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Dr. László Zsidó for a number of his encouragement and useful advice throughout

the preparation and completion of this dissertaion. I also gratefully acknowledge

the hospitality of Department of Mathematics, University of Rome II ‘Tor Vergata’ ,

during the elaboration of this thesis.

I am greatly indebted to my thesis supervisor, Assistant Professor Dr. Wicharn

Lewkeeratiyutkul, and my thesis co-advisor, Dr. Paolo Bertozzini, for their help and

suggestions. I would like to express my special thanks to my thesis committee: As-

sistant Professor Dr. Imchit Termwuttipong (chairman), Associate Professor Dr.

Kritsana Neammanee, Professor Dr. Roberto Conti, and Associate Professor Dr.

Pachara Chaisuriya. Their suggestions and comments are my sincere appreciation.

My appreciation goes to the Development and Promotion of Science and

Technology Talents Project (DPST) for the financial support throughout my under-

graduate and graduate study and to the Thai Research Fund for financial support of

this research through the Royal Golden Jubilee Ph.D. Program .

I feel very thankful to all of my teachers who have taught me my knowledge

and skills. Finally, I wish to express my thankfulness to my beloved parents, my sister,

my brother-in-law, and my friends for their loves and encouragement throughout my

study.



CONTENTS

page

Abstract in Thai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II Preliminaries related with spatial W ∗-tensor products over abelian

W ∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III Preliminaries related with minimal C∗-tensor products over abelian

C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

IV Tensor products of ∗-representations over abelian C∗-algebras . . . . . . . . . 23

V On tensor products of Hilbert modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

VI Conditional expectations onto W ∗-subalgebras of the centre . . . . . . . . . . . . 46

VII Description of the Glimm ideals in spatially represented C∗-algebras . . . 54

VIII Faithful tensor products of ∗-representations over abelian C∗-algebras . .62

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CHAPTER I

INTRODUCTION

For every C∗-algebra A , let Z(A) = {z ∈ A ; az = za for all a ∈ A} be its centre

and M(A) = {x ∈ A∗∗ ; Ax∪ xA ⊂ A} its multiplier algebra (see e.g. [1], 3.12 or [2],

2.2).

We recall that a ∗-representation π : A→ B(H) is called non-degenerate if for any

0 6= ξ ∈ H there is some a ∈ A with π(a) ξ 6= 0 , or equivalently, if the closed linear

spanHe of π(A)H is equal toH . To a given ∗-representation π : A→ B(H) we always

can associate the non-degenerate ∗-representation A 3 a 7−→ π(a) |He ∈ B(He) . If

A is unital and π : A → B(H) is a non-degenerate ∗-representation, then π carries

the unit 1A of A to the identity map 1H on H .

Every non-degenerate ∗-representation π : A → B(H) extends to a unique unital

∗-representation M(π) : M(A) → B(H) , which is a ∗-isomorphism of M(A) onto the

C∗-subalgebra
{
T ∈ B(H) ; π(A)T ∪Tπ(A) ⊂ π(A)

}
⊂ B(H) whenever π is injective

(see e.g. [1], 3.12 or [2], 2.2.11, 2.2.16, 2.2.17). More precisely, M(π) is the restriction

to M(A) of the normal extension A∗∗ → B(H) of π , so π(A) and M(π)
(
M(A)

)
generate the same von Neumann algebra.

Let now C be a unital abelian C∗-algebra and let Ω denote its Gelfand spectrum.

If A is a C∗-algebra and ι : C → Z
(
M(A)

)
is an injective unital ∗-homomorphism,

then we say that (A , ι) , or simply A if ι is clear from the context, is a C∗-algebra

over C. In this case, for any non-degenerate ∗-representation π : A → B(H) , the

composition π ◦ ι = M(π) ◦ ι can be considered.
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If (A , ι) is a C∗-algebra over C , then

Iι(t) = { ι(c) ; c ∈ C , c(t) = 0 }A , t ∈ Ω (1.1)

are closed two-sided ideals in A . We shall call them Glimm ideals. Let πι,t denote the

canonical map A→ A/Iι(t) . Then we have
⋂
t∈Ω

Iι(t) = {0} , that is ‖a‖ = sup
t∈Ω

‖πι,t(a)‖

for all a ∈ A (see [3], Remarks on page 232). We notice that the functions

Ω 3 t 7−→ ‖πι,t(a)‖ , a ∈ A

are always upper semi-continuous (see [3], Lemma 9 or [4], Lemma 3.1 or [5], Lemma

2.3), but they are in general not continuous. If they are continuous, then (A , ι) will

be called a continuous C∗-algebra over C.

C∗-tensor products of C∗-algebras over C were already considered by G. A. Elliott

[6] and G. G. Kasparov [7], 1.6, but a systematic study of such tensor products was

undertaken only later by É. Blanchard [8], [9], B. Magajna [10] and T. Giordano - J.

Mingo [11].

Let (A1 , ι1) and (A2 , ι2) be C∗-algebras over C and let us consider the ∗-

homomorphisms

πι1,t ⊗ πι2,t : A1 ⊗ A2 −→
(
A1/Iι1(t)

)
⊗

(
A2/Iι2(t)

)
, t ∈ Ω ,

where ⊗ stands for the algebraic tensor product over C . On every quotient
(
A1/Iι1(t)

)
⊗

(
A2/Iι2(t)

)
there exists the least C∗-norm ‖ · ‖min (see [12] or [13], 6.4) and

A1 ⊗ A2 3 a 7−→ ‖(πι1,t ⊗ πι2,t)(a)‖min

is a C∗-seminorm. Following É. Blanchard, the minimal C∗-tensor product of A1 and

A2 over C is defined as the Hausdorff completion A1⊗C,minA2 of A1⊗A2 with respect

to the C∗-seminorm

A1 ⊗ A2 3 a 7−→ ‖a‖C,min = sup
t∈Ω

‖(πι1,t ⊗ πι2,t)(a)‖min , (1.2)
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that is the C∗-algebra obtained by the completion of the quotient ∗-algebra

(A1 ⊗ A2)
/
JC with JC = { a ∈ A1 ⊗ A2 ; (πι1,t ⊗ πι2,t)(a) = 0 , for all t ∈ Ω }

relative to the C∗-norm induced by ‖ · ‖C,min .

On the other hand, spatial tensor products of W ∗-algebras over abelian W ∗-

algebras were considered by Ş. Strătilă and L. Zsidó. They showed in [14], Lemma 5.2

that if Z is an abelian W ∗-algebra, M1 , M2 are W ∗-algebras and ι1 : Z −→ Z(M1) ,

ι2 : Z −→ Z(M2) are injective unital normal ∗-homomorphisms, then there exist in-

jective unital normal ∗-representations π1 : M1 −→ B(H) , π2 : M2 −→ B(H) on the

same Hilbert space H , such that π1 ◦ ι1 = π2 ◦ ι2 and π1(M1) ⊂ N , π2(M2) ⊂ N ′ for

some type I von Neumann algebra N ⊂ B(H) with centre equal to (πj ◦ ιj)(Z) . On

the other hand, according to [14], Lemma 5.4, if ρ1 : M1 −→ B(K) , ρ2 : M2 −→ B(K)

are any injective unital normal ∗-representations such that ρ1 ◦ ι1 = ρ2 ◦ ι2 and

ρ1(M1) ⊂ R , ρ2(M2) ⊂ R′ for some type I von Neumann algebra R ⊂ B(K) with

centre equal to (ρj ◦ ιj)(Z) , then there is a ∗-isomorphism

Θ : π1(M1) ∨ π2(M2) −→ ρ1(M1) ∨ ρ2(M2)

satisfying

Θ
(
π1(x1)π2(x2)

)
= ρ1(x1)ρ2(x2) for all x1 ∈M1 , x2 ∈M2 .

In other words, the von Neumann algebra π1(M1)∨ π2(M2) is unique up to canonical

∗-isomorphism. Since in the case Z = C it is ∗-isomorphic to the usual spatial tensor

product (over C ) M1⊗M2 (see [15], Lemma 2), it is natural to call it in the general

case the spatial W ∗-tensor product of M1 and M2 over Z .

The goal of this thesis is to link the minimal C∗-tensor product with the spatial

W ∗-tensor product.
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The first main result (Theorem 4.4) claims that if C is a unital abelian C∗-algebra,

(A1 , ι1) and (A2 , ι2) are C∗-algebras over C and πj : Aj −→ B(H) , j = 1 , 2 , are

non-degenerate ∗-representations such that

M(π1)◦ι1 = M(π2)◦ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′ (1.3)

for some type I von Neumann algebra N ⊂ B(H) with centre
(
M(πj) ◦ ιj

)
(C)′′, then

there exists a ∗-representation of A1 ⊗C,min A2 on H , which carries the canonical

image (a1⊗ a2)
/
JC ∈ (A1⊗A2)

/
JC of any a1⊗ a2 ∈ A1⊗A2 to π1(a1)π2(a2) . This

∗-representation is uniquely determined and we denote it by π1 ⊗C,min π2 . Clearly,

π1 ⊗C,min π2 maps the minimal C∗-tensor product A1 ⊗C,min A2 into the spatial W ∗-

tensor product π1(A1)
′′ ∨ π2(A2)

′′ of π1(A1)
′′ and π2(A2)

′′ over (πj ◦ ιj)(C)′′ .

Chapter 5 is dedicated to tensor products of Hilbert modules occuring in the

theory of spatial tensor products of W ∗-algebras over abelian W ∗-algebras. This

chapter can be considered as belonging to the topological reduction theory of von

Neumann algebras, in the spirit of [16], [17], [18], [19] and [4]. In the main result of

this chapter (Theorem 5.5) we give a description of the elements in the tensor product

of the considered Hilbert modules, extending a previously proved result concerning

the description of the vectors in a Hilbert space tensor product (Proposition 5.1).

The results of this chapter are used in Chapter 6 to reprove a result of H. Halpern

about the structure of a normal conditional expectation of a type I von Neumann

algebra onto its centre (Theorem 6.6).

In Chapter 7 Glimm ideals are described in terms of a faithful spatial represen-

tation. As an application, JC is characterized in terms of faithful non-degenerate

∗-representations πj : Aj → B(H) satisfying (1.3) (Corollary 7.7).

Finally, in Chapter 8 we first exhibit an example of faithful π1 and π2 for which

π1 ⊗C,min π2 is not faithful (Proposition 8.2). Subsequently we prove criteria for
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faithful non-degenerate ∗-representations πj : Aj → B(H) satisfying (1.3) in order

that π1 ⊗C,min π2 be faithful (Theorem 8.5). It will follow that if A1 , A2 are unital

and π1 , π2 are faithful in a stronger sense, then π1⊗C,minπ2 will be faithful, providing

thus an identification of the minimal C∗-tensor product A1 ⊗C,min A2 with the C∗-

subalgebra of the spatialW ∗-tensor product π1(A1)
′′∨π2(A2)

′′ generated by the images

π1(A1) and π2(A2) (Corollary 8.7).

For the basic facts concerning C∗-algebras and von Neumann algebras we refer to

the standard textbooks [20], [21], [13], [1], [22] and [23].



CHAPTER II

PRELIMINARIES RELATED WITH SPATIAL

W ∗-TENSOR PRODUCTS OVER ABELIAN

W ∗-ALGEBRAS

In [14], Lemma 2.2, the commutation theorem of M. Tomita was extended to the

frame of spatial W ∗-tensor products over abelian W ∗-subalgebras. The proof of this

general commutative theorem is based on a careful analysis of the Zh-submodule and

Z-submodule of Ne , where N is a type I W ∗-algebra with centre Z and e is an abelian

projection in N , performed in [14], Chapter 2. In this chapter we recall certain facts

concerning such submodules, completing them when our needs require this.

We recall that if N is a type I factor and e is a minimal projection in N , then the

equality

exe = ϕe(x) e , x ∈ N

defines a normal state ϕe on N , Ne becomes a Hilbert space with the inner product

Ne×Ne 3 (x, y) 7−→ ϕe(y
∗x)

and, associating to every x ∈ N the left multiplication operator

Ne 3 y 7−→ Lx(y) = xy ∈ Ne ,

we get a ∗-isomorphism N 3 x 7−→ Lx ∈ B(Ne) .

The above construction can be extended to arbitrary type I von Neumann algebras.

Let N be a type I von Neumann algebra with centre Z . If e is an abelian projection
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in N with central support zN(e) , then the map

Z zN(e) 3 z zN(e) 7−→ z zN(e)e = ze ∈ eNe (2.1)

is a ∗-isomorphism. For every x ∈ N , we denote the inverse image of exe in Z zN(e)

under this isomorphism by Φe(x) . Then Φe : N −→ Z zN(e) is a normal positive

Z-module mapping with Φe(1N) = zN(e) , uniquely defined by the equality

exe = Φe(x)e , x ∈ N (2.2)

(see e.g. [16], [17]). Furthermore, since (2.1) is isometric, we have

‖exe‖ = ‖Φe(x)‖ , x ∈ N . (2.3)

Furthermore, if zN(e) = 1N , then Φe is a normal conditional expectation of N onto

Z with support e . In this case Ne becomes a Hilbert Z-module with the Z-valued

inner product

Ne×Ne 3 (x, y) 7−→ Φe(y
∗x) .

Let BZ(Ne) denote the set of all bounded Z-module morphisms of Ne into itself and,

for every x ∈ N , let us consider the left multiplication operator

Ne 3 y 7−→ Lx(y) = xy ∈ Ne .

Then BZ(Ne) becomes in a natural way a C∗-algebra and the map

N 3 x 7−→ Lx ∈ BZ(Ne) (2.4)

is an injective ∗-homomorphism (see [14], 1.13.(4)). Actually we have more:

Lemma 2.1. Let N be a type I von Neumann algebra with centre Z, and e ∈ N an

abelian projection of central support 1N . Then (2.4) is a ∗-isomorphism.
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Proof. By well known classical results (see e.g. [24], 7.5 – 7.6), the closed unit ball of

BZ(Ne) is compact with respect to the topology of the pointwise w-convergence, so

the C∗-algebra BZ(Ne) is the dual space of some Banach space and the corresponding

weak∗ topology on the closed unit ball of BZ(Ne) coincides with the topology of the

pointwise w-convergence. Therefore BZ(Ne) is a W ∗-algebra and the w-topology on

its closed unit ball is the topology of the pointwise w-convergence (see [22], 1.1.2,

1.13.3, 1.16.7 or [24], 8.4). In particular, since {Lx ; x ∈ N} 3 L1N
= 1B

Z
(Ne) is a

∗-subalgebra of BZ(Ne) , whose closed unit ball is closed with respect to the topology

of the pointwise w-convergence, it is a W ∗-subalgebra of BZ(Ne) .

Next we compute the relative commutant of the above W ∗-subalgebra:

{Lx ; x ∈ N}′ ∩ BZ(Ne) = {Lz ; z ∈ Z} . (2.5)

For let T ∈ {Lx ; x ∈ N}′ ∩ BZ(Ne) be arbitrary. Then

T (xy) = (T ◦ Lx)(y) = (Lx ◦ T )(y) = xT (y) , x ∈ N , y ∈ Ne . (2.6)

In particular, T (e) = e T (e) ∈ eNe = Ze , hence T (e) = zT e for some zT ∈ Z . Now

(2.6) yields for every x ∈ Ne :

T (x) = T (xe) = xT (e) = xzT e = zT x = Lz
T
(x) .

By (2.5), the centre of BZ(Ne) is {Lz ; z ∈ Z} . In particular, the central support

of the projection Le is L1N
= 1B

Z
(Ne) .

On the other hand, Le is an abelian projection. Indeed, since Le(x) = ex =

Φe(x)e , x ∈ Ne , we have for every T ∈ BZ(Ne)

(LeTLe)(x) = (LeT )
(
Φe(x)e

)
= Le

(
Φe(x)T (e)

)
= Φe(x) Φe

(
T (e)

)
e

= zT Φe(x)e = zT Le(x) =
(
Lz

T
Le

)
(x) ,

so LeTLe = Lz
T
Le ∈ Z

(
BZ(Ne)

)
·Le .



