CHAPTER II

THEORY
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- here E is the concentgation canstant. Thus tha determination of
Eq mri}-a \31ﬂ ‘jm %w qglmﬁr}aﬁuatiun of the
activit.]r coefficient terms , which involves the following techniques.

2.1.1 Constant Ionic Medium
In this method, the equilibrium are studied in
solution containing relatively large concentration of" neutral " or
inert electrolytes to assure the condition of constant ilonic

strength of the system. It is also assumed thhese this added ions do
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not form complexes with the reacting species and the activity
coefficients of ionic species remain constant. The  specles
concentrations are then calculated from the experimental
measurements, giving the concentration constants which are valid at

a particular ionic Btrength. The disadvantages of this methed are

threcfold, ’///
@m‘ad only with the data

which have bean ob ;- trengbh and in the same
medium (Unforh AL T J'},bﬁﬁl-. Wsually use different ionic
strengths). I' |

(11) out the variation of

activity coeffieci ‘ :>*; h to permit realiable

estimates of unce e. But this is probably
the 1least cobjection re present in sufficiently
small amounts relati 1d electrolyte, their activity
coefficients .anl errors.

ns in the electrolyte
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will be asauciate} to a greater ur lesser extent with the ions of

the " neuﬁlu E}Q%&I meﬂnﬁmentratian of the

latter is ﬂugh in order to ysep the ionic strength cunatant.
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It is clearly desirable to determine the
thermodynamic complex formation constants so that all systems are
directly comparable, and for this purpose the activity coefficient

in eq.(3) must be evaluated or eliminated. This can be done in two

ways -



(i) Calculate activitylcnefficinnts from the extended

forms of the Debye-Hueckel equation.(see detail in chapter V)
(ii) Determine B®'s at various concentrations of salt
and extrapolate to infinite dilution at which the activity

coefficients become unity.

The secoid met nally used to study a system

at a series of modenabely L ‘ ionic strengths.
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The principle typefofifisbion in tions is translational. The

olytic solutions, the

by Debye-Hueckel in 1923.

sphere surrounding :M }, L £l3  not always contain the same
ions. There isy '——ﬁ'rmw"’"'«i e ions contained in
the sphere an%ﬂ’th; 'atﬂial sphere around the
central ion is cq}l d the "1¢n1c‘u;moaphera“ or "ionie cloud". All
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surrounded hy an ionic atgosphere. AL the same ti each central
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It ia the existence of the ionic atmosphere that, according to
Debye-Hueckel, distinguishes real electrolytic solutions from ideal
ones.

2.2.2 Ion-ion Interaction and Activity Coefficients.

For a hypothetical system of ideal (noninteracting)

particles, the chemical potential is given by
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Hy (ideal) = *u; + AT ln(m,) (%)

In this expression, m, is the concentration of the
solute in molal units, and "l;. is its chemical potential in the
standard state ,i.e., when m, assumes a standard or normalized value

of unity

cting particles, the

chemical potenti

(5)
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and the car’Lﬂtinn factor yg is the act.ivity cn#fficient.
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st.and rd state to the final state can be written as

y(real) = u‘; + RT ln(m;) + RT 1n(y,) (6)

It is obvious that, when eq.4 is substracted from eq.6, the

difference 1is the chemical potential change, arising from
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interactions between the solute particles, i.e.,

ui{reall - uitidualj = aui_I

and, therefore,

(7

is a measure of the
; ' i
chemical potential r, arisingl '. ion interactions.
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Hence, combini :-:; -
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2DRT (1 + xa)

This individual 4ionic activity coeffiecient can be

transformed into a mean ionic activity coefficient,
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On the basis of the expression 11 for X,eq.10 becomes

In & = 'HA (z+z-}a2 ..EJ:”2 T

2 DKT 1+ Xa

(13)

and eq. 13 is then r
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.'ng x =BI , the final 2xpression becomes
s
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The derivation of eq.14 is such that the numerator of

(14)

the right hand side, -A [ Z+z- 11'/?, gives the effect of the long
range coulombic force, while the denominator (1 + EaITIEJ shows how

these are modified by the short range interactions between ions.
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lnlrs) = —Hlthz-]az X (10)

2DRT (1 + Xa)
Now, by substituting X from eq.11

X = z°n | (1)

¥ can be expresseg

Ren empirically introduced

by Lewis as a quantif for the treatment of ionic

solution. Since it quaptdfi 2 1 e in an electrolyte solution,

it was known as 15, fyven the symbol I.
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2.2.3 Semi-Empiriecal Formula for Calculating Activit

Coefficients.

The activity coefficients in an eq.14 gives an
adequate representation of the activity coefficients of ‘normally
dissociated salts of 1:1 and 2:1 valence types in sufficiently

dilute solutions in terms € gingle arbitrary parameter a, and

the ionic strength, I o utidnd tion 14., however, predicts

concentration, - men f}\'r_ .m nimum usually occurs,
followed by, a morgg€ // agid \\\-\‘H‘ activity coefficient
at high concentrat exp! Cliis effect in terms of the
change in dielectr . { near the ions, which
led to a second arbifrafy.cd sbar \Diin the equation

log Y+ (15)

TEE equation has been of grm: practical value, and
has been ‘; ‘ f{ olation of standard
potentials@ﬂmrﬁrﬂﬂmn ﬂﬂjﬂnﬁﬂciant data. Its
theoth-];-] .; mﬁ.?ﬂ ﬂqrﬁ criticized.
Furthermore, mjﬂr}i{s to give é re nn:ﬂy accurate

representation of the observed activity coefficients at ionie
strengths much greater than unity. To overcome this, further

arbitrary terms Iz and even higher powers are sometimes introduced

(11).
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