  $Z^{\dagger}$ ,  $Q^{\dagger}$  and  $R^{\dagger}$  with the usual addition and multiplication are A.C. and M.C..

Definition 1.15. Let (S,+,\*) be a seminear-ring and a & S. Then a is called a right [left] additive zero if a is a right [left] zero of (S,+). The element a is called a right [left] multiplicative zero if a is a right [left] zero of (S,\*). The element a is called a right [left] additive identity if for all x & S, x+a = x[a+x = x]. The element a is called a right [left] multiplicative identity if for all x & S, x•a = x [a+x = x]. The element a is called a right [left] multiplicative identity if for all x & S, x•a = x [a•x = x]. The element a is called an additive [multiplicative] zero

if it is both a right and a left additive [multiplicative] zero.

The element a is called an additive [multiplicative] identity if it is both a right and a left additive [multiplicative] identity.

Let  $d \in S$ . Then an element  $x \in S$  is called a <u>right</u> [left] additive identity of d if d+x = d [x+d = d]. Let  $D \subseteq S$  be nonempty. Then the set of all right [left] additive identities of d in D is denoted by  $RI_D(d)$  [ $LI_D(d)$ ].

<u>Proposition 1.16</u>. Let D be a ratio seminear-ring and e the multiplicative identity of D. If e is an additive zero of D, then D = {e}.

See [3], page 8.

<u>Proposition 1.17.</u> Let D be a ratio seminear-ring and e the multiplicative identity of D. If e is an additive identity of D, then D = {e}.

See [3], page 8.

Definition 1.18. Let (S,+,\*) be a seminear-ring with a right [left] multiplicative zero. Then S is called a 0-right [left] multiplicatively cancellative (0-R.M.C.) [(0-L.M.C.)] if for all x,y,z & S, yx = zx [xy = xz] and x is not a right[left] multiplicative zero imply that y = z. S is called a 0-multiplicatively cancellative (0-M.C.) if S is both 0-R.M.C. and 0-L.M.C..

Example 1.19. Z with the usual addition and multiplication is 0-M.C..

<u>Definition 1.20</u>. Let S be a semiring and K ⊆ S nonempty. Then K is called a right [left] <u>semiring-ideal</u> of S if

- (1) for all x,y ε K, x+y ε K
- and (2) for all x E K and all s E S, xs E K [sx E K].

  If K is both a right and a left semiring-ideal of S, then K

is called a semiring-ideal of S.

Example 1.21.  $\mathbf{Z}^{\dagger}$  with the usual addition and multiplication is a semiring and for any n  $\epsilon$   $\mathbf{Z}^{\dagger}$ , n $\mathbf{Z}^{\dagger}$  is a semiring-ideal of  $\mathbf{Z}^{\dagger}$ .

Definition 1.22. A seminear-ring (K,+,•) is called a <u>seminear-field</u> if there is an element a ε K such that (K\{a},•) is a group, and such an element a is called a <u>special element</u> of K. If a seminear-field K is commutative, then K is called a <u>semifield</u>.

## Example 1.23.

(1)  $Q_0^+$  and  $R_0^+$  with the usual addition and multiplication are semifields with 0 as a special element.

(2) 
$$\left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x, z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$
 with the

usual addition and multiplication is a seminear-field with  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$  as a special element.

Theorem 1.24. Let K be a seminear-field with a as a special element. Then exactly one of the following statements hold:

- (1) ax = xa = a for all  $x \in K$ .
- (2) ax = xa = x for all  $x \in K$ .
- (3) ax = a and xa = x for all  $x \in K$ .
- (4) ax = x and xa = a for all x ε K.
- (5)  $a^2 \neq a$  and ae = ea = a where e is the identity of  $(K \setminus \{a\}, \cdot)$ .
- (6)  $a^2 \neq a$  and  $ae = ea \neq a$  where e is the identity of  $(K \setminus \{a\}, \cdot)$ . See [3], pages 62-63.