9

Consequently, BZ(Ne) is a type I W ∗-algebra. Since

Z
(
BZ(Ne)

)
= {Lz ; z ∈ Z} ⊂ {Lx ; x ∈ N} ⊂ BZ(Ne) ,

(2.5) yields that {Lx ; x ∈ N} = BZ(Ne) (cf. [14], 1.7.(4)).

The next three simple lemmas concerning abelian projections are variants of well

known results. They are exposed here for further reference, for the convenience of

the reader:

Lemma 2.2. Let N be a type I von Neumann algebra. If f , p ∈ N are projections,

f ≤ p and f is abelian, then there exists an abelian projection e ∈ N such that

f ≤ e ≤ p , zN(e) = zN(p) .

Proof. Let us first consider the case f = 0 . Since N is of type I, so is pNp. Let e be

an abelian projection in pNp with central support one, that is zpNp(e) = p . Since

exeye = e(pxep)(pyep) = e(pyep)(pxep) = eyexe , x , y ∈ N ,

e is an abelian projection also in N . Clearly, e ≤ p implies zN(e) ≤ zN(p) . On the

other hand, since e ≤ p zN(e)p ∈ Z(pNp) and zpNp(e) = p , we have

p ≤ p zN(e)p = p zN(e) ≤ zN(e) .

Consequently also the converse inequality zN(p) ≤ zN(e) holds.

The case of a general f can be reduced to the above treated case. Indeed, by the

above part of the proof there is an abelian projection eo ∈ N such that

eo ≤ p− p zN(f) , zN(eo) = zN
(
p− p zN(f)

)
= zN(p)− zN(f)

and then e = f + eo ∈ N will be an abelian projection satisfying f ≤ e ≤ p and

zN(e) = zN(p) .
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Lemma 2.3. Let N be a type I von Neumann algebra. Then

‖x‖ = sup {‖xv‖ ; v ∈ N partial isometry, v∗v ≤ e} , x ∈ N

holds for any abelian projection e ∈ N with zN(e) = 1N . On the other hand,

‖x‖2 = sup {‖Φe(x
∗x)‖ ; e ∈ N abelian projection, zN(e) = 1N} , x ∈ N .

Proof. First we prove that

‖x‖ = sup {‖xf‖ ; f ∈ N abelian projection } , x ∈ N . (2.7)

For let x ∈ N and ε > 0 be arbitrary. By the spectral theorem there exists a

projection p ∈ N commuting with x∗x such that

x∗x p ≥
(
‖x∗x‖ − ε

)
p , (2.8)

x∗x (1N − p) ≤
(
‖x∗x‖ − ε

)
(1N − p)

(see e.g. [23], Corollary 2.21). Note that p 6= 0 , because p = 0 would imply x∗x ≤

‖x∗x‖ − ε , a contradiction. Since N is of type I, p majorizes a non-zero abelian

projection f ∈ N and (2.8) yields

fx∗xf = fx∗xpf ≥
(
‖x∗x‖ − ε

)
f .

Consequently ‖xf‖2 = ‖fx∗xf‖ ≥
(
‖x∗x‖ − ε

)
‖f‖ = ‖x‖2 − ε .

Now let e be any abelian projection in N with zN(e) = 1N . Let further x ∈ N be

arbitrary. Taking into account (2.7),

‖x‖ = sup {‖xv‖ ; v ∈ N partial isometry, v∗v ≤ e}

will follow once we show that for every abelian projection f ∈ N there exists a partial

isometry v ∈ N such that v∗v ≤ e and ‖xf‖ ≤ ‖xv‖ .

But zN(f) ≤ 1N = zN(e) implies the existence of a partial isometry v ∈ N such

that v v∗ = f , v∗v ≤ e (see e.g. [23], Proposition 4.10). Then
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‖xf‖2 = ‖xfx∗‖ = ‖xvv∗x∗‖ = ‖xv‖2 .

Finally, let x ∈ N be arbitrary. Again by (2.7),

‖x‖2 = sup {‖Φe(x
∗x)‖ ; e ∈ N abelian projection, zN(e) = 1N}

will follow once we show that for every abelian projection f ∈ N there exists an

abelian projection e ∈ N with zN(e) = 1N such that ‖xf‖2 ≤ ‖Φe(x
∗x)‖ .

But Lemma 2.2, applied with p = 1N , implies the existence of an abelian projec-

tion e ∈ N such that f ≤ e and zN(e) = 1N . Then (2.2) yields

‖xf‖2 ≤ ‖xe‖2 = ‖ex∗xe‖ = ‖Φe(x
∗x)e‖ ≤ ‖Φe(x

∗x)‖ .

Lemma 2.4. Let N ⊂ B(H) be a type I von Neumann algebra, e an abelian projection

in N , and f an abelian projection in N ′ . Then ef is an abelian projection in N ∨N ′

with zN∨N ′(ef) = zN(e) zN ′(f) and

Φef (xy) = Φe(x)Φf (y) , x ∈ N , y ∈ N ′ .

Moreover, if zN(e) = zN ′(f) , then

Φe = Φef |N and Φf = Φef |N ′ .

Proof. Let us denote for convenience Z = Z(N) = Z(N ′) = Z(N ∨N ′) .

Clearly, ef = fe is a projection in N ∨ N ′ . Since, for every x1 , x2 ∈ N and

y1 , y2 ∈ N ′ ,

(efx1y1ef)(efx2y2ef) =(ex1ex2e)(fy1fy2f)

=(ex2ex1e)(fy2fy1f) = (efx2y2ef)(efx1y1ef) ,

ef is an abelian projection in N ∨N ′ .

If p ∈ Z is a projection such that ef ≤ p , then it follows successively
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ey′fξ = y′efpξ = py′efξ ∈ pH for all y′ ∈ N , ξ ∈ H , i.e. eN ′fH ⊂ pH ,

e zN ′(f)H ⊂ pH , i.e. zN ′(f)e = e zN ′(f) ≤ p ,

zN ′(f)yeξ = ye zN ′(f)ξ = ype zN ′(f)ξ = py zN ′(f)eξ ∈ pH , y ∈ N, ξ ∈ H , i.e.

zN ′(f)NeH ⊂ pH ,

zN ′(f) zN(e)H ⊂ pH , i.e. zN ′(f) zN(e) ≤ p .

Therefore zN ′(f) zN(e) ≤ zN∨N ′(ef) . But the converse inequality is trivial, so we

actually have

zN∨N ′(ef) = zN ′(f) zN(e) . (2.9)

Let x ∈ N , y ∈ N ′ be arbitrary. According to (2.2), we deduce

efxyef = (exe)(fyf) = Φe(x)eΦf (y)f = Φe(x)Φf (y)ef .

Since, by (2.9), we have Φe(x)Φf (y) ∈ Z zN(e) zN ′(f) = Z zN∨N ′(ef) , it follows that

Φef (xy) = Φe(x)Φf (y) .

Assume now that zN(e) = zN ′(f) = zN∨N ′(ef) . Then, for every x ∈ N , efxef =

(exe)f = Φe(x)ef and Φe(x) ∈ Z zN∨N ′(ef) imply that Φef (x) = Φe(x) . Therefore

Φe = Φef |N . Similarly we deduce also Φf = Φef |N ′ .

The following result concerning the structure of the Z-submodules of Ne , where

N is a type I von Neumann algebra with centre Z and e is an abelian projection in

N , will be used in the sequel:

Lemma 2.5. Let N ⊂ B(H) be a type I von Neumann algebra with centre Z , and

e ∈ N an abelian projection. If X ⊂ Ne is a Z-submodule, then there is a unique

projection p ∈ N such that

X
s
= pNe , zN(p) ≤ zN(e) ,
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namely p is the orthogonal projection onto linXH (the closed linear span of {xξ ; x ∈

X, ξ ∈ H}). Moreover, if X = Me , where Z ⊂M ⊂ N is a von Neumann subalgebra,

then

p ∈M ′ ∩N , e ≤ p , zN(e) = zN(p) .

Proof. All the above statements, except those concerning central supports, were

proved in [14], 1.6 and 1.7. For zN(e) ≥ zN(p) , let q ∈ Z be a projection ma-

jorizing e . Then xe = xeq = qxe for every x ∈M , so q(xeξ) = xeξ for every ξ ∈ H .

Since p is the projection onto linMeH , it follows that q ≥ p .

We shall need also the following variant of [14], Lemma 1.2, for which we have

just to reproduce the proof of [14], Lemma 1.2:

Lemma 2.6. Let N be a type I von Neumann algebra with centre Z and e ∈ N an

abelian projection. For every ∗-subalgebra B ⊂ N and x ∈ Be s, ‖x‖ = 1 , we have

x ∈ {y ∈ BeZ+
1 ; ‖y‖ ≤ 1}

s
,

where Z+
1 denotes the set of all elements z ∈ Z with 0 ≤ z ≤ 1N .

Proof. Let x ∈ Be s be such that ‖x‖ = 1 . Consider a net

Be 3 bλe = xλ
s−→ x .

Then

Φe(x
∗
λxλ)

1/2 s−→ Φe(x
∗x)1/2 .

Let f, g : [0,∞) → [0, 1] be functions such that

f(t) = 1 for t ≤ 1 ,

g(t) = 1 for t ≥ 1 ,

and g(t) = tf(t) for all t ∈ [0,∞) .
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Since f is operator continuous,

Zh 3 f
(
Φe(x

∗
λxλ)

1/2
) s−→f

(
Φe(x

∗x)1/2
)

= 1N ,∥∥f(
Φe(x

∗
λxλ)

1/2
)∥∥ ≤1 for all λ .

Therefore f
(
Φe(x

∗
λxλ)

1/2
)
xλ

s−→ x with

∥∥f(
Φe(x

∗
λxλ)

1/2
)
xλ

∥∥ =
∥∥Φe

(
x∗λf(Φe(x

∗
λxλ)

1/2)2xλ
)∥∥

=
∥∥f(

Φe(x
∗
λxλ)

1/2
)2

Φe(x
∗
λxλ)

∥∥
=

∥∥f(
Φe(x

∗
λxλ)

1/2
)
Φe(x

∗
λxλ)

1/2
∥∥2

=
∥∥g(Φe(x

∗
λxλ)

1/2
)∥∥2 ≤ 1 ,

and f
(
Φe(x

∗
λxλ)

1/2
)
xλ ∈ BeZ+

1 because xλ = bλe ,
∥∥f(

Φe(x
∗
λxλ)

1/2
)∥∥ ≤ 1 .



CHAPTER III

PRELIMINARIES RELATED WITH MINIMAL

C∗-TENSOR PRODUCTS OVER ABELIAN

C∗-ALGEBRAS

Let C be a unital abelian C∗-algebra and let Ω denote its Gelfand spectrum.

If (A , ι) is a C∗-algebra over C , then also (M(A) , ι) is a C∗-algebra over C . To

distinguish between the ideals defined by (1.1) for (A , ι) and for (M(A) , ι) , we shall

keep the notation

Iι(t) = { ι(c) ; c ∈ C , c(t) = 0 }A , t ∈ Ω

for the ideals of A and shall set

Ĩι(t) = { ι(c) ; c ∈ C , c(t) = 0 }M(A) , t ∈ Ω .

Similarly, we keep the notation πι,t for the canonical map A → A/Iι(t) and shall

denote the canonical map M(A) →M(A)
/
Ĩι(t) by π̃ι,t .

The next proposition establishes a link between Iι(t) and Ĩι(t) , as well as between

πι,t and π̃ι,t (cf. [4], Lemma 3.4):

Proposition 3.1. Let C be a unital abelian C∗-algebra, Ω its Gelfand spectrum, and

(A , ι) a C∗-algebra over C . Then

(i) πι,t
(
ι(c) a

)
= c(t)πι,t(a) , t ∈ Ω , c ∈ C , a ∈ A ;

(ii) ‖πι,t(a)‖ = inf
c∈C
c(t)=1

‖ι(c) a‖ = inf
c∈C

0≤c≤1C
c(t)=1

‖ι(c) a‖ , t ∈ Ω , a ∈ A ;
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(iii) for any t ∈ Ω we have

Iι(t) = A ∩ Ĩι(t) , ‖πι,t(a)‖ = ‖π̃ι,t(a)‖ , a ∈ A .

Proof. (i) Since ι(c)a− c(t)a =
(
ι(c)− c(t)1M(A)

)
a = ι

(
c− c(t)1C

)
a ∈ Iι(t) , we have

πι,t
(
ι(c)a− c(t)a

)
= 0 .

(ii) Since ‖πι,t‖ ≤ 1 , by the above proved (i) we have

‖πι,t(a)‖ = inf
c∈C
c(t)=1

‖c(t)πι,t(a)‖ = inf
c∈C
c(t)=1

‖πι,t
(
ι(c)a

)
‖ ≤ inf

c∈C
c(t)=1

‖ι(c)a‖

≤ inf
c∈C

0≤c≤1C
c(t)=1

‖ι(c)a‖ .

For the converse inequalities, let ε > 0 be arbitrary. Since{ n∑
j=1

ι(cj)aj ; cj ∈ C , cj(t) = 0 , aj ∈ A , n ∈ N
}

is dense in Iι(t) and ‖πι,t(a)‖ = ‖a
/
Iι(t)‖ = inf {‖a − y‖ , y ∈ Iι(t)} , there exist

c1, c2, . . . , cn ∈ C and a1, a2, . . . , an ∈ A such that cj(t) = 0 for all j = 1, 2, . . . , n

and

‖πι,t(a)‖ ≥
∥∥∥a− n∑

j=1

ι(cj)aj

∥∥∥− ε

and then there is an open set t ∈ Vo ⊂ Ω such that

s ∈ V0 =⇒ |cj(s)| < ε
n‖aj‖

for all 1 ≤ j ≤ n .

By Urysohn Lemma, there is co ∈ C such that 0 ≤ co ≤ 1C , co(t) = 1 , and co(s) = 0

for every s ∈ Ω r Vo . Since |(cocj)(s)| = 0 for s ∈ Ω r Vo and |(cocj)(s)| ≤ ε
n‖aj‖

for

s ∈ Vo , we have for every 1 ≤ j ≤ n :

‖ι(cocj)aj‖ ≤ ‖ι(cocj)‖ ‖aj‖ ≤ ε
n‖aj‖

‖aj‖ = ε
n .

Therefore

‖πι,t(a)‖+ ε ≥
∥∥∥ a− n∑

j=1

ι(cj)aj

∥∥∥ ≥ ∥∥∥ ι(co)a− n∑
j=1

ι(cocj)aj

∥∥∥
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≥ ‖ι(co)a‖ −
n∑
j=1

‖ι(cocj)aj‖ ≥ ‖ι(co)a‖ − ε ,

so ‖πι,t(a)‖+ 2 ε ≥ ‖ι(co)a‖ ≥ inf
c∈C

0≤c≤1C
c(t)=1

‖ι(c)a‖ .

(iii) Let a ∈ A be arbitrary. Applying (ii) to πι,t(a) and to π̃ι,t(a) , we get

‖πι,t(a)‖ = inf
c∈C
c(t)=1

‖ι(c)a‖ = ‖π̃ι,t(a)‖ .

In particular, a ∈ A∩ Ĩι(t) =⇒ a ∈ Iι(t) , hence the inclusion A∩ Ĩι(t) ⊂ Iι(t) holds.

Since the converse inclusion is trivial, we have Iι(t) = A ∩ Ĩι(t) .

Proposition 3.1.(iii) implies immediately:

Corollary 3.2. Let C be a unital abelian C∗-algebra, Ω its Gelfand spectrum, and

(A , ι) a C∗-algebra over C . Then, for every t ∈ Ω , the map

ρι,t : A/Iι(t) 3 πι,t(a) 7−→ π̃ι,t(a) ∈M(A)/Ĩι(t)

is a well defined injective ∗-homomorphism and the diagram

A
inclusion−−−−−→ M(A)

πι,t

y yπ̃ι,t

A/Iι(t)
ρι,t−−−−−→ M(A)/Ĩι(t)

is commutative.

Now let C be a unital abelian C∗-algebra with Gelfand spectrum Ω and let

(A1 , ι1) , (A2 , ι2) be C∗-algebras over C . For every t ∈ Ω , Corollary 3.2 entails

the existence of the injective ∗-homomorphisms ρι1,t , ρι2,t and then the tensor prod-

uct ∗-homomorphism

ρι1,t ⊗min ρι2,t : A1/Iι1(t)⊗min A2/Iι2(t) −→M(A1)/Ĩι1(t)⊗min M(A2)/Ĩι2(t)

is injective, hence isometric, and the diagram

A1 ⊗ A2
inclusion−−−−−−−−→ M(A1)⊗M(A2)

πι1,t⊗πι2,t

y yπ̃ι1,t⊗π̃ι2,t(
A1/Iι1(t)

)
⊗min

(
A2/Iι2(t)

) ρι1,t⊗minρι2,t−−−−−−−−→
(
M(A1)/Ĩι1(t)

)
⊗min

(
M(A2)/Ĩι2(t)

)
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is commutative. Consequently:

Corollary 3.3. Let C be a unital abelian C∗-algebra with Gelfand spectrum Ω and

let (A1 , ι1) , (A2 , ι2) be C∗-algebras over C . Then, for every t ∈ Ω ,

‖(πι1,t ⊗ πι2,t)(a)‖min = ‖(π̃ι1,t ⊗ π̃ι2,t)(a)‖min , a ∈ A1 ⊗ A2 .

As a consequence of the above corollary, we have

sup
t∈Ω

‖(πι1,t ⊗ πι2,t)(a)‖min = sup
t∈Ω

‖(π̃ι1,t ⊗ π̃ι2,t)(a)‖min , a ∈ A1 ⊗ A2 ,

hence the restriction of the C∗-seminorm

M(A1)⊗M(A2) 3 x 7−→ sup
t∈Ω

‖(π̃ι1,t ⊗ π̃ι2,t)(x)‖min

to A1 ⊗ A2 is equal to the C∗-seminorm

A1 ⊗ A2 3 a 7−→ sup
t∈Ω

‖(πι1,t ⊗ πι2,t)(a)‖min .

Therefore the C∗-seminorm (1.2) can be defined also by the formula

‖a‖C,min = sup
t∈Ω

‖(π̃ι1,t ⊗ π̃ι2,t)(a)‖min , a ∈ A1 ⊗ A2 .

Every bounded linear functional ϕ on a C∗-algebra A can be considered in the

natural way a linear functional on A∗∗ , hence also on M(A) ⊂ A∗∗ : the obtained

linear functional on M(A) , which will be still denoted by ϕ , is actually the strictly

continuous extension of the original functional on M(A) (for the strict topology see

e.g. [2], 2.3).

The next result is slightly more general than [21], Proposition 4.3.14 and can be

deduced from [24], Corollary 4.7:

Proposition 3.4. Let C be a unital abelian C∗-algebra, Ω its Gelfand spectrum, (A , ι)

a C∗-algebra over C , and ϕ a state on A . Then, for every t ∈ Ω , the conditions
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(i) ϕ
(
ι(c) a

)
= c(t)ϕ(a) , c ∈ C , a ∈ A ,

(ii) ϕ
∣∣
Iι(t)

= 0 ,

(iii) ϕ
(
ι(c)

)
= c(t) , c ∈ C

are equivalent. Moreover, if ϕ is a pure state on A then the above conditions are

satisfied for an appropriate t ∈ Ω .

Proof. (i)⇒ (ii) is obvious and (ii)⇒ (iii) follows easily: any approximate unit
{
uλ

}
λ

for A is strictly convergent to 1M(A) (see e.g. [2], Lemma 2.3.3) and the strict conti-

nuity of ϕ on M(A) yields

ϕ
(
ι
(
c− c(t)1C

)
uλ

)
−→ ϕ

(
ι
(
c− c(t)1C

))
= ϕ

(
ι(c)

)
− c(t) , c ∈ C .

Now let us assume that (iii) is satisfied and let a ∈ A+ , ‖a‖ ≤ 1 , be arbitrary.

For ϕ(a) = 0 we have by the Schwarz Inequality

ϕ
(
ι(c) a

)
= 0 = c(t)ϕ(a) , c ∈ C ,

while for ϕ(1M(A) − a) = 0 we deduce, again by the Schwarz inequality,

ϕ
(
ι(c) a

)
= ϕ

(
ι(c)

)
− ϕ

(
ι(c) (1M(A) − a)

)
= c(t) = c(t)ϕ(a) , c ∈ C .

On the other hand, if ϕ(a) > 0 and ϕ(1M(A) − a) > 0 then

C 3 c ψ17−→ 1

ϕ(a)
ϕ
(
ι( · )a

)
, C 3 c ψ27−→ 1

ϕ(1M(A) − a)
ϕ
(
ι( · )(1M(A) − a)

)
are states satisfying ϕ◦ι = ϕ(a)ψ1+ϕ(1M(A)−a)ψ2 . Since ϕ◦ι is by (iii) a character,

hence a pure state, it follows that ψ1 = ψ2 = ϕ ◦ ι . Therefore

ϕ
(
ι(c) a

)
= ϕ(a)ψ1(c) = ϕ(a)ϕ

(
ι(c)

)
= c(t)ϕ(a) , c ∈ C .

Finally, let us assume that ϕ is a pure state on A . Let πϕ : A → B(Hϕ) denote

the GNS representation associated to ϕ and let ξϕ be its canonical cyclic vector.

Then πϕ , hence also M(πϕ) is irreducible and it follows that M(πϕ)
(
ι(C)

)
= C 1Hϕ .

Therefore
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(
M(πϕ) ◦ ι

)
(c) = c(t) 1Hϕ , c ∈ C

for some t ∈ Ω and we obtain

ϕ
(
ι(c)

)
=

(
M(πϕ)

(
ι(c)

)
ξϕ

∣∣∣ ξϕ) = c(t) (ξϕ | ξϕ) = c(t) , c ∈ C .

S(A) will denote the set of all states of the C∗-algebra A , while P (A) will stand

for the set of all pure states of A . If C and (A , ι) are as in Proposition 3.4, then we

denote by Sι(A) the set of all states ϕ of A for which ϕ ◦ ι is a character on C . By

Lemma 3.4, P (A) ⊂ Sι(A) .

As a corollary, we get the following formula for the minimal C∗-tensor product

norm (see [6], Sublemma 2.1):

Corollary 3.5. Let C be a unital abelian C∗-algebra with Gelfand spectrum Ω and

let (A1 , ι1) , (A2 , ι2) be C∗-algebras over C . Then, for any a ∈ A1 ⊗ A2 ,

‖a‖ 2
C,min = sup

(ϕ1 ⊗ ϕ2)(b
∗a∗ab)

(ϕ1 ⊗ ϕ2)(b∗b)
;
ϕj ∈ P (Aj) , j = 1, 2, ϕ1 ◦ ι1 = ϕ2 ◦ ι2

b ∈ A1 ⊗ A2 , (ϕ1 ⊗ ϕ2)(b
∗b) > 0

 .

Proof. The well known formula for the spatial tensor product norm (see e.g. [24],

Corollary 3/4.20 or [5], Lemma 4.7) yields that ‖(πι1,t ⊗ πι2,t)(a)‖ 2
min is, for every

t ∈ Ω , the supremum of

(ψ1 ⊗ ψ2)
(
(πι1,t ⊗ πι2,t)(b

∗a∗ab)
)

(ψ1 ⊗ ψ2)
(
(πι1,t ⊗ πι2,t)(b

∗b)
) =

(
(ψ1 ◦ πι1,t)⊗ (ψ2 ◦ πι2,t)

)
(b∗a∗ab)(

(ψ1 ◦ πι1,t)⊗ (ψ2 ◦ πι2,t)
)
(b∗b)

(3.1)

over all ψj ∈ P
(
Aj

/
Iιj(t)

)
, b ∈ A1⊗A2 with (ψ1⊗ψ2)

(
(πι1,t⊗πι2,t)(b∗b)

)
> 0 . Thus

‖a‖ 2
C,min is the supremum of (3.1) over

all ψj ∈ P
(
Aj

/
Iιj(t)

)
, b ∈ A1 ⊗ A2 with (ψ1 ⊗ ψ2)

(
(πι1,t ⊗ πι2,t)(b

∗b)
)
> 0

and all t ∈ Ω .
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But, taking into account Proposition 3.4, it is easy to see that this supremum is equal

to that one in the statement.

We can consider on the quotients
(
A1/Iι1(t)

)
⊗

(
A2/Iι2(t)

)
also the greatest C∗-

norm ‖ · ‖max (see e.g. [13], 6.3) and define the C∗-seminorm

A1 ⊗ A2 3 a 7−→ ‖a‖C,max = sup
t∈Ω

‖(πι1,t ⊗ πι2,t)(a)‖max .

Following É. Blanchard, the maximal C∗-tensor product of A1 and A2 over C is

defined as the Hausdorff completion A1 ⊗C,max A2 of A1 ⊗ A2 with respect to the

above C∗-seminorm, that is the C∗-algebra obtained by the completion of the quotient

∗-algebra (A1 ⊗ A2)
/
JC relative to the C∗-norm induced by ‖ · ‖C,max .

The subscripts max and min for the seminorms ‖·‖C,max and ‖·‖C,min are explained

by the following extremality properties proved by G. A. Elliott (see [6], Sublemma

2.1) and É. Blanchard (see [8], Propositions 2.4 and 2.8):

Proposition 3.6. Let C be a unital abelian C∗-algebra and let (A1 , ι1) , (A2 , ι2) be

C∗-algebras over C . If p( · ) is a C∗-seminorm on A1 ⊗ A2 , then

JC ⊂ {a ∈ A1 ⊗ A2 ; p(a) = 0} =⇒ p(a) ≤ ‖a‖C,max , a ∈ A1 ⊗ A2 ,

JC = {a ∈ A1 ⊗ A2 ; p(a) = 0} =⇒ p(a) ≥ ‖a‖C,min , a ∈ A1 ⊗ A2 .

We recall that the algebraic tensor product A1 ⊗C A2 is the quotient ∗-algebra

(A1 ⊗ A2)
/
IC , where IC is the self-adjoint two-sided ideal of A1 ⊗ A2 equal to the

linear span

lin
({ (

ι1(c) a1

)
⊗ a2 − a1 ⊗

(
ι2(c) a2

)
; a1 ∈ A1 , a2 ∈ A2 , c ∈ C

})
.

Since IC is clearly contained in

JC = { a ∈ A1 ⊗ A2 ; ‖a‖C,min = 0 } = { a ∈ A1 ⊗ A2 ; ‖a‖C,max = 0 } ,
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the seminorms ‖ · ‖C,min and ‖ · ‖C,max factorize to C∗-seminorms on A1 ⊗C A2 , still

denoted by ‖ · ‖C,min and ‖ · ‖C,max . These C∗-seminorms are not always C∗-norms,

because in general IC 6= JC (see [8], Section 3).

Nevertheless, according to [8], Propositions 2.2 and 3.1, we have:

Proposition 3.7. Let C be a unital abelian C∗-algebra and let (A1 , ι1) , (A2 , ι2) be

C∗-algebras over C . Then any C∗-seminorm on A1 ⊗ A2 , which vanishes on IC ,

will vanish on whole JC . Moreover, if (A1 , ι1) or (A2 , ι2) is continuous, then even

IC = JC holds.

We remark that T. Giordano and J. A. Mingo studied the case when A1 , A2 and

C are von Neumann algebras and the mappings c 7→ ι1(c) and c 7→ ι2(c) are normal

(see [11], Section 3). They showed that in this case, for given spatial representations

A1 ⊂ B(H) and A2 ⊂ B(K), one gets a faithful representation of A1 ⊗C A2 on the

Hilbert space H⊗C K constructed by J.-L. Sauvageot [25], such that ‖x‖C,min is the

operator norm on H⊗C K for all x ∈ A1⊗C A2 . In particular, ‖ · ‖C,min is a norm on

A1 ⊗C A2 , that is IC = JC . None the less, since in this case (A1 , ι1) and (A2 , ι2)

are continuous (see [3], Lemma 10), the above equality follows also from Proposition

3.7.

A proper C∗-algebra over C is a C∗-algebra (A , ι) over C such that, for some

faithful unital ∗-representation π : M(A) −→ B(H) , (π ◦ ι)(C) is weak operator

closed, i.e. (π ◦ ι)(C) ⊂ B(H) is a von Neumann algebra. B. Magajna extended the

above quoted result of Giordano and Mingo to the case when (A1 , ι1) and (A2 , ι2) are

proper C∗-algebras over C (see [10], Section 3). We notice that proper C∗-algebras

over C are still continuous.



CHAPTER IV

TENSOR PRODUCTS OF ∗-REPRESENTATIONS OVER

ABELIAN C∗-ALGEBRAS

In this chapter we prove that if C is a unital abelian C∗-algebra, (A1 , ι1) and

(A2 , ι2) are C∗-algebras over C and πj : Aj → B(H) , j = 1 , 2 , are non-degenerate

∗-representations such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for some type I von Neumann algebra N ⊂ B(H) with centre
(
M(πj) ◦ ιj

)
(C)′′, then

the ∗-homomorphism π : A1 ⊗ A2 → B(H) defined by

π(a1 ⊗ a2) = π1(a1)π2(a2) , a1 ∈ A1 , a2 ∈ A2 .

can be factored through A1⊗C,minA2 and so gives rise to a ∗-representation A1⊗C,min

A2 → B(H) , the C∗-tensor product over C of π1 and π2 .

Lemma 4.1. Let N ⊂ B(H) be a type I von Neumann algebra of centre Z , Z ⊂

M1 ⊂ N , Z ⊂ M2 ⊂ N ′ von Neumann subalgebras, B1 ⊂ M1 , B2 ⊂ M2 s-dense

∗-subalgebras, and e , f abelian projections in N , N ′ , respectively. Let further p ∈

M ′
1 ∩N and q ∈M ′

2 ∩N ′ be the projections such that

M1e
s
= pNe , e ≤ p , zN(e) = zN(p) ,

M2f
s
= qN ′f , f ≤ q , zN ′(f) = zN ′(q)

(such p , q exist and are unique by Lemma 2.5). Then
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(i) ef is an abelian projection of central support pq in pq(N ∨N ′)pq ;

(ii) (M1 ∨M2)ef
s
= pq(N ∨N ′)ef ;

(iii) for every x ∈ N ∨N ′ , we have

‖xpq‖ = sup
{
‖xy‖ ; y ∈ lin(B1B2) efZ

+
1 , ‖y‖ ≤ 1

}
.

Proof. (i) By Lemma 2.4, ef is an abelian projection in N ∨N ′ . Since ef ≤ pq , it is

an abelian projection also in pq(N ∨N ′)pq .

On the other hand, since the centre of the reduced algebra pq(N∨N ′)pq is equal to

pqZ(N ∨N ′) = pqZ , the central support zpq(N∨N ′)pq(ef) is of the form pqzo for some

projection zo ∈ Z . Now, taking into account Lemma 2.4, we deduce successively

ef ≤ zpq(N∨N ′)pq(ef) = pqzo ≤ zo ,

pq ≤ zN(p) zN ′(q) = zN(e) zN ′(f) = zN∨N ′(ef) ≤ zo ,

pq = pqzo = zpq(N∨N ′)pq(ef) .

(ii) Since

x1x2ef = x1ex2f = px1eqx2f = pqx1x2ef , x1 ∈M1 , x2 ∈M2 ,

we have (M1 ∨M2)ef
s
⊂ pq(N ∨N ′)ef .