From Theorem 1.24 we get that there are six types of special elements a in a seminear-field K. We call a special element a satisfying (1),(2),(3),(4),(5) or (6) a category I,II,III,IV,V or VI special element of K, respectively. A seminear-field satisfying (1),(2),(3), (4),(5) or (6) is called a seminear-field with a category I,II,III, IV,V or VI special element, respectively.

Theorem 1.25. Let K be a seminear-field with a as a category I special element. Then K satisfies exactly one of the following properties:

- (1) a+x = x+a = x for all  $x \in K$ .
- (2) a+x = x+a = a for all  $x \in K$ .
- (3) a+x = a and x+a = x for all  $x \in K$ .
- (4) a+x = x and x+a = a for all  $x \in K$ .

See [3], pages 12-13.

From Theorem 1.25 we see that a category I special element a has exactly one of the following properties:

- (1) a+x = x+a = x for all  $x \in K$ . In this case we say that a is a 0-special element.
- (2) a+x=x+a=a for all  $x \in K$ . In this case we say that a is an  $\infty$ -special element.
- (3) a+x = a and x+a = x for all  $x \in K$ . Then for any  $x,y \in K$ , x+y = (x+a)+y = x+(a+y) = x+a = x. Thus (K,+) is a left zero semigroup.
- (4) a+x = x and x+a = a for all  $x \in K$ . Then for any  $x,y \in K$ , x+y = x+(a+y) = (x+a)+y = a+y = y. Thus (K,+) is a right zero semigroup.

If K contains a 0-special element, then K is called a 0-seminear-field.

If K contains an  $\infty$ -special element, then K is called an  $\infty$ -seminear-field.

If K contains a category I special element a satisfying (3), then K is called an additive left zero seminear-field with a category I special element.

If K contains a category I special element a satisfying (4), then K is called an additive right zero seminear-field with a category I special element.

Proposition 1.26. Every ratio seminear-ring can be embedded into a 0-seminear-field.

See [3], page 117.

Proposition 1.27. Every ratio seminear-ring can be embedded into an ∞-seminear-field.

See [ 3], page 117.

Proposition 1.28. Let (D,+,.) be a ratio seminear-ring such that (D,+) is a left zero semigroup. Then D can be embedded into an additive left zero seminear-field with a category I special element.

See [ 3], pages 117-118.

<u>Proposition 1.29.</u> Let (D,+,.) be a ratio seminear-ring such that (D,+) is a right zero semigroup. Then D can be embedded into an additive right zero seminear-field with a category I special element.

See [ 3], page 118.

Proposition 1.30. Every ratio seminear-ring can be embedded into a seminear-field with a category II special element.

See [ 3], page 118.

Proposition 1.31. Every ratio seminear-ring can be embedded into a seminear-field with a category VI special element.

See [3], page 118.

Theorem 1.32. Let K be a seminear-field with a as a special element. Then a is a category VI special element of K if and only if there is a unique d  $\varepsilon$  K {a} such that ax = dx and xa = xd for all x  $\varepsilon$  K. See [3], pages 66-67.

Proposition 1.33. Let K be a seminear-field with a as a category VI special element. Then  $xy \neq a$  for all  $x,y \in K$ .

See [ 3], page 67.

<u>Proposition 1.34</u>. If K is a seminear-field with a category III or IV special element, then |K| = 2.

See [ 5 ], page 67.

Proposition 1.35. If K is a seminear-field with a category V special element, then |K| = 2.

See [3], pages 63-64.

Definition 1.36. Let S be a seminear-ring with a multiplicative zero 0 such that |S| > 1. Then a seminear-field K is called a <u>seminear-field</u> of right [left] quotients of S if there exists a monomorphism i : S + K such that for all  $x \in K$  there exist a E S, b E S\{0} such that E x = E i(a)(E i(b)E i(a)]. A monomorphism E is satisfying the above property is called a <u>right</u> [left] <u>quotient</u> <u>embedding</u> of S into K.