To prove the reverse inclusion, let y ∈ N , y′ ∈ N ′ be arbitrary. Then pye ∈M1e
s

and qy′f ∈M2f
s
, so by Lemma 2.6 there exist nets {aλe}λ ⊂M1e and {bµf}µ ⊂M2f

such that

aλe
s−→ pye and ‖aλe‖ ≤ ‖pye‖ for every λ ,

bµf
s−→ qy′f and ‖bµf‖ ≤ ‖qy′f‖ for every µ .

It follows that aλbµef
s−−→
λ, µ

pqyy′ef , hence pqyy′ef ∈ (M1 ∨M2)ef
s
.

(iii) Let x ∈ N ∨N ′ be arbitrary.
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According to (i), ef is an abelian projection of central support pq in the type I

von Neumann algebra pq(N ∨N ′)pq . Thus Lemma 2.3 and (ii) yield

‖xpq‖2 = ‖pqx∗xpq‖

= sup
{
‖pqx∗xv‖ ; v ∈ pq(N ∨N ′)pq partial isometry , v∗v ≤ ef

}
≤ ‖xpq‖ sup

{
‖xv‖ ; v ∈ pq(N ∨N ′)pq partial isometry , v∗v ≤ ef

}
,

so

‖xpq‖ = sup
{
‖xv‖ ; v ∈ pq(N ∨N ′)pq partial isometry , v∗v ≤ ef

}
= sup

{
‖xv‖ ; v ∈ pq(N ∨N ′)pq partial isometry

}
= sup

{
‖xy‖ ; y ∈ pq(N ∨N ′)ef , ‖y‖ ≤ 1

}
= sup

{
‖xy‖ ; y ∈ (M1 ∨M2)ef

s
, ‖y‖ ≤ 1

}
.

Since lin(B1B2) is a ∗-subalgebra of N ∨N ′ and

lin(B1B2)ef
s
= lin(M1M2)ef

s
= (M1 ∨M2)ef

s
,

Lemma 2.6 entails that

{y ∈ (M1 ∨M2)ef
s
, ‖y‖ ≤ 1} = {y ∈ lin(B1B2) efZ

+
1 , ‖y‖ ≤ 1}

s
.

Consequently

‖xpq‖ = sup
{
‖xy‖ ; y ∈ (M1 ∨M2)ef

s
, ‖y‖ ≤ 1

}
= sup

{
‖xy‖ ; y ∈ lin(B1B2) efZ

+
1 , ‖y‖ ≤ 1

}
.

Lemma 4.2. Let C be a unital abelian C∗-algebra with Gelfand spectrum Ω and let

(A1 , ι1) , (A2 , ι2) be C∗-algebras over C . Let further πj : Aj → B(H) , j = 1, 2, be

non-degenerate ∗-representations, such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′
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for a type I von Neumann algebra N ⊂ B(H) with centre Z =
(
M(πj) ◦ ιj

)
(C)′′, Ω̃

the Gelfand spectrum of Z , and π : A1 ⊗ A2 → B(H) the ∗-homomorphism defined

by

π(a1 ⊗ a2) = π1(a1)π2(a2) , a1 ∈ A1 , a2 ∈ A2 .

If p ∈ π1(A1)
′ ∩N , q ∈ π2(A2)

′ ∩N ′ are projections such that

pNe = π1(A1)e
s
, qN ′f = π2(A2)f

s

for some abelian projections e ∈ N and f ∈ N ′ satisfying

e ≤ p , zN(e) = zN(p) , f ≤ q , zN ′(f) = zN ′(q) ,

then, denoting zo = zN∨N ′(ef) = zN(e) zN ′(f) , we have for all a ∈ A1 ⊗ A2 :

‖π(a)pq‖ =

= sup

χ(z)(χ ◦ Φef ◦ π)(b∗a∗ab)1/2 ;
b ∈ A1 ⊗ A2 , z ∈ Z+

1 , χ ∈ Ω̃

‖π(b)efz‖ ≤ 1

 (4.1)

= sup

{
χ(z)

(
(χ ◦ Φezo ◦ π1)⊗ (χ ◦ Φfzo ◦ π2)

)
(b∗a∗ab)1/2 ;

b ∈ A1 ⊗ A2 , z ∈ Z+
1 , χ ∈ Ω̃

‖π(b)efz‖ ≤ 1

}
(4.2)

≤ sup
t∈Ω

‖(πι1,t ⊗ πι2,t)(a)‖min . (4.3)

Proof. We notice that the equality zN∨N ′(ef) = zN(e) zN ′(f) in the definition of zo

holds by Lemma 2.4.

Set

Mj = πj(Aj)
′′ = πj(Aj) s , j = 1 , 2 .

Applying Lemma 4.1(iii) with Bj = πj(Aj) , j = 1, 2, we obtain for every x ∈ N ∨N ′ :
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‖xpq‖ = sup
{
‖xy‖ ; y ∈ lin

(
π1(A1)π2(A2)

)
efZ+

1 , ‖y‖ ≤ 1
}

= sup
{
‖xy‖ ; y ∈ π(A1 ⊗ A2) efZ

+
1 , ‖y‖ ≤ 1

}
= sup

{
‖xπ(b)efz‖ ; b ∈ A1 ⊗ A2 , z ∈ Z+

1 , ‖π(b)efz‖ ≤ 1
}
.

Let a ∈ A1 ⊗A2 be arbitrary. Using the above equality with x = π(a) , as well as

(2.3), we deduce (4.1) :

‖π(a)pq‖2 =

= sup
{
‖π(ab)efz‖2 ; b ∈ A1 ⊗ A2 , z ∈ Z+

1 , ‖π(b)efz‖ ≤ 1
}

= sup
{
‖efz2π(b∗a∗ab)ef‖ ; b ∈ A1 ⊗ A2 , z ∈ Z+

1 , ‖π(b)efz‖ ≤ 1
}

= sup
{
‖Φef

(
z2π(b∗a∗ab)

)
‖ ; b ∈ A1 ⊗ A2 , z ∈ Z+

1 , ‖π(b)efz‖ ≤ 1
}

= sup
{
‖z2(Φef ◦ π)(b∗a∗ab)‖ ; b ∈ A1 ⊗ A2 , z ∈ Z+

1 , ‖π(b)efz‖ ≤ 1
}

= sup

χ(z)2(χ ◦ Φef ◦ π)(b∗a∗ab) ;
b ∈ A1 ⊗ A2 , z ∈ Z+

1 , χ ∈ Ω̃

‖π(b)efz‖ ≤ 1

 .

By Lemma 2.4, we have for every χ ∈ Ω̃ and a1 ∈ A1 , a2 ∈ A2 :

(χ ◦ Φef ◦ π)(a1 ⊗ a2) = χ
(
Φefzo

(
π1(a1)π2(a2)

))
= χ

(
Φezo

(
π1(a1)

)
Φfzo

(
π2(a2)

))
=

(
χ ◦ Φezo ◦ π1

)
(a1)

(
χ ◦ Φfzo ◦ π2

)
(a2)

=
(
(χ ◦ Φezo ◦ π1)⊗ (χ ◦ Φfzo ◦ π2)

)
(a1 ⊗ a2) .

Therefore

χ ◦ Φef ◦ π = (χ ◦ Φezo ◦ π1)⊗ (χ ◦ Φfzo ◦ π2) , χ ∈ Ω̃ (4.4)

and (4.2) follows.

According to Corollary 3.3, for the proof of (4.3) we can assume without loss of

generality that both A1 and A2 are unital. (4.3) will follow once we show that, for
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every b ∈ A1 ⊗ A2 , z ∈ Z+
1 and χ ∈ Ω̃ with ‖π(b)efz‖ ≤ 1 ,

χ(z)2
(
(χ ◦ Φezo ◦ π1)⊗ (χ ◦ Φfzo ◦ π2)

)
(b∗a∗ab) ≤ sup

t∈Ω
‖(πι1,t ⊗ πι2,t)(a)‖ 2

min . (4.5)

If χ(zo) = 0 , then χ ◦Φezo ◦π1 = χ ◦Φfzo ◦π2 = 0 and (4.5) holds trivially. Therefore

we shall assume in the sequel that χ(zo) 6= 0 . Since χ(zo)χ(zo) = χ(z 2
o ) = χ(zo) ,

then χ(zo) = 1 .

Let us denote, for convenience,

ϕ1 = χ ◦ Φezo ◦ π1 , ϕ2 = χ ◦ Φfzo ◦ π2 .

ϕ1 and ϕ2 are positive linear functionals and ‖ϕj‖ = ϕj(1Aj
) = χ(zo) = 1 , so they

are states. Furthermore, since

(ϕj ◦ ιj)(c) = χ
(
zo(πj ◦ ιj)(c)

)
= χ(zo)χ

(
(πj ◦ ιj)(c)

)
= (χ ◦ πj ◦ ιj)(c) , c ∈ C ,

ϕ1 ◦ ι1 = χ◦πj ◦ ιj = ϕ2 ◦ ι2 is a multiplicative state on C , that is a character tχ ∈ Ω .

We claim that ϕ1 vanishes on Iι1(tχ) . Indeed, for every c ∈ C, c(tχ) = 0 , and

a1 ∈ A1 ,

ϕ1

(
ι1(c) a1

)
= χ

(
(π1 ◦ ι1)(c) Φezo

(
π1(a1)

))
= c(tχ)ϕ1(a1) = 0 .

Consequently there exists a state ψ1 on A1/Iι1(tχ) such that ϕ1 = ψ1◦πι1,tχ . Similarly,

ϕ2 vanishes on Iι2(tχ) and so ϕ2 = ψ2 ◦ πι2,tχ for some state ψ2 on A2/Iι2(tχ) . Then

ϕ1⊗ϕ2 factors by the tensor product state ψ1⊗minψ2 on
(
A1/Iι1(tχ)

)
⊗min

(
A2/Iι2(tχ)

)
:

ϕ1 ⊗ ϕ2 = (ψ1 ⊗min ψ2) ◦ (πι1,tχ ⊗ πι2,tχ) . (4.6)

Now, the norm of the positive linear functional

θ = χ(z)2
(
ψ1 ⊗min ψ2

)(
(πι1,tχ ⊗ πι2,tχ)(b)∗ · (πι1,tχ ⊗ πι2,tχ)(b)

)
on

(
A1/Iι1(tχ)

)
⊗min

(
A2/Iι2(tχ)

)
is ≤ 1 . Indeed, since ‖θ‖ is equal to the value of θ

in the unit of
(
A1/Iι1(tχ)

)
⊗min

(
A2/Iι2(tχ)

)
, by (4.6) and (4.4) we obtain
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‖θ‖ = χ(z)2
(
ψ1 ⊗min ψ2

)(
(πι1,tχ ⊗ πι2,tχ)(b∗b)

)
= χ(z)2 (ϕ1 ⊗ ϕ2)(b

∗b) = χ(z)2 (χ ◦ Φef ◦ π)(b∗b)

= χ
(
Φef

(
z2π(b∗b)

))
= χ

(
Φef

(
zefπ(b)∗π(b)efz

))
≤ ‖π(b)efz‖2 ≤ 1 .

Thus, by (4.6),

χ(z)2
(
(χ ◦ Φezo ◦ π1)⊗ (χ ◦ Φfzo ◦ π2)

)
(b∗a∗ab) =

= χ(z)2(ϕ1 ⊗ ϕ2)(b
∗a∗ab)

= χ(z)2
(
(ψ1 ⊗min ψ2) ◦ (πι1,tχ ⊗ πι2,tχ)

)
(b∗a∗ab)

= θ
(
(πι1,tχ ⊗ πι2,tχ)(a∗a)

)
≤ ‖(πι1,tχ ⊗ πι2,tχ)(a∗a)‖min = ‖(πι1,tχ ⊗ πι2,tχ)(a)‖ 2

min

and (4.5) follows.

Lemma 4.3. Let N 6= {0} be a type I von Neumann algebra with centre Z , and

Z ⊂ M ⊂ N a von Neumann subalgebra. Then there exists a set P of mutually

orthogonal non-zero projections in M ′∩N such that
∑
p∈P

p = 1N and, for every p ∈ P ,

pNe = Me
s

for some abelian projection e ∈ N satisfying e ≤ p , zN(e) = zN(p) .

Proof. Let P be a maximal set of mutually orthogonal non-zero projections in M ′∩N

such that, for every p ∈ P ,

pNep = Mep
s

for some abelian projection ep ∈ N satisfying ep ≤ p , zN(ep) = zN(p) . Such family

P exists by Lemma 2.5 and by Zorn Lemma. We will show that
∑
p∈P

p = 1N .
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Suppose the contrary, that is 1N −
∑
p∈P

p 6= 0 . By Lemma 2.2 there exists an

abelian projection e ∈ N such that

e ≤ 1N −
∑
p∈P

p , zN(e) = zN

(
1N −

∑
p∈P

p
)
.

In particular, e 6= 0 . Further, by Lemma 2.5

Me
s
= poNe for some projection po ∈M ′ ∩N with e ≤ po .

Let y ∈ N be arbitrary. Since poye ∈ poNe = Me
s
, there is a net {xλ}λ in M

such that xλe
s−→ poye . Since P ⊂M ′ ∩N , it follows that

xλe = xλ

(
1N −

∑
p∈P

p
)
e =

(
1N −

∑
p∈P

p
)
xλe

s−→
(
1N −

∑
p∈P

p
)
poye .

Consequently poye =
(
1N −

∑
p∈P

p
)
poye , i.e.

∑
p∈P

p poye = 0 .

We conclude that
∑
p∈P

p poNe = {0} and so, since zN(e) is the orthogonal projection

onto the closed linear span of NeH ,
∑
p∈P

p po zN(e) = 0 . Thus

M ′ ∩N 3 po zN(e) =
(
1N −

∑
p∈P

p
)
po zN(e) ≤ 1N −

∑
p∈P

p .

Furthermore, zN(e) ≥ po zN(e)po ≥ poepo = e 6= 0 implies that po zN(e) 6= 0 and

zN
(
po zN(e)

)
= zN(e) .

Thus po zN(e) is a non-zero projection in M ′ ∩N such that po zN(e)Ne = poNe =

Me
s
with e an abelian projection inN satisfying e ≤ po zN(e) and zN(e) = zN

(
po zN(e)

)
.

But, since po zN(e) ≤ 1N −
∑
p∈P

p , this contradicts the maximality of P .

Theorem 4.4. Let C be a unital abelian C∗-algebra with Gelfand spectrum Ω and

let (A1 , ι1) , (A2 , ι2) be C∗-algebras over C . Let further πj : Aj → B(H) , j = 1, 2,

be non-degenerate ∗-representations, such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for a type I von Neumann algebra N ⊂ B(H) with centre Z =
(
M(πj) ◦ ιj

)
(C)′′, and

π : A1 ⊗ A2 → B(H) the ∗-homomorphism defined by
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π(a1 ⊗ a2) = π1(a1)π2(a2) , a1 ∈ A1 , a2 ∈ A2 .

Then

‖π(a)‖ ≤ sup
t∈Ω

‖(πι1,t ⊗ πι2,t)(a)‖min = ‖a‖C,min , a ∈ A1 ⊗ A2 (4.7)

and thus there is a unique ∗-representation π̃ : A1 ⊗C,min A2 → B(H) such that

π(a) = π̃
(
a
/
JC

)
, a ∈ A1 ⊗ A2 ,

where a
/
JC denotes the natural image of a ∈ A1 ⊗ A2 in the quotient ∗-algebra

(A1 ⊗ A2)
/
JC ⊂ A1 ⊗C,min A2 .

Proof. If H = {0} , then (4.7) holds trivially. It remains to prove it in the case

H 6= {0} .

By Lemma 4.3 there exists a set P ⊂ π1(A1)
′∩N of mutually orthogonal non-zero

projections such that
∑
p∈P

p = 1H and, for every p ∈ P ,

pNep = π1(A1)′′ep
s

for some abelian projection ep ∈ N satisfying ep ≤ p , zN(ep) = zN(p) .

Similarly, there exists a set Q ⊂ π2(A2)
′ ∩ N ′ of mutually orthogonal non-zero

projections such that
∑
q∈Q

q = 1H and, for every q ∈ Q ,

qN ′fq = π2(A2)′′fq
s

for some abelian projection fq ∈ N ′ satisfying fq ≤ q , zN ′(fq) = zN ′(q) .