Example 1.37. Let 
$$S = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x, z \in \mathbf{Z}^+ \text{ and } y \in \mathbf{Z} \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$
 and  $K = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x, z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$ 

Then S and K with the usual addition and multiplication are a

seminear-ring with a multiplicative zero and a seminear-field, respectively.

To show that K is a seminear-field of right quotients of S.

Let 
$$X \in K$$
. If  $X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ , then let  $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$  and  $B \in S \setminus \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ .

So 
$$X = AB^{-1}$$
. Suppose that  $X = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ . Then  $x = \frac{p}{q}$ ,

 $y = \frac{m}{n}$  and  $z = \frac{u}{v}$  where p,q,n,u,v  $\in \mathbb{Z}^+$  and m  $\in \mathbb{Z}$ .

Let 
$$A = \begin{bmatrix} p & mv+p \\ 0 & un \end{bmatrix}$$
 and  $B = \begin{bmatrix} q & q \\ 0 & vn \end{bmatrix}$ . Then  $A, B \in S \setminus \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ 

and 
$$AB^{-1} = \begin{bmatrix} p & mv+p \\ 0 & un \end{bmatrix} \begin{bmatrix} \frac{1}{q} & \frac{1}{vn} \\ 0 & \frac{1}{vn} \end{bmatrix} = X$$
. Hence K is a seminear-field

of right quotients of S.

Theorem 1.38. Let S be a seminear-ring with a multiplicative zero such that |S| > 1. Then a seminear-field of right [left] quotients of S exists if and only if S is 0-M.C. and (S,•) satisfies the right [left] Ore condition.

<u>Proof.</u> The proof of this theorem is given in [4], pages 18-24. The left distributive law in S was only used to show that the left distributive law in  $\frac{S\times(S\setminus\{0\})}{\gamma}$  holds.

We shall now review the construction used in the proof of Theorem 1.38.

Assume that S is 0-M.C. and (S,•) satisfies the right Ore condition. Define a binary relation v on  $S\times(S\setminus\{0\})$  by  $(a,b) \sim (c,d)$  if and only if there exist  $x,y\in S\setminus\{0\}$  such that ax=cy and bx=dy

for all a,c  $\epsilon$  S and all b,d  $\epsilon$  S>{0}. In [4] it was shown that  $\sim$  is an equivalence relation.

Let 
$$\alpha, \beta \in K = \frac{S \times (S \setminus \{0\})}{\gamma}$$
. Define + and • on  $S \times (S \setminus \{0\})$ 

in the following way: Choose (a,b)  $\epsilon$   $\alpha$  and (c,d)  $\epsilon$   $\beta$ . Then there exist  $x \epsilon S$  and  $y,u,v \epsilon S \{0\}$  such that bx = cy and bu = dv. Define  $\alpha \cdot \beta = [(ax,dy)]$  and  $\alpha + \beta = [(au+cv,bu)]$ . In [4] it was shown that  $(K,+,\cdot)$  is a seminear-field of right quotients of S.

In [4] it was shown that [(0,c)] = [(0,d)] for all c,d  $\varepsilon$  SN{0}. We denote [(0,c)] by 0 where c  $\varepsilon$  SN{0}. In [4] it was shown that 0 is a multiplicative zero of K, [(c,c)] is the identity of  $(K \setminus \{0\}, \cdot)$  where c  $\varepsilon$  SN{0} and  $[(a,b)]^{-1} = [(b,a)]$  where  $[(a,b)] \varepsilon$  KN{0}.

In the proof of Theorem 1.38, P. Satravaha defined  $\theta: S \to K$  by  $\theta(x) = [(xc,c)]$  for fixed  $c \in S \setminus \{0\}$  and for all  $x \in S$  and he showed that  $\theta$  is a monomorphism. This is not necessary as we shall show now.

Define i : S 
$$\Rightarrow$$
 K by i(x) = 
$$\begin{cases} 0 & \text{if } x = 0 \\ [(x^2, x)] & \text{if } x \neq 0. \end{cases}$$

We shall show that i is a right quotient embedding of S into K.