Let a ∈ A1 ⊗ A2 be arbitrary. By Lemma 4.2 we have

‖π(a)pq‖ ≤ ‖a‖C,min for every p ∈ P , q ∈ Q .

Since
∑
p∈P

p =
∑
q∈Q

q = 1H and P ∪ Q ⊂ π1(A1)
′ ∩ π2(A2)

′ ⊂ π(A1 ⊗ A2)
′ , we have

π(a∗a) =
∑
p,q

π(a∗a)pq , where the operators π(a∗a)pq are positive and mutually or-

thogonal. Consequently:
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‖π(a)‖2 = ‖π(a∗a)‖ = sup
p,q
‖π(a∗a)pq‖ = sup

p,q
‖π(a)pq‖2 ≤ ‖a‖ 2

C,min .

We will denote π̃ in Theorem 4.4 by π1 ⊗C,min π2 and call it the tensor product of

π1 and π2 over C . We notice that the ∗-representation π1 ⊗C,min π2 maps A1 ⊗C,min

A2 onto the C∗-subalgebra lin
(
π1(A1)π2(A2)

)
⊂ B(H) and it is non-degenerate.

Indeed, if
{
uλ

}
λ

is an increasing approximate unit for A1 and
{
vµ

}
µ

is an increasing

approximate unit for A2 , then we have

π1(uλ)
so−→ 1H and π2(vµ)

so−→ 1H

(see e.g. [24], Lemma 3/4.1), so

(π1 ⊗C,min π2)
(
(uλ ⊗ vµ)

/
JC

)
= π1(uλ)π2(vµ)

so−→ 1H .

Therefore M
(

lin
(
π1(A1)π2(A2)

) )
can be identified with{

T ∈ B(H) ; π1(A1)π2(A2)T ∪ Tπ1(A1)π2(A2) ⊂ lin
(
π1(A1)π2(A2)

) }
.

With this identification,

π1(A1) ∪ π2(A2) ⊂M
(

lin
(
π1(A1)π2(A2)

) )
and

π1(a1)π2(vµ)
strictly−−−−→ π1(a1) , a1 ∈ A1 ,

π1(uλ)π2(a2)
strictly−−−−→ π2(a2) , a2 ∈ A2 .

(4.8)

Indeed, we have for every b1 ∈ A1 , b2 ∈ A2 :

‖
(
π1(a1)− π1(a1)π2(vµ)

)
π1(b1)π2(b2)‖ = ‖π1(a1b1)π2(b2 − vµb2)‖ −→ 0 ,

‖π1(b1)π2(b2)
(
π1(a1)− π1(a1)π2(vµ)

)
‖ = ‖π1(b1a1)π2(b2 − b2vµ)‖ −→ 0 ,

‖
(
π2(a2)− π1(uλ)π2(a2)

)
π1(b1)π2(b2)‖ = ‖π1(b1 − uλb1)π2(a2b2)‖ −→ 0 ,

‖π1(b1)π2(b2)
(
π2(a2)− π1(uλ)π2(a2)

)
‖ = ‖π2(b2a2)π1(b1 − b1uλ)‖ −→ 0 .

We notice that it can happen that, for given non-zero C∗-algebras (A1 , ι1) ,

(A2 , ι2) over C , only the ∗-representations π1 : A1 → {0} and π2 : A2 → {0}

satisfy the assumptions in Theorem 4.4. Let, for example, (A1 , ι2) , (A2 , ι2) be the
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C∗-algebras over C([0, 1]) defined in [8] before Proposition 3.3, for which A1⊗C([0,1]),min

A2 = {0} . Then, if πj : Aj → B(H) , j = 1, 2 , are any non-degenerate ∗- representa-

tions satisfying the conditions in Theorem 4.4, then the ∗-representation π1⊗C,min π2

can be non-degenerate only if H = {0} . Nevertheless, this pathology is possible only

in the case of non-unital A1 and A2 (cf. Corollary 8.8).

Criteria for the faithfulness of π1 ⊗C,min π2 will be proved in Chapter 8.



CHAPTER V

ON TENSOR PRODUCTS OF HILBERT MODULES

We shall denote the support of a self-adjoint element a of a von Neumann algebra

M by sM(a) .

Let N ⊂ B(H) be a type I von Neumann algebra with center Z and e ∈ N , f ∈ N ′

be abelian projections of central support 1H .Then, by Lemma 2.4, the Z-valued inner

product

(N ∨N ′)ef × (N ∨N ′)ef 3 (w1, w2) 7−→ Φef (w
∗
2w1)

defines a Hilbert Z-module structure on (N ∨N ′)ef = Z ′ef , the mappings

Ne 3 x 7−→ xf ∈ (N ∨N ′)ef , N ′f 3 y 7−→ ye ∈ (N ∨N ′)ef

are isometric Hilbert module imbeddings of

Ne endowed with Ne×Ne 3 (x1, x2) 7→ Φe(x
∗
2x1) and

N ′f endowed with N ′f ×N ′f 3 (y1, y2) 7→ Φf (y
∗
2 y1)

in the above Hilbert module, which can be considered, up to the above imbeddings,

the W ∗-tensor product over Z of the Hilbert modules Ne and N ′f . The aim of this

chapter is to develop the elements of (N ∨N ′)ef in series of products of elements of

Ne and N ′f (elementary tensors).

Let us first consider the case when N is a factor, that is H = H1⊗H2 , N =

B(H1)⊗ 1H2 , N ′ = 1H1 ⊗B(H2) and N ∨N ′ = B(H1⊗H2) :

Proposition 5.1. For H1 ,H2 Hilbert spaces and 0 6= ζ ∈ H1⊗H2 , there are
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• ν ∈ {2, 3, . . .} ∪ {∞} ,

• orthonormal sequences {ξk}1≤k<ν ⊂ H1 and {ηk}1≤k<ν ⊂ H2 ,

• real numbers {λk}1≤k<ν with λ1 ≥ λ2 ≥ . . . > 0 and
∑

1≤k<ν
λk = ‖ζ‖2

such that

ζ =
∑

1≤k<ν

√
λk ξk ⊗ ηk .

Consequently,

(
(x⊗ 1H2)ζ|ζ

)
=

∑
1≤k<ν

λk(xξk|ξk) , x ∈ B(H1) .

Proof. For every θ ∈ H1⊗H2 , let Tθ : H1 → H2 be the anti-linear map defined by(
Tθ(ξ)

∣∣ η) =
(
θ
∣∣ ξ ⊗ η

)
, ξ ∈ H1 , η ∈ H2 .

Then Tθ is compact.

Indeed, if ξ ∈ H1 and η ∈ H2 , then Tξ⊗η = (ξ| · )η , hence Tξ⊗η has rank ≤ 1 .

Consequently, Tθ is of finite-dimensional rank for any θ in the algebraic tensor product

H1 ⊗H2 . Now, any θ ∈ H1⊗H2 is the limit of a sequence {θn}n≥1 ⊂ H1 ⊗H2 and,

since ‖Tθ − Tθn‖ = ‖Tθ−θn‖ ≤ ‖θ − θn‖ −→ 0 , Tθ is the operator norm limit of

anti-linear operators of finite-dimensional rank.

It follows that T ∗ζ Tζ : H1 → H1 is a non-zero positive compact linear operator. So

there exist

• ν ∈ {2, 3, . . .} ∪ {∞} ,

• orthonormal sequences {ξk}1≤k<ν ⊂ H1

• real numbers {λk}1≤k<ν with λ1 ≥ λ2 ≥ . . . > 0 , λk −→ 0 if ν = ∞ ,

such that
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T ∗ζ Tζ =
∑

1≤k<ν
λkpξk ,

where pξk is the orthogonal projection from H1 onto the subspace C ξk and the sum

is convergent in the operator norm (see e.g. [21], 2.8.26, 2.8.29).

For any 1 ≤ k, k′ < ν , we have(
Tζ(ξk)|Tζ(ξk′)

)
=

(
ξk′|T ∗ζ Tζ(ξk)

)
= λk(ξk′|ξk) .

In other words, the vectors Tζ(ξk) , 1 ≤ k < ν , are mutually orthogonal and ‖Tζ(ξk)‖2

= λk > 0 . Setting ηk = 1
‖Tζ(ξk)‖

Tζ(ξk) = 1√
λk
Tζ(ξk) , {ηk}1≤k<ν is an orthonormal

sequence in H2 .

For every 1 ≤ k < ν , Vξk : H2 3 η 7−→ ξk ⊗ η ∈ H1⊗H2 is a linear isometry such

that VξkV
∗
ξk

is the orthogonal projection Pξk from H1⊗H2 onto (C ξk)⊗H2 . Since(
V ∗ξk(ζ)

∣∣η) = (ζ|ξk ⊗ η) =
(
Tζ(ξk)

∣∣η) , η ∈ H2 ,

we have V ∗ξk(ζ) = Tζ(ξk) . In particular,

λk = ‖Tζ(ξk)‖2 = ‖V ∗ξk(ζ)‖
2 = ‖VξkV ∗ξk(ζ)‖

2 = ‖Pξk(ζ)‖2 .

Now, by the Bessel Inequality, we get
∑

1≤k<ν
λk =

∑
1≤k<ν

‖Pξk(ζ)‖2 ≤ ‖ζ‖2 , so we

can consider the vector ζo =
∑

1≤k<ν

√
λk ξk ⊗ ηk ∈ H1⊗H2 . Then

Tζo(ξk) =
∑

1≤k′<ν

√
λk′ Tξk′⊗ηk′

(ξk) =
√
λk ηk = Tζ(ξk) , 1 ≤ k < ν

and

‖Tζ(ξ)‖2 =
(
ξ
∣∣T ∗ζ Tζξ) =

(
ξ
∣∣∣ ∑
1≤k<ν

λk(ξ|ξk)ξk
)

= 0 ,

Tζo(ξ) =
∑

1≤k<ν

√
λk Tξk⊗ηk

(ξ) =
∑

1≤k<ν

√
λk (ξk|ξ)ηk = 0

for all ξ ∈ {ξk ; 1 ≤ k < ν}⊥ , so Tζ = Tζo . Consequently,

(ζ|ξ ⊗ η) =
(
Tζ(ξ)

∣∣η) =
(
Tζo(ξ)

∣∣η) = (ζo|ξ ⊗ η) , ξ ∈ H1 , η ∈ H2

and we conclude that ζ = ζo , in particular

‖ζ‖2 =
∑

1≤k<ν

∥∥√λk ξk ⊗ ηk
∥∥2

=
∑

1≤k<ν
λk .
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Finally, for any x ∈ B(H1) ,(
(x⊗ 1H2)ζ

∣∣ζ) =
∑

1≤k<ν

√
λk (xξk ⊗ ηk|ζ) =

∑
1≤k<ν

λk(xξk|ξk) .

For the treatment of the general case we follow the same idea as in the proof of

the above proposition, but replace the used Hilbert space theory with the Hilbert

module methods developed in [26], [27], [14]. In the next 3 lemmas N ⊂ B(H) will

be a type I von Neumann algebra with center Z , while e ∈ N , f ∈ N ′ will stand for

fixed abelian projections of central support 1H .

Lemma 5.2. For any w ∈ Z ′ef , there exist

(i) a unique Z-module antimorphism Tw : Ne −→ N ′f such that

Φef (x
∗y∗w) = Φf

(
y∗Tw(x)

)
, x ∈ Ne , y ∈ N ′f , (5.1)

(ii) a unique Z-module antimorphism T ∗
w : N ′f −→ Ne such that

Φf

(
y∗Tw(x)

)
= Φe

(
x∗T ∗

w (y)
)
, x ∈ Ne , y ∈ N ′f , (5.2)

(iii) a unique a(w) ∈ N such that

(
T ∗
wTw

)
(x) = a(w)x , x ∈ Ne . (5.3)

Moreover, a(w) ≥ 0 and ‖a(w)‖ = ‖T ∗
wTw‖ = ‖Tw‖2 = ‖T ∗

w‖2 ≤ ‖w‖2 .

Proof. For every x ∈ Ne , N ′f 3 y 7−→ Φef (x
∗y∗w) ∈ Z is a Z-module antimorphism

bounded by ‖w‖ ‖x‖ and thus, by [26], Theorem 5 or by [14], Lemma 1.11.(b), there

exists a unique Tw(x) ∈ N ′f such that the equality in (5.1) holds for all y ∈ N ′f .

Moreover, ‖Tw(x)‖ is equal to the norm of the above Z-module antimorphism, hence

‖Tw(x)‖ ≤ ‖w‖ ‖x‖ .

Therefore, Tw : Ne 3 x 7−→ Tw(x) ∈ N ′f is the mapping required in (i) and

‖Tw‖ ≤ ‖w‖ . Now, by [26], Theorem 6 or by [14], Lemma 1.12, 1.13.(3), there
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exists a unique Z-module antimorphism T ∗
w : N ′f → Ne satisfying (5.2) (the Hilbert

module adjoint of Tw) and it has the same norm as Tw .

Finally, T ∗
wTw : Ne −→ Ne is a Z-module morphism of norm ‖Tw‖2 , so by

Lemma 2.1 there exists a unique a(w) ∈ N such that (5.3) holds and it clearly

satisfies a(w) ≥ 0 , ‖a(w)‖ = ‖T ∗
wTw‖ = ‖Tw‖2 .

Lemma 5.3. For any w ∈ Z ′ef and mutually orthogonal abelian projections e1 , ... , en

∈ N , if a(w) is the element of N defined in Lemma 5.2, then

∑
1≤k≤n

Φek

(
a(w)

)
≤ Φef (w

∗w) . (5.4)

Proof. Let 1 ≤ k ≤ n be arbitrary.

Since zN(e) = 1H ≥ zN(ek) , we have ek ≺ e , that is uk u
∗
k = ek , u ∗kuk ≤ e for

some partial isometry uk ∈ N . Then uk ∈ Ne so ukN
′f is a Z-submodule of Z ′ef .

We prove that this submodule is s-closed.

Indeed, if z′ ∈ Z ′ef belongs to the s-closure of ukN
′f , then by [14], Lemma

1.2 there is a net {yλ}λ ⊂ N ′f with ukyλ
s−→ z′ and ‖ukyλ‖ ≤ ‖z′‖ for all λ .

Since ‖ukyλ‖ = ‖uku ∗kukyλ‖ = ‖uku ∗k yλuk‖ ≤ ‖ekyλ‖ = ‖ukyλu ∗k‖ ≤ ‖ukyλ‖ , we

have ‖ekyλ‖ = ‖ukyλ‖ ≤ ‖z′‖ for all λ . Using the fact that the induction map

N ′ zN(ek) −→
(
N ′ zN(ek)

)
ek = N ′ek is a ∗-isomorphism, it follows that ‖ zN(ek)yλ‖ =

‖ekyλ‖ ≤ ‖z′‖ for all λ and therefore a subnet of {zN(ek)yλ}λ is w-convergent to some

y ∈ N ′f . But then a subnet of {uk zN(ek)yλ}λ is w-convergent to uky and, since

uk zN(ek)yλ = zN(ek)uku
∗
kukyλ = ekukyλ = ukyλ , it follows that z′ = uky ∈ ukN ′f .

Applying now [26], Theorem 3 or [14], 1.5, 1.6, there is a unique Z-module mor-

phism PukN ′f : Z ′ef −→ ukN
′f ⊂ Z ′ef acting identically on ukN

′f and vanishing in

any z′ ∈ Z ′ef with (z′)∗ukN
′f = {0} .

Let us consider the bounded Z-module map Uk : N ′f 3 y 7−→ uky ∈ Z ′ef . Using



39

Lemma 2.4 we deduce for every y1, y2 ∈ N ′f :

Φef

(
Uk(y1)

∗Uk(y2)
)

= Φef

(
u∗kuky

∗
1 y2

)
= Φe

(
zN(u∗kuk)e

)
Φf (y

∗
1 y2)

= zN(ek) Φf (y
∗
1 y2) .