(1) We must show that i is a homomorphism. Let c,d  $\epsilon$  S. If c = 0 or d = 0, then i(cd) = 0 = i(c)i(d). Assume that c  $\neq$  0 and d  $\neq$  0. There exist x,y  $\epsilon$  S>{0} such that cx = d<sup>2</sup>y. Then i(c)i(d) =  $[(c^2,c)][(d^2,d)] = [(c^2x,dy)] = [(cd^2y,dy)]$ . Since cd,dy  $\epsilon$  S>{0}, there exist z,w  $\epsilon$  S>{0} such that cdz = dyw. Therefore cdcdz = cd<sup>2</sup>yw. Hence i(cd) =  $[(cdcd,cd)] = [(cd^2y,dy)] = i(c)i(d)$ .

We shall show that i(c+d) = i(c)+i(d). There exist  $x,y \in S \setminus \{0\}$  such that cx = dy. Then  $i(c)+i(d) = [(c^2,c)] + [(d^2,d)] = [(c^2x+d^2y,cx)] = [(c^2x+d^2y,cx)] = [(c^2x+d^2y,cx)] = [(c^2x+d^2y,cx)]$ 

 $[(c^2x+dcx,cx)] = [((c+d)cx,cx)].$ 

Case 1. c+d = 0. Then i(c)+i(d) = [(0(cx),cx)] = [(0,cx)] = 0 = i(0) = i(c+d).

Case 2.  $c+d \neq 0$ . If c = 0, then i(c+d) = i(d) = i(0)+i(d) = i(c)+i(d).

Assume that  $c \neq 0$ . Since c+d,  $cx \in S \setminus \{0\}$ , there exist  $z, w \in S \setminus \{0\}$  such that (c+d)z = cxw. Therefore (c+d)(c+d)z = (c+d)cxw. Hence i(c)+i(d) = [((c+d)cx,cx)] = [((c+d)(c+d),c+d)] = i(c+d).

- (2) We must show that i is an injection. Let c,d  $\epsilon$  S be such that i(c) = i(d). If c = 0, then d = 0. Hence c = d, so done. Suppose that c  $\neq$  0. Then d  $\neq$  0 and  $[(c^2,c)] = [(d^2,d)]$ . There exist x,y  $\epsilon$  S\{0} such that  $c^2x = d^2y$  and cx = dy. Since  $cx \neq 0$  and S is 0-M.C., c = d.
- (3) We must show that for all  $\alpha \in K$  there exist c,d  $\epsilon \in S \setminus \{0\}$  such that  $\alpha = i(c)i(d)^{-1}$ . Let  $\alpha \in K$ . Choose (c,d)  $\epsilon \alpha$ . There exist  $x \in S$  and  $y \in S \setminus \{0\}$  such that cx = dy. Then  $\alpha = [(c,d)] = [(c^2x,d^2y)] = [(c^2,c)][(d,d^2)] = i(c)i(d)^{-1}$ .

Hence i is a right quotient embedding of S into K.

Remark. Let S be a seminear-ring having K as its seminear-field of right or left quotients. Then the following statements hold:

- (1) If S is additively commutative, then K is additively commutative.
- (2) If S is multiplicatively commutative, then K is multiplicatively commutative.
- (3) If S is commutative, then K is a semifield and we shall call it the semifield of quotients of S.

## Remark.

- (1) If S is a seminear-ring having K as its seminear-field of right or left quotients, then K is a seminear-field with a category I special element.
- (2) If S is a commutative semiring, then the construction given in the above theorem is the same as the following construction:

Define a binary relation  $\circ$  on  $S\times(S\setminus\{0\})$  by (a,b)  $\circ$  (c,d) if and only if ad = bc for all (a,b), (c,d)  $\in$   $S\times(S\setminus\{0\})$ . It is easily shown that  $\circ$  is an equivalence relation.

Let  $\alpha, \beta \in K' = \frac{S \times (S \setminus \{0\})}{\gamma}$ . Define + and • on K' in the following way : Choose (a,b)  $\epsilon \alpha$  and (c,d)  $\epsilon \beta$ . Define  $\alpha+\beta = [(ad+bc,bd)]$  and  $\alpha \cdot \beta = [(ac,bd)]$ . Then  $(K',+,\cdot)$  is a semifield of quotients of S.

(3) Let S be a commutative semiring sucht that |S| > 1. Then a semifield of quotients of S exists if and only if S is 0-M.C..

Corollary 1.39. Let S be a seminear-ring with a multiplicative zero sucht that |S| > 1 and  $(S, \cdot)$  satisfies the right[left] Ore condition. If S is 0-M.C., then S can be embedded into a seminear-field with a category I special element.

<u>Proposition 1.40</u>. Let S be a seminear-ring with a multiplicative zero a which is 0-M.C. and |S| > 1. If  $(S, \cdot)$  satisfies the right [left] Ore condition, then either a is an additive identity or a is an additive zero or (S, +) is a right zero semigroup or (S, +) is a left zero semigroup.

<u>Proof.</u> This proposition follows from Corollary 1.39 and Theorem 1.25.

#

Proposition 1.41. Let S be a seminear-ring having K as its seminear-field of right [left] quotients,  $i:S \to K$  the right [left] quotient embedding, L a seminear-field with 0 as a category I special element and  $f:S \to L$  a homomorphism such that f(x) = 0 if and only if x = 0. Then there exists a unique homomorphism  $g:K \to L$  such that  $g \circ i = f$ . Furthermore, if f is a monomorphism, then g is a monomorphism.

<u>Proof.</u> The proof of this proposition was given in [4], pages 25-26. The left distributive law is not used in the proof.

Corollary 1.42. If S is a seminear-ring having K and K' as seminear-fields of right or left quotients, then  $K \cong K'$ .

Proof. The proof of this proposition is similar to the proof
in[4], page 26.

Definition 1.43. Let S be a seminear-ring such that |S| > 1. Then a ratio seminear-ring D is said to be a ratio seminear-ring of right [left] quotients of S if there exists a monomorphism  $i: S \to D$  such that for all  $x \in D$  there exist a,b  $\in S$  such that  $x = i(a)(i(b)^{-1})$  [ $i(b)^{-1}i(a)$ ]. A monomorphism i satisfying the above property is said to be a right [left] quotient embedding of S into D.

Example 1.44. Let 
$$S = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x,z \in \mathbb{Z}^+ \text{ and } y \in \mathbb{Z} \right\}$$
 and 
$$D = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x,z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \right\}.$$
 Then  $S$  and  $D$  with the usual addition and multiplication are seminear-rings and  $D$  is a ratio seminear-ring of right quotients of  $S$  with the inclusion map  $i: S \to D$ 

as the right quotient embedding.

The construction of a ratio seminear-ring of right [left]

quotients of a seminear-ring S is the same as the construction of a

seminear-field of right [left] quotients of S, so we have the following

theorem:

Theorem 1.45. Let S be a seminear-ring such that |S| > 1. Then a ratio seminear-ring of right [left] quotients of S exists if and only if S is M.C. and  $(S, \cdot)$  satisfies the right [left] Ore condition.

Remark. Let S be a seminear-ring having D as its ratio seminear-ring of right or left quotients. Then the following statements hold:

- (1) If S is additively commutative, then D is additively commutative.
- (2) If S is multiplicatively commutative, then D is multiplicatively commutative.
- (3) If S is commutative, then D is a commutative ratio semiring and we shall call it the commutative ratio semiring of quotients of S.

#### Remark.

(1) If S is a commutative semiring, then the construction given in the above theorem is the same as the following construction:

Define a binary relation  $\sim$  on S×S by (a,b)  $\sim$  (c,d) if and only if ad = bc for all (a,b),(c,d)  $\epsilon$  S×S. It is easily shown that  $\sim$  is an equivalence relation.