(5.5)

Let U ∗
k : Z ′ef −→ N ′f be the Z-module map defined by

Φef

(
(z′)∗Uk(y)

)
= Φf

(
U ∗
k (z′)∗y

)
, z′ ∈ Z ′ef , y ∈ N ′f , (5.6)

whose existence is guaranted by [26], Theorem 6 or by [14], Lemma 1.12, 1.13.(2).

Then Uk U
∗
k = PukN ′f . Indeed, since

Φf

(
U ∗
k (uky1)

∗y2

) (5.6)
= Φef

(
(uky1)

∗Uk(y2)
)

(5.5)
= zN(ek) Φf (y

∗
1 y2) = Φf

(
(zN(ek) y1)

∗y2

)
, y1, y2 ∈ N ′f ,

we get for every y ∈ N ′f first U ∗
k (uky) = zN(ek) y , and then

(Uk U
∗
k )(uky) = uk zN(ek) y = zN(ek)uku

∗
kuk y = uk y .

On the other hand, if z′ ∈ Z ′ef satisfies (z′)∗ukN
′f = {0} , then (5.6) implies that

Φf

(
U ∗
k (z′)∗y

)
= 0 for all y ∈ N ′f and so U ∗

k (z′) = 0 , (Uk U
∗
k )(z′) = 0 .

We notice also that, since

Φf

(
y∗U ∗

k (w)
) (5.6)

= Φef

(
Uk(y)

∗w
)

= Φef (u
∗
k y

∗w)
(5.1)
= Φf

(
y∗Tw(uk)

)
, y ∈ N ′f ,

we have

Tw(uk) = U ∗
k (w) . (5.7)

Now we recall that Φek

(
a(w)

)
∈ Z zN(ek) and Φek

(
a(w)

)
ek = eka(w)ek , so we

have

Φek

(
a(w)

)
u ∗kuk = u ∗kΦek

(
a(w)

)
ekuk = u ∗k eka(w)ekuk = u ∗ka(w)uk ,

Φek

(
a(w)

)
u ∗kuk = Φek

(
a(w)

)
zN(u ∗kuk)e = Φek

(
a(w)

)
zN(ek)e = Φek

(
a(w)

)
e .
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Consequently, Φek

(
a(w)

)
e = u ∗ka(w)uk and we obtain

Φek

(
a(w)

)
= Φe

(
Φek

(
a(w)

)
e
)

= Φe

(
u ∗ka(w)uk

)
(5.3)
= Φe

(
u ∗k (T ∗

wTw)(uk)
) (5.2)

= Φf

(
Tw(uk)

∗Tw(uk)
)

(5.7)
= Φf

(
U ∗
k (w)∗U ∗

k (w)
) (5.6)

= Φef

(
w∗ (UkU

∗
k )(w)

)
= Φef

(
w∗PukN ′f (w)

)
Now it is easy to see that X =

∑
1≤k≤n

ukN
′f is an s-closed submodule of Z ′ef and

the Z-orthogonal projection PX : Z ′ef −→ X ⊂ Z ′ef (see [26], Theorem 3 or [14],

1.5, 1.6) is equal to
∑

1≤k≤n
PukN ′f . Therefore∑

1≤k≤n
Φek

(
a(w)

)
=

∑
1≤k≤n

Φef

(
w∗PukN ′f (w)

)
= Φef

(
w∗PX (w)

)
= Φef

(
|PX (w)|2

)
≤ Φef

(
|PX (w)|2 + |w − PX (w)|2

)
= Φef (w

∗w) .

The next lemma is an immediate consequence of Lemma 5.3 and [27]:

Lemma 5.4. For any 0 6= w ∈ Z ′ef, if a(w) is defined as in Lemma 5.2, then there

exist

• ν ∈ {2, 3, . . .} ∪ {∞} ,

• a sequence {ek}1≤k<ν of mutually orthogonal abelian projections in N ,

• {zk}1≤k<ν ⊂ Z+, z1 ≥ z2 ≥ . . . , ‖zk‖ −→ 0 if ν = ∞ , s–
∑

1≤k<ν

zk ≤ Φef (w
∗w)

such that

zN(ek) = sZ(zk) 6= 0 for all 1 ≤ k < ν ,

a(w) =
∑

1≤k<ν

zk ek , (5.8)

where the series converges in the operator norm.



41

Proof. By Lemma 5.3 and by the second half of the proof of [27], Proposition 4.2,

a(w) belongs to the norm-closed two-sided ideal of N , generated by the abelian

projections. Therefore the spectral theorem [27], Theorems 2.2 and 2.3 (cf. [19],

Theorem 6.14) can be applied to a(w) and it follows the existence of ν , {ek}1≤k<ν

and {zk}1≤k<ν satisfying all the required conditions except s –
∑

1≤k<ν
zk ≤ Φef (w

∗w) .

But, since Φek

(
a(w)

)
= zk , Lemma 5.3 yields that∑

1≤k≤n
zk =

∑
1≤k≤n

Φek

(
a(w)

)
≤ Φef (w

∗w) for all 1 ≤ n < ν .

We notice that, according to [27], Theorem 2.3, ν and {zk}1≤k<ν are uniquely

determined by w . Also, (5.8) implies that

sN
(
a(w)

)
= s–

∑
1≤k<ν

ek . (5.9)

Now we prove the module version of Proposition 5.1:

Theorem 5.5. Let N ⊂ B(H) be a type I von Neumann algebra with centre Z ,

e ∈ N , f ∈ N ′ abelian projections of central support 1H , and 0 6= w ∈ Z ′ef . Then

there are

• ν ∈ {2, 3, . . .} ∪ {∞} ,

• partial isometries {uk}1≤k<ν ⊂ N with u ∗kuk ≤ e , 1 ≤ k < ν , and mutually

orthogonal uku
∗
k , 1 ≤ k < ν ,

• partial isometries {vk}1≤k<ν ⊂ N ′ with v ∗k vk ≤ f , 1 ≤ k < ν , and mutually

orthogonal vkv
∗
k , 1 ≤ k < ν ,

• {zk}1≤k<ν ⊂ Z+, z1 ≥ z2 ≥ . . . , ‖zk‖ −→ 0 if ν = ∞ and s –
∑

1≤k<ν

zk =

Φef (w
∗w)

such that
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zN(uku
∗
k ) = zN ′(vkv

∗
k ) = sZ(zk) 6= 0 for all 1 ≤ k < ν ,

w = s–
∑

1≤k<ν

z
1/2
k ukvk , (5.10)

Consequently,

w∗xw = s–
∑

1≤k<ν

zk u
∗
kx uk f , x ∈ N . (5.11)

Proof. Let Tw and a(w) be as defined in Lemma 5.2, and ν , {ek}1≤k<ν and {zk}1≤k<ν

as in Lemma 5.4. Choose for every 1 ≤ k < ν a partial isometry uk ∈ N such that

u ∗kuk ≤ e and uku
∗
k = ek . We notice that

u ∗kuk = zN(u ∗kuk) e = zN(ek) e , so Φe(u
∗
kuk) = zN(ek) = sZ(zk) . (5.12)

Clearly, a(w)1/2Ne ⊂ Ne is a Z-submodule with s-closure

sN
(
a(w)

)
Ne

(5.9)
=

(
s–

∑
1≤k<ν

ek
)
Ne .

For every x1 , x2 ∈ Ne we have

Φf

(
Tw(x1)

∗Tw(x2)
) (5.2)

= Φe

(
x∗2 T

∗
w

(
Tw(x1)

)) (5.3)
= Φe

((
a(w)1/2x2

)∗
a(w)1/2x1

)
,

so a(w)1/2Ne 3 a(w)1/2x 7−→ Tw(x) ∈ N ′f is a well defined Z-isometric Z-module

antimorphism. Furthermore, by [14], Lemma 1.3 it can be extended to an s-continuous

Z-module antimorphism Vw :
(
s –

∑
1≤k<ν

ek
)
Ne −→ N ′f , which is still Z-isometric.

Since uk ∈ ekNe , we can consider the elements

vk = Vw(uk) ∈ N ′f , 1 ≤ k < ν

and we have

Φf (v
∗
k1
vk2) = Φe(u

∗
k2
uk1) =

 Φe(u
∗
k1
uk1) for k1 = k2

0 for k1 6= k2

. (5.13)

In particular,

Φf (v
∗
k vk) = Φe(u

∗
kuk)

(5.12)
= sZ(zk) . (5.14)
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Since v ∗k vk ∈ fN ′f , we have ‖v ∗k vk‖
(2.3)
= ‖Φf (v

∗
k vk)‖

(5.14)
= ‖ sZ(zk)‖ = 1 and so

v ∗k vk ≤ f . On the other hand, zN(u ∗kuk) = zN(ek) = sZ(zk) yields

vk sZ(zk) = Vw
(
uk sZ(zk)

)
= Vw(uk) = vk ,

so v ∗k vk = v ∗k vk sZ(zk) ≤ ‖v ∗k vk‖ sZ(zk) = sZ(zk) .

Consequently v ∗k vk ≤ sZ(zk)f , that is sZ(zk)f − v ∗k vk ≥ 0 . But

Φf

(
sZ(zk)f − v ∗k vk

)
= sZ(zk)− Φf (v

∗
k vk)

(5.14)
= 0 ,

so v ∗k vk = sZ(zk)f . In particular, vk is a partial isometry with v ∗k vk ≤ f and

zN ′(vkv
∗
k ) = zN ′(v ∗k vk) = sZ(zk) .

The projections v ∗k vk , 1 ≤ k < ν , are mutually orthogonal: if k1 6= k2 then (5.13)

implies Φf (v
∗
k1
vk2) = 0 , so v ∗k1vk2 = fv ∗k1vk2f

(2.2)
= Φf (v

∗
k1
vk2)f = 0 .

Since the series
∑

1≤k<ν
zk is w-convergent and, for any 1 ≤ n < m < ν ,∣∣ ∑

1≤k≤m
z

1/2
k ukvk −

∑
1≤k≤n

z
1/2
k ukvk

∣∣2 =
∑

n<k1, k2≤m
z

1/2
k1
z

1/2
k2

u ∗k1uk2 v
∗
k1
vk2

=
∑

n<k≤m
zk u

∗
kukv

∗
k vk

≤
∑

1≤k≤m
zk −

∑
1≤k≤n

zk ,{ ∑
1≤k≤n

z
1/2
k ukvk

}
1≤n<ν is a Cauchy sequence with respect to the s-topology.

Taking into account that
∣∣ ∑

1≤k≤n
z

1/2
k ukvk

∣∣2 ≤ ∑
1≤k≤n

zk ≤ Φef (w
∗w) and the closed

balls of Z ′ are s-complete, it follows that wo = s–
∑

1≤k<ν
z

1/2
k ukvk ∈ Z ′ef exists.

Next we show that Two = Tw . Since Two and Tw are by (5.1) s-continuous,

according to [26], Theorem 3 or [14], 1.5, 1.6 it is enough to prove that

Two(uk) = Tw(uk) for all 1 ≤ k < ν

and Two(x) = 0 = Tw(x) for all x ∈ Ne with x∗uk = 0 , 1 ≤ k < ν .

Let 1 ≤ k < ν be arbitrary. For every y ∈ N ′f we have

Φf

(
y∗Two(uk)

) (5.1)
= Φef (u

∗
k y

∗wo) = z
1/2
k Φef (u

∗
kuky

∗vk)
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Lemma2.4
= z

1/2
k Φe(u

∗
kuk)Φf (y

∗vk)
(5.12)
= Φf (y

∗z
1/2
k vk) .

Thus Two(uk) = z
1/2
k vk = Vw(z

1/2
k uk)

(5.8)
= Vw

(
a(w)1/2 uk

)
and the definition of Vw

yields Two(uk) = Tw(uk) .

On the other hand, let x ∈ Ne be such that x∗uk = 0 , 1 ≤ k < ν . Since

Φf

(
y∗Two(x)

) (5.1)
= Φef (x

∗y∗wo) = s–
∑

1≤k<ν
z

1/2
k Φef (x

∗uk y
∗vk) = 0 , y ∈ N ′f,

we have Two(x) = 0 . But ekx = uku
∗
kx = 0 , 1 ≤ k < ν , implies a(w)1/2 x = 0 and

by the definition of Vw we get also Tw(x) = Vw
(
a(w)1/2 x

)
= 0 .

Using Two = Tw , we obtain for all x ∈ Ne , y ∈ N ′f :

Φef (x
∗y∗wo)

(5.1)
= Φf

(
y∗Two(x)

)
= Φf

(
y∗Tw(x)

) (5.1)
= Φef (x

∗y∗w) .

Therefore wo = w , so that (5.10) holds.

Since u ∗kuk = sZ(zk)e and v ∗k vk = sZ(zk)f , by (5.10) we get successively∑
1≤k≤n

zkef =
∑

1≤k≤n
zku

∗
kukv

∗
k vk =

∣∣ ∑
1≤k≤n

z
1/2
k ukvk

∣∣2 w−→ w∗w ,∑
1≤k≤n

zk = Φef

( ∑
1≤k≤n

zkef
) w−→ Φef (w

∗w) ,

s–
∑

1≤k<ν
zk = Φef (w

∗w) .

Finally, let x ∈ N be arbitrary. Since the s-topology and the s∗-topology coincide

on Z ′ef (see [14], 1.1), the bounded sequence
{ ∑

1≤k≤n
z

1/2
k ukvk

}
1≤n<ν is s∗-convergent

to w . Consequently( ∑
1≤k1≤n

z
1/2
k1

u ∗k1v
∗
k1

)
x
( ∑

1≤k2≤n
z

1/2
k2

uk2vk2

)
s−→ w∗xw .

But( ∑
1≤k1≤n

z
1/2
k1

u ∗k1v
∗
k1

)
x
( ∑

1≤k2≤n
z

1/2
k2

uk2vk2

)
=

∑
1≤k1,k2≤n

z
1/2
k1

z
1/2
k2

u ∗k1xuk2v
∗
k1
vk2

=
∑

1≤k≤n
zku

∗
kxuk sZ(zk)f

=
∑

1≤k≤n
zku

∗
kxukf ,

so w∗xw = s–
∑

1≤k<ν

zk u
∗
kx uk f .
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Corollary 5.6. Let {0} 6= N ⊂ B(H) be a type I von Neumann algebra with centre

Z, and p ∈ Z ′ an abelian projection of central support 1H . Then there exist

• ν ∈ {2, 3, . . .} ∪ {∞} ,

• mutually orthogonal abelian projections {ek}1≤k<ν in N ,

• {zk}1≤k<ν ⊂ Z+, z1 ≥ z2 ≥ . . . , ‖zk‖ −→ 0 if ν = ∞ , s–
∑

1≤k<ν

zk = 1H

such that

zN(ek) = sZ(zk) 6= 0 for all 1 ≤ k < ν ,

Φp(x) = s–
∑

1≤k<ν

zk Φek
(x) , x ∈ N . (5.15)

Proof. Let e ∈ N , f ∈ N ′ be abelian projections of central support 1H . By Lemma

2.4 ef is an abelian projection of central support 1H in N ∨N ′ = Z ′, so there exists a

partial isometry w ∈ Z ′ such that w∗w = ef , ww∗ = p . Let ν , {uk}1≤k<ν , {vk}1≤k<ν ,

{zk}1≤k<ν be as in Theorem 5.5.

Now let x ∈ N be arbitrary. By (2.2) we have Φp(x)ww
∗ = ww∗xww∗ , so, using

(5.11) and Lemma 2.4, we deduce successively

Φp(x) ef = w∗
(
Φp(x)ww

∗)w = w∗w = s–
∑

1≤k<ν

zk u
∗
kx uk f ,

Φp(x) = Φef

(
Φp(x) ef

)
= s–

∑
1≤k<ν

zk Φef (u
∗
kx uk f) = s–

∑
1≤k<ν

zk Φe(u
∗
kxuk) .

But, using (2.2), it is easily seen that Φe(u
∗
kxuk) = Φek

(x) and (5.15) follows.



CHAPTER VI

CONDITIONAL EXPECTATIONS ONTO

W ∗-SUBALGEBRAS OF THE CENTRE

We shall denote the support of a normal linear functional ϕ on a von Neumann

algebra M by sM(ϕ) .

The proof of [17], Theorem 3.1 works to prove the following theorem (cf. [16],

Theorem 1 and [18], Proposition 1.4):

Theorem 6.1. Let M be a von Neumann algebra, Z ⊂ Z(M) a von Neumann

subalgebra, and ϕ a positive linear functional on M such that ϕ|Z is normal. Then

there exists a unique positive Z-module mapping E : M → Z such that

ϕ = ϕ ◦ E and sM
(
E(1M)

)
≤ sZ

(
ϕ|Z

)
.

Moreover, then E(1M) = sZ
(
ϕ|Z

)
and E is normal whenever ϕ is normal.

If A is a C∗-algebra, C ⊂ B(K) is an abelian C∗-algebra and Φ : A → C is a

positive linear mapping, then

Φ(yx)∗Φ(yx) ≤ Φ(y y∗) Φ(x∗x) , x , y ∈ A

(see e.g. [18], Proposition 1.1). In particular, if A is unital then

Φ(x)∗Φ(x) ≤ Φ(1A) Φ(x∗x) ≤ ‖x‖2 Φ(1M)2 , x ∈ A (6.1)

and so ‖Φ‖ = ‖Φ(1A)‖ . Moreover, Φ is necessarily completely positive (see e.g. [24],

Proposition 5.5). Therefore, by the Stinespring Theorem (see e.g. [24], Theorem 5.3),
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there exist a ∗-representation π : A → B(H) and a bounded linear map V : K → H

such that

Φ(x) = V ∗π(x)V , x ∈ A ,

H is the closed linear span of π(A)VK (hence π is non-degenerate),

‖V ‖ = ‖Φ‖1/2 .

The pair (π, V ) is uniquely determined up to natural equivalence and is called the

Stinespring dilation of Φ . We notice that if A is a von Neumann algebra, C is a von

Neumann subalgebra of B(K) and Φ is normal, then also π is normal (see e.g. [24],

Corollary 4/8.4).

Corollary 6.2. Let M 6= {0} be a von Neumann algebra, and Z ⊂ Z(M) a von

Neumann subalgebra. Then there exists a normal conditional expectation E : M → Z .

Proof. Let P be a maximal set of mutually orthogonal non-zero countably decom-

posable projections in Z . Then
∑
p∈P

p = 1M .

For every p ∈ P there exists a normal state ψp on Z such that sZ(ψp) = p . Let

ϕp be a normal state on M which extends ψp . By Theorem 6.1 there exists a normal

positive Z-module mapping Ep : M → Z such that

ϕp = ψp ◦ Ep and Ep(1M) = sZ(ψp) = p .

By (6.1) we have, ‖Ep‖ = 1 and sZ
(
Ep(x)

)
≤ p for all x ∈M .

Now it is easy to verify that E : M 3 x 7−→
∑
p∈P

Ep(x) ∈ Z is a normal positive

Z-module mapping with E(1M) = 1M , that is a normal conditional expectation.

Theorem 6.3. Let M be a von Neumann algebra, Z ⊂ Z(M) a von Neumann

subalgebra, and Φ : M → Z a positive Z-module mapping. Then there exists a unique

positive Z-module mapping E : M → Z such that
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sZ
(
E(1M)

)
≤ sZ

(
Φ(1M)

)
and Φ(x) = E(x) Φ(1M) , x ∈M .

Moreover, then E(1M) = sZ
(
Φ(1M)

)
and E is normal whenever Φ is normal.

Proof. Let Z be imbedded in B(K) as a von Neumann subalgebra and let (π, V )

be the Stinespring dilation of Φ . Since V ∗V = V ∗π(1M)V = Φ(1M) , by the polar

decomposition of V we have V = U Φ(1M)1/2 , where U : K → H is a partial isometry

with U∗U = sZ
(
Φ(1M)

)
. Define E : M → B(K) by

E(x) = U∗π(x)U , x ∈M .

Then E is a positive linear mapping with E(1M) = U∗U = sZ
(
Φ(1M)

)
.

Let x ∈M and T ∈ Z ′ be arbitrary. Since

Φ(1M)1/2E(x) Φ(1M)1/2 = Φ(1M)1/2U∗π(x)U Φ(1M)1/2 = V ∗π(x)V

= Φ(x) ,

(6.2)

we obtain successively

Φ(1M)1/2T E(x) Φ(1M)1/2 = T Φ(x) = Φ(x)T = Φ(1M)1/2E(x)T Φ(1M)1/2 ,

Φ(1M)1/2
(
T E(x)− E(x)T

)
Φ(1M)1/2 = 0 ,

sZ
(
Φ(1M)

) (
T E(x)− E(x)T

)
sZ

(
Φ(1M)

)
= 0 ,

T sZ
(
Φ(1M)

)
E(x) = E(x) sZ

(
Φ(1M)

)
T .

But sZ
(
Φ(1M)

)
= U∗U yields

sZ
(
Φ(1M)

)
E(x) = U∗U U∗π(x)U = U∗π(x)U = E(x) (6.3)

and, similarly, E(x) sZ
(
Φ(1M)

)
= E(x) . Consequently, T E(x) = E(x)T .

We conclude that E(x) ∈ (Z ′)′ = Z for all x ∈ M , hence E maps M into Z .

Thus (6.2) entails

Φ(x) = Φ(1M)1/2E(x) Φ(1M)1/2 = E(x) Φ(1M) , x ∈M .
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It follows also the Z-linearity of E . For let x ∈M and z ∈ Z be arbitrary. Using the

above formula and (6.3), we deduce succesively(
E(zx)− z E(x)

)
Φ(1M) = Φ(zx)− zΦ(x) = 0 ,

E(zx)− z E(x) =
(
E(zx)− z E(x)

)
sZ

(
Φ(1M)

)
= 0 .

For the uniqueness, let F : M → Z be any Z-module mapping such that

sZ
(
F (1M)

)
≤ sZ

(
Φ(1M)

)
and Φ(x) = F (x) Φ(1M) , x ∈M

and let x ∈ M be arbitrary. Then
(
F (x) − E(x)

)
Φ(1M) = Φ(x) − Φ(x) = 0 , so(

F (x) − E(x)
)
sZ

(
Φ(1M)

)
= 0 . But, by sZ

(
F (1M)

)
≤ sZ

(
Φ(1M)

)
and by (6.1) we

have F (x) sZ
(
Φ(1M)

)
= F (x) , hence, taking into account (6.3), we conclude that

F (x)− E(x) =
(
F (x)− E(x)

)
sZ

(
Φ(1M)

)
= 0 .

Finally, if Φ is normal, then also π is normal and the normality of E follows from

its definition.

Corollary 6.4. Let M be a von Neumann algebra, Z ⊂ Z(M) a von Neumann

subalgebra, and Φ : M → Z a positive Z-module mapping. Then there exists a

conditional expectation E : M → Z such that

Φ(x) = E(x) Φ(1M) , x ∈M .

Moreover, if Φ is normal then E can be chosen normal.

Proof. By Theorem 6.3 there exists a positive Z-module mapping E1 : M → Z such

that E1(1M) = sZ
(
Φ(1M)

)
and Φ(x) = E1(x) Φ(1M) , x ∈ M . Further, by Corollary

6.2, there exists a normal conditional expectation

E2 : M
(
1M − sZ

(
Φ(1M)

))
−→ Z

(
1M − sZ

(
Φ(1M)

))
.

Now E : M 3 x 7−→ E1(x)+E2

(
x
(
1M−sZ

(
Φ(1M)

)))
∈ Z is a conditional expectation

such that E(x) Φ(1M) = E1(x) Φ(1M) = Φ(x) for all x ∈M .



50

If Φ is normal, then E1 is normal by Theorem 6.3 and the normality of E follows

from its definition.

The next result about the ‘GNS-representation’ associated to a conditional expec-

tation onto a von Neumann subalgebra of the centre is a variant of [17], Proposition

4.2:

Lemma 6.5. Let M be a von Neumann algebra, Z ⊂ Z(M) a von Neumann subal-

gebra, E : M → Z a conditional expectation, and πo : Z → B(K) an injective normal

unital ∗-representation such that πo(Z) is a maximal abelian von Neumann subalgebra

of B(K) . If
(
π : M → B(H) , V

)
is the Stinespring dilation of πo ◦ E , then

π|Z is normal and injective,

V V ∗ is an abelian projection of central support 1H in π(Z)′ ,

π
(
E(x)

)
= ΦV V ∗

(
π(x)

)
, x ∈M .

Moreover, if E is normal and E|Z(M) is faithful, then π is normal and injective.

Proof. Since E acts identically on Z , we have

πo(z) = (πo ◦ E)(z) = V ∗π(z)V , z ∈ Z . (6.4)

Therefore 1K = πo(1M) = V ∗π(1M)V = V ∗V , so V : K → H is an isometry. In

particular, V V ∗ ∈ B(H) is a projection. We notice also that

V ∗π(z) = πo(z)V
∗ , z ∈ Z . (6.5)

Indeed, if z ∈ Z , then we have for every x ∈M and η ∈ K :

V ∗π(z)π(x)V η = (πo ◦ E)(zx) η = πo(z) (πo ◦ E)(x) η = πo(z)V
∗π(x)V η .

Since H is the closed linear span of π(M)VK , (6.5) follows.

The projection V V ∗ belongs to the commutant π(Z)′ . Indeed, using (6.5) and

(6.4), we get successively for every z ∈ Z :
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V V ∗π(z) = V πo(z)V
∗ = V V ∗π(z)V V ∗ ,

π(z)V V ∗ =
(
V V ∗π(z∗)

)∗
=

(
V V ∗π(z∗)V V ∗

)∗
= V V ∗π(z)V V ∗ ,

V V ∗π(z) = V V ∗π(z)V V ∗ = π(z)V V ∗ .

Taking now into account that V V ∗ ∈ π(Z)′ , (6.4) yields

V πo(z)V
∗ = V V ∗π(z)V V ∗ = π(z)V V ∗ , z ∈ Z . (6.6)

Next we show that V V ∗π(Z)′V V ∗ ⊂ π(Z)V V ∗ and so V V ∗ is an abelian projection

in π(Z)′ . Indeed, if T ∈ π(Z)′ then we have for every z ∈ Z :

V ∗TV πo(z) = V ∗TV πo(z)V
∗V

(6.6)
= V ∗Tπ(z)V V ∗V = V ∗Tπ(z)V

= V ∗π(z)TV = V ∗V V ∗π(z)TV

= V ∗π(z)V V ∗TV
(6.4)
= πo(z)V

∗TV .

Consequently, V ∗TV ∈ πo(Z)′ = πo(Z) and, taking into account (6.6), we conclude

that V V ∗TV V ∗ ∈ V πo(Z)V ∗ ⊂ π(Z)V V ∗ .

The injectivity of π|Z is easy to see: if z is in the kernel of π|Z , then (6.5) implies

πo(z) = πo(z)V
∗V = V ∗π(z)V = 0 and the injectivity of πo entails that z = 0 .

For the normality of π|Z , let us consider a net zλ ↗ z in Z+ . Then we have, for

every x1, x2 ∈M and η1, η2 ∈ K ,(
π(z − zλ)π(x1)V η1

∣∣∣ π(x2)V η2

)
=

(
V ∗π

(
x ∗2 (z − zλ)x1

)
V η1

∣∣∣ η2

)
=

(
(πo ◦ E)

(
x ∗2 (z − zλ)x1

)
η1

∣∣∣ η2

)
=

(
(πo ◦ E)

(
x ∗2x1

)
πo(z − zλ)η1

∣∣∣ η2

)
=

(
πo(z − zλ)η1

∣∣∣ (πo ◦ E)
(
x ∗1x2

)
η2

)
−→ 0 .

Since H is the closed linear span of π(M)VK , it follows that π(zλ) ↗ π(z) .

The normality of π|Z implies, in particular, that π(Z) ⊂ B(H) is a von Neumann

algebra. Since π(Z) ⊂ π(Z)′ , we actually have
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Z
(
π(Z)′

)
= π(Z)′ ∩ π(Z)′′ = π(Z)′ ∩ π(Z) = π(Z) .

Therefore the central support of V V ∗ ∈ π(Z)′ is of the form π(p) with p ∈ Z a

projection. Using (6.4) and V V ∗ ≤ π(p) , we obtain

πo(p) = V ∗π(p)V = V ∗π(p)V V ∗V = V ∗V V ∗V = 1K .

Now the faithfulness of πo yields p = 1M and so zπ(Z)′(V V
∗) = π(1M) = 1H .

For every x ∈M , using (6.6) we deduce

V V ∗π(x)V V ∗ = V (πo ◦ E)(x)V ∗ = π
(
E(x)

)
V V ∗

and by (2.2) it follows that ΦV V ∗
(
π(x)

)
= π

(
E(x)

)
.

Finally, let us assume that E is normal. Since Stinespring dilation preserves

normality, then also π is normal. In particular, the kernel of π is of the form Mpπ

for some projection pπ ∈ Z(M) . If we assume also that E|Z(M) is faithful, then(
πo ◦ E

)
(pπ) = V ∗π(pπ)V = 0 implies that pπ = 0 , i.e. π is injective.

Lemma 6.5 and Corollary 5.6 imply [16], Corollary of Theorem 2:

Theorem 6.6. Let N 6= {0} be a type I von Neumann algebra, and E : N → Z(N)

a normal conditional expectation. Then there exist

• ν ∈ {2, 3, . . .} ∪ {∞} ,

• mutually orthogonal abelian projections {ek}1≤k<ν ⊂ N ,

• {zk}1≤k<ν ⊂ Z(N)+, z1 ≥ z2 ≥ . . . , ‖zk‖ −→ 0 if ν = ∞ , s–
∑

1≤k<ν

zk = 1N

such that

zN(ek) = sZ(N)(zk) 6= 0 for all 1 ≤ k < ν ,

E(x) = s–
∑

1≤k<ν

zk Φek
(x) , x ∈ N .
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Proof. Let πo : Z(N) → B(K) be an injective normal unital ∗-representation such that

πo
(
Z(N)

)
is a maximal abelian von Neumann subalgebra of B(K) and let

(
π : N →

B(H) , V
)

denote the Stinespring dilation of πo◦E . By Lemma 6.5, V V ∗ is an abelian

projection of central support 1H in π
(
Z(N)

)′
, π

(
E(x)

)
= ΦV V ∗

(
π(x)

)
, x ∈ N , and

π is normal and injective.

By Corollary 5.6 there exist

• ν ∈ {2, 3, . . .} ∪ {∞} ,

• mutually orthogonal abelian projections {ek}1≤k<ν in N ,

• {zk}1≤k<ν ⊂ Z(N)+, z1 ≥ z2 ≥ . . . , ‖zk‖ −→ 0 if ν = ∞ , s–
∑

1≤k<ν

zk = 1N

such that

zN(ek) = sZ(N)(zk) 6= 0 for all 1 ≤ k < ν ,

π
(
E(x)

)
= ΦV V ∗

(
π(x)

)
= s–

∑
1≤k<ν

π(zk) Φπ(ek)

(
π(x)

)
, x ∈ N .

But Φπ(ek)

(
π(x)

)
= π

(
Φek

(x)
)

and so the injectivity of π yields

E(x) = s–
∑

1≤k<ν

zk Φek
(x) , x ∈ N .