Let  $\alpha, \beta \in \frac{S \times S}{\sqrt{}}$ . Define + and • on  $\frac{S \times S}{\sqrt{}}$  in the following way : Choose (a,b)  $\in \alpha$  and (c,d)  $\in \beta$ . Define  $\alpha+\beta=[(ad+bc,bd)]$  and  $\alpha \cdot \beta=[(ac,bd)]$ . Then  $(\frac{S \times S}{\sqrt{}},+,\cdot)$  is a commutative ratio semiring of quotients of S.

- (2) Let S be a commutative semiring such that |S| > 1. Then a commutative ratio semiring of quotients of S exists if and only if S is M.C.
- (3) If a seminear-ring S has a ratio seminear-ring of right or left quotients, then S cannot contain a multiplicative zero.

<u>Proposition 1.46</u>. Let S be a seminear-ring having D as its ratio seminear-ring of right [left] quotients,  $i:S \to D$  the right [left] quotient embedding, E a ratio seminear-ring and  $f:S \to E$  a homomorphism. Then there exists a unique homomorphism  $g:D \to E$  such that  $g \circ i = f$ . Furthermore, if f is a monomorphism, then g is a monomorphism.

<u>Proof.</u> The proof of this proposition is similar to the proof of Proposition 1.41.

Corollary 1.47. If S is a seminear-ring having K and K' as ratio seminear-rings of right or left quotients, then  $K \cong K'$ .

Remark. It is clear that if a seminear-ring S has a quotient seminear-field w.r.t. the category  $\Re$ , then S can be embedded into a

seminear-field in %.

We shall study the problem of the existence of a quotient seminear-field with respect to a given category of seminear-fields in Chapter III.

Definition 1.49. A semiring  $(R,+,\cdot)$  is said to be a skew ring if (R,+) is a group.

We shall always denote the identity element of (R,+) by 0. Note that 0 is a multiplicative zero.

Example 1.50. Let (R,+) be an arbitrary group. Define • on R by  $x \cdot y = 0$  for all  $x, y \in R$ . Then  $(R,+, \cdot)$  is a skew ring.

In [4] and [6] the definition of an ideal in a skew ring was given. We shall now generalize this definition.

Definition 1.51. Let R be a skew ring and J C R nonempty. Then J is called a right [left] weak ideal of R if

- (1) for all x,y ε J, x-y ε J
- and (2) for all  $x \in J$  and all  $r \in R$ ,  $xr \in J$  [ $rx \in J$ ].

If J is both a right and a left weak ideal of R, then J is called a <u>weak ideal</u> of R. A weak ideal J of R is called an <u>ideal</u> of R if J is an additive normal subgroup of R.

# Example 1.52.

- (1) Let R be a skew ring. Then R and {0} are ideals of R.
- (2) Let  $(R,+,\cdot)$  and  $(T,+,\cdot)$  be skew rings. Define  $(x,y)\oplus(z,w)=(x+z,y+w)$  and  $(x,y)\oplus(z,w)=(x\cdot z,y\cdot w)$  for all  $(x,y),(z,w)\in R\times T$ . Then  $(R\times T,\oplus,\Theta)$  is a skew ring. Let  $I=R\times\{0\}$  and  $J=\{0\}\times T$ . Then I and J are ideals of R×T.

Definition 1.53. Let S be a semiring such that |S| > 1. A skew ring R is said to be a <u>skew ring of right</u> [left] <u>differences of S</u> if there exists a monomorphism  $i: S \to R$  such that for all  $x \in R$  there exist a,b  $\in S$  such that x = i(a)-i(b) [-i(b)+i(a)]. A monomorphism i satisfying the above property is said to be a <u>right</u> [left] <u>difference embedding</u> of S into R.

Example 1.54. Let 
$$S = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x,z \in \mathbf{Z}^+ \text{ and } y \in \mathbf{Z} \right\}$$
 and  $A,B \in S$ .

Define  $A \oplus B = AB$  and  $A \oplus B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ . Then  $(S, \oplus, \emptyset)$  is a semiring.

Let  $R = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \middle| x,z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \right\}$  and  $X,Y \in R$ . Define  $X \oplus Y = XY$  and  $X \oplus Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ . Then  $(R, \oplus, \emptyset)$  is a skew ring of right differences of  $S$ .

Theorem 1.55. Let S be a semiring such that |S| > 1. Then a skew ring of right [left] differences of S exists if and only if S is A.C. and (S,+) satisfies the right [left] Ore condition.

See [4], pages 52-55.

We shall now review the construction used in the proof of Theorem 1.55. Assume that S is A.C. and (S,+) satisfies the right Ore condition. Define a binary relation  $\circ$  on S×S by (a,b)  $\circ$  (c,d) if and only if there exist x,y  $\varepsilon$  S such that a+x = c+y and b+x = d+y for all a,b,c,d  $\varepsilon$  S×S. In Theorem 1.55 it was shown that  $\circ$  is an equivalence relation.

Let  $\alpha, \beta \in K = \frac{S \times S}{2}$ . Define + and • on K in the following

ways: Choose  $(a,b) \in \alpha$  and  $(c,d) \in \beta$ . There exist  $x,y \in S$  such that b+x=c+y. Define  $\alpha+\beta=\left[(a+x,d+y)\right]$  and  $\alpha\cdot\beta=\left[(ac+bd,ad+bc)\right]$ . Theorem 1.55 has shown that  $(K,+,\cdot)$  is a skew ring having [(z,z)], where  $z \in S$ , as an additive identity which we denote by 0. We see that  $[(a,b)]=-\left[(b,a)\right]$  and [(a,b)]=0 if and only if a=b where  $a,b \in S$ .

Define  $i : S \to K$  by i(x) = [(x+x,x)] for all  $x \in S$ . Theorem 1.55 has shown that i is a right difference embedding of S into K.

Remark. Let S be a semiring having R as its skew ring of right or left differences. In the proof of Theorem 1.55 we get that:

- (1) If S is multiplicatively commutative, then R is multiplicatively commutative.
- (2) If S is additively commutative, then R is a ring and we shall call it the ring of differences of S.

### Remark.

- (1) If a semiring S has a skew ring of right or left differences, then S cannot contain an additive zero and ab+cd = cd+ab for all a,b,c,d  $\epsilon$  S.
- (2) Let S be a commutative semiring such that |S| > 1. Then a ring of differences of S exists if and only if S is A.C..
- (3) If S is a commutative semiring, then the construction given in the above theorem is the same as the following construction :

Define a binary relation  $\circ$  on SxS by  $(a,b) \circ (c,d)$  if and only if ad = bc for all  $(a,b),(c,d) \in SxS$ . It is easily shown that  $\circ$  is an equivalence relation.

Let  $\alpha, \beta \in \frac{S \times S}{\gamma}$ . Define + and • on  $\frac{S \times S}{\gamma}$  in the following way : Choose (a,b)  $\in \alpha$  and (c,d)  $\in \beta$ . Define  $\alpha+\beta=[(a+c,b+d)]$  and

 $\alpha \cdot \beta = [(ac+bd,ad+bc)].$  Then  $(\frac{S\times S}{2},+,\cdot)$  is a ring of differences of S.

<u>Proposition 1.56</u>. Let S be a semiring having R as its skew ring of right [left] differences, i the right [left] difference embedding of S into R, T a skew ring and f: S + T a homomorphism. Then there exists a unique homomorphism g: R + T such that g·i = f. Furthermore, if f is a monomorphism, then g is a monomorphism.

See [4], pages 55-56.

Corollary 1.57. If S is a semiring having K and K' as skew rings of right or left differences, then  $K \cong K^{t}$ .

ศูนย์วิทยทรัพยากร งุฬาลงกรณ์มหาวิทยาลัย