CHAPTER VII

DESCRIPTION OF THE GLIMM IDEALS IN SPATIALLY

REPRESENTED C∗-ALGEBRAS

If A is a unital C∗-algebra and 1A ∈ C ⊂ Z(A) is a C∗-subalgebra with Gelfand

spectrum Ω , then we shall denote by IC⊂A(t) the ideal Iι(t) , where ι is the inclusion

map of C in Z(A) . In other words,

IC⊂A(t) = { c ∈ C ; c(t) = 0 }A , t ∈ Ω . (7.1)

Proposition 3.1.(ii) implies the following dependence of IC⊂A(t) on A : If M is a unital

C∗-algebra and 1M ∈ C ⊂ A ⊂M are C∗-subalgebras such that C ⊂ Z(M) , then

IC⊂A(t) = A ∩ IC⊂M(t) , t ∈ Ω . (7.2)

The dependence of IC⊂A(t) on C is described in the following lemma:

Lemma 7.1. Let M be a unital C∗-algebra, 1M ∈ Z ⊂ Z(M) a C∗-subalgebra with

Gelfand spectrum Ω̃ , and 1M ∈ C ⊂ Z a C∗-subalgebra with Gelfand spectrum Ω .

Then

IC⊂M(t) =
⋂ {

IZ⊂M(χ) ; χ ∈ Ω̃ , χ(c) = c(t) for all c ∈ C
}
, t ∈ Ω .

Proof. Let t ∈ Ω be arbitrary and let us denote

Ω̃t =
{
χ ∈ Ω̃ ; χ(c) = c(t) for all c ∈ C

}
=

{
χ ∈ Ω̃ ; χ|IC⊂Z(t) = 0

}
.

The inclusion IC⊂M(t) ⊂
⋂
χ∈Ω̃t

IZ⊂M(χ) follows at once from definition (7.1): if c ∈

C, c(t) = 0 and χ ∈ Ω̃t , then χ(c) = c(t) = 0 , so cM ⊂ IZ⊂M(χ) . Thus it remains

to show the converse inclusion.
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According to (7.2) IC⊂Z(t) = Z ∩ IC⊂M(t) , so

Zt = Z
/
IC⊂Z(t) 3 z

/
IC⊂Z(t) 7−→ z

/
IC⊂M(t) ∈M

/
IC⊂M(t) = Mt

is an injective ∗-homomorphism, through which we can identify Zt with a C∗- subal-

gebra of Mt . On the other hand, the map which associates to χ ∈ Ω̃t the character

χt : Zt 3 z
/
IC⊂Z(t) 7→ χ(z) , is a homeomorphism of Ω̃t onto the Gelfand spectrum

of Zt . Thus ⋂
χ∈Ω̃t

IZt⊂Mt(χt) = {0} .

Now let x ∈
⋂
χ∈Ω̃t

IZ⊂M(χ) be arbitrary. For every χ ∈ Ω̃t , the quotient map

M → Mt brings IZ⊂M(χ) into IZt⊂Mt(χt) : if z ∈ Z , χ(z) = 0 and y ∈ M , then we

have

(zy)
/
IC⊂M(t) =

(
z
/
IC⊂Z(t)

)(
y
/
IC⊂M(t)

)
with χt

(
z
/
IC⊂Z(t)

)
= χ(z) = 0 ,

hence (zy)
/
IC⊂M(t) ∈ IZt⊂Mt(χt) . Consequently,

x
/
IC⊂M(t) ∈

⋂
χ∈Ω̃t

IZt⊂Mt(χt) = {0} ,

that is x ∈ IC⊂M(t) .

Lemma 7.1 enables us to prove the following extension of [19], Theorem 4.2 (see

also [4], Theorem 4.17):

Theorem 7.2. Let M ⊂ B(H) be a von Neumann algebra, Z ⊂ Z(M) a von Neu-

mann subalgebra with Gelfand spectrum Ω̃ , 1M ∈ C ⊂ Z a C∗-subalgebra with Gelfand

spectrum Ω , and C ⊂ A ⊂M an intermediate C∗-algebra. Then

IC⊂A(t) =

a ∈ A ;

χ
(
E(a)

)
= 0 for every

normal conditional expectation E : M → Z

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C

, t ∈ Ω .
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Proof. Let t ∈ Ω be arbitrary.

By [19], Theorem 4.2 and by Corollary 6.4 we have for every χ ∈ Ω̃ :

IZ⊂Z′(χ) =

x ∈ Z ′ ;
χ
(
Φ(x)

)
= 0 for every

normal positive Z-module mapping Φ : Z ′ → Z


=

x ∈ Z ′ ;
χ
(
E(x)

)
= 0 for every

normal conditional expectation E : Z ′ → Z

 .

Using Lemma 7.1, it follows

IC⊂Z′(t) =
⋂ {

IZ⊂Z′(χ) ; χ ∈ Ω̃ , χ(c) = c(t) for all c ∈ C
}

=

x ∈ Z ′ ;

χ
(
E(x)

)
= 0 for every

normal conditional expectation E : Z ′ → Z

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C


and by (7.2) we conclude that

IC⊂A(t) = A ∩ IC⊂Z′(t)

=

a ∈ A ;

χ
(
E(a)

)
= 0 for every

normal conditional expectation E : Z ′ → Z

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C



⊃

a ∈ A ;

χ
(
E(a)

)
= 0 for every

normal conditional expectation E : M → Z

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C

⊃ IC⊂A(t) .

The next simple result should be known, but we have no reference for it:

Lemma 7.3. Let N be a type I von Neumann algebra with centre Z , eo ∈ N an

abelian projection of central support 1N , and b ∈ N . Then there exists an abelian
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projection e ∈ N of central support 1N such that

Φeo(b
∗x b) = Φeo(b

∗b) Φe(x) , x ∈ N . (7.3)

Proof. Let b eo = w | b eo| be the polar decomposition of beo and let p denote the

central support of b∗b . Then | b eo| = (eob
∗b eo)

1/2 = z eo with 0 ≤ z ∈ Zp and

w∗w = sN(eob
∗b eo) ≤ eo , so that w∗w = zN(w∗w)eo = p eo .

Since p eo is an abelian, hence finite projection in N , there is a unitary w̃ ∈ N

such that w = w̃peo (see e.g. [23], E.4.9 or [21], 6.9.7). Then e = w̃eow̃
∗ is an abelian

projection of central support 1N in N . For every x ∈ N , since

exe = w̃(eow̃
∗x w̃eo)w̃

∗ = Φeo(w̃
∗x w̃)w̃eow̃

∗ = Φeo(w̃
∗x w̃)e ,

we have

Φeo(w̃
∗x w̃) = Φe(x) , (7.4)

hence

Φeo(b
∗x b) = Φeo

(
(beo)

∗x beo
)

= Φeo(eozw
∗xwzeo) = z2 Φeo(w

∗xw)

= z2 Φeo(eopw̃
∗xw̃peo)

(7.4)
= z2 pΦe(x) = z2 Φe(x) .

In particular, for x = 1N , Φeo(b
∗b) = z2 Φe(1N) = z2 and so (7.3) holds.

To prove a variant of Theorem 7.2 for type I von Neumann algebras, in which only

normal conditional expectations of form Φe , e abelian projection, occur, we need the

following result, which is essentially [4], Lemma 5.13:

Lemma 7.4. Let N be a type I von Neumann algebra with centre Z , Ω̃ the Gelfand

spectrum of Z , eo an abelian projection of central support 1N in N , and χ ∈ Ω̃ . Then

IZ⊂N(χ) =
{
x ∈ N ; χ

(
Φeo(b

∗x b)
)

= 0 for every b ∈ N
}

=

x ∈ N ;
χ
(
Φe(x)

)
= 0 for every

abelian projection e ∈ N with zN(e) = 1N

 .
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Proof. Clearly,
{
x ∈ N ; χ

(
Φeo(b

∗xb)
)

= 0 for every b ∈ N
}

is a norm-closed two-

sided ideal J of N , which contains IZ⊂N(χ) . Let us assume that this inclusion

is strict. Then there exists a positive element in J \ IZ⊂N(χ) and an appropriate

spectral projection f of it will still belong to J \ IZ⊂N(χ) . Since zN(f)eo ≺ f , there

exists u ∈ N such that u∗u = zN(f)eo and uu∗ ≤ f . Thus zN(f)eo = u∗fu ∈ J

and it follows that χ
(
zN(f)

)
= Φeo

(
zN(f)eo

)
= 0 . But then, by definition (7.1),

f = zN(f)f ∈ IZ⊂N(χ) , in contradiction with the assumption f ∈ J \ IZ⊂N(χ) .

To complete the proof, we have to prove that

J =

x ∈ N ;
χ
(
Φe(x)

)
= 0 for every

abelian projection e ∈ N with zN(e) = 1N

 .

If x ∈ J and e ∈ N is an abelian projection, then there exists v ∈ N with

v∗v ≤ eo , vv∗ = e and, taking into account that v∗v = zN(v∗v)eo and Φe(x) ∈

Z zN(e) = Z zN(v∗v) , we obtain successively

v∗xv = v∗(exe)v
(2.2)
= v∗

(
Φe(x)e

)
v = Φe(x)v

∗v = Φe(x) zN(v∗v)eo = Φe(x)eo ,

χ
(
Φe(x)

)
= χ

(
Φeo(v

∗xv)
)

= 0 .

This proves the inclusion ⊂ .

For the converse inclusion, let x ∈ N be such that χ
(
Φe(x)

)
= 0 for every abelian

projection e ∈ N of central support 1N . For every b ∈ N , according to Lemma

7.3, there exists an abelian projection e ∈ N with central support 1N such that

Φeo(b
∗x b) = Φeo(b

∗b) Φe(x) . Then

χ
(
Φeo(b

∗x b)
)

= χ
(
Φeo(b

∗b)
)
χ
(
Φe(x)

)
= 0 .

Now we improve Theorem 7.2 in the case of type I von Neumann algebras:

Theorem 7.5. Let N be a type I von Neumann algebra with centre Z , Ω̃ the Gelfand

spectrum of Z , 1N ∈ C ⊂ Z a C∗-subalgebra with Gelfand spectrum Ω , and C ⊂
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A ⊂ N an intermediate C∗-algebra. Then

IC⊂A(t) =

a ∈ A ;

χ
(
Φe(a)

)
= 0 for every

abelian projection e ∈ N with zN(e) = 1N

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C

, t ∈ Ω .

Proof. Let t ∈ Ω be arbitrary.

By Lemmas 7.1 and 7.4 we have

IC⊂N(t) =
⋂ {

IZ⊂N(χ) ; χ ∈ Ω̃ , χ(c) = c(t) for all c ∈ C
}

=

x ∈ N ;

χ
(
Φe(x)

)
= 0 for every

abelian projection e ∈ N with zN(e) = 1N

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C


and, using (7.2), we conclude that

IC⊂A(t) = A ∩ IC⊂N(t)

=

a ∈ A ;

χ
(
Φe(a)

)
= 0 for every

abelian projection e ∈ N with zN(e) = 1N

and χ ∈ Ω̃ with χ(c) = c(t) = 0 , c ∈ C

 .

Corollary 7.6. Let N be a type I von Neumann algebra with centre Z , Ω̃ the Gelfand

spectrum of Z , 1N ∈ C ⊂ Z a C∗-subalgebra with Gelfand spectrum Ω , C ⊂ A ⊂ N

an intermediate C∗-algebra and t ∈ Ω . Then every pure state ϕ on A with ϕ(c) =

c(t) , c ∈ C , belongs to the weak∗ closure ofχ ◦ Φe ;
e ∈ N abelian projection with zN(e) = 1N

χ ∈ Ω̃ with χ(c) = c(t) = 0 for all c ∈ C

 .

Proof. For every abelian projection e ∈ N with zN(e) = 1N and every χ ∈ Ω̃ with

χ(c) = c(t) = 0 , c ∈ C, let πe,χ : A→ B(He,χ) be the GNS representation associated
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to the restriction of χ ◦ Φe to A and let ξe,χ denote its canonical cyclic vector. By

Theorem 7.5 and Proposition 3.4 we have⋂
e,χ

ker(πe,χ) = IC⊂A(t) ⊂ ker(ϕ) ,

so we can apply [20], Proposition 3.4.2 or [13], Theorem 5.1.15, deducing that ϕ

belongs to the weak∗ closure of the states⋃
e,χ

{
A 3 a 7−→

(
πe,χ(a)ξ

∣∣ ξ) ; ξ ∈ He,χ , ‖ξ‖ = 1
}
.

Since every ξ ∈ He,χ with ‖ξ‖ = 1 is norm-limit in He,χ of unit vectors of the form

πe,χ(b)ξe,χ and then χ
(
Φe(b

∗b)
)

=
(
πe,χ(b

∗b)ξe,χ|ξe,χ
)

= 1 , it follows that ϕ is in the

weak∗ closure of the linear functionals

A 3 a 7−→
(
πe,χ(a)πe,χ(b)ξe,χ

∣∣ πe,χ(b)ξe,χ) = χ
(
Φe(b

∗a b)
)

with χ
(
Φe(b

∗b)
)

= 1 .

But, according to Lemma 7.3, for every abelian projection e ∈ N of central support

1N and every b ∈ N , there exists an abelian projection e(b) ∈ N of central support

1N such that Φe(b
∗x b) = Φe(b

∗b) Φe(b)(x) , x ∈ N . Therefore every linear functional

A 3 a 7−→ χ
(
Φe(b

∗a b)
)

with χ
(
Φe(b

∗b)
)

= 1 is of the form A 3 a 7−→ χ
(
Φe(b)(a)

)
=

(χ ◦ Φe(b))(a) .

Corollary 7.6 implies the following description of JC in terms of appropriate spatial

representation:

Corollary 7.7. Let (A1 , ι1) , (A2 , ι2) be C∗-algebras over a unital abelian C∗-algebra

C , and πj : Aj −→ B(H) , j = 1, 2, two faithful non-degenerate ∗-representations

such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for a type I von Neumann algebra N ⊂ B(H) with centre Z =
(
M(πj) ◦ ιj

)
(C)′′. Let

Ω̃ denote the Gelfand spectrum of Z . Then a ∈ A1⊗A2 belongs to JC if and only if
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(
(χ1◦ Φe ◦ π1)⊗ (χ2◦ Φf ◦ π2)

)
(a) = 0

for all

abelian projections e ∈ N , f ∈ N ′ with zN(e) = zN ′(f) = 1H ,

χ1 , χ2∈ Ω̃ with χ1◦M(π1) ◦ ι1 = χ2◦M(π2) ◦ ι2 .

Proof. Let Ω denote the Gelfand spectrum.

Assume first that a ∈ JC and let e ∈ N , f ∈ N ′ be abelian projections with

zN(e) = zN ′(f) = 1H , while χ1 , χ2 ∈ Ω̃ with χ1◦M(π1) ◦ ι1 = χ2◦M(π2) ◦ ι2 . Then

χj ◦M(πj) ◦ ιj is C 3 c 7−→ c(t) for some t ∈ Ω . Since

(χ1◦ Φe ◦ π1)
(
ι1(c) a

)
= χ1

((
M(π1) ◦ ι1

)
(c) Φe

(
π1(a)

))
= c(t) (χ1◦ Φe ◦ π1)(a)

for all a ∈ A1 and c ∈ C , Proposition 3.4 yields χ1◦ Φe ◦ π1

∣∣
Iι1 (t)

= 0 . Similarly,

χ2◦Φf ◦ π2

∣∣
Iι2 (t)

= 0 . Thus χ1◦Φe ◦ π1 = θ1 ◦ πι1,t for some state θ1 on A1/Iι1(t) and

χ2◦ Φf ◦ π2 = θ2 ◦ πι2,t for some state θ2 on A2/Iι2(t) . Consequently∣∣∣((χ1◦ Φe ◦ π1)⊗ (χ2◦ Φf ◦ π2)
)
(a)

∣∣∣ ≤ ‖(πι1,t ⊗ πι2,t)(a)‖min ≤ ‖a‖C,min = 0 .

Now let us assume that a ∈ A1 ⊗ A2 is such that(
(χ1◦ Φe ◦ π1)⊗ (χ2◦ Φf ◦ π2)

)
(a) = 0

for all abelian projections e ∈ N , f ∈ N ′ with zN(e) = zN ′(f) = 1H and all χ1 ,

χ2 ∈ Ω̃ with χ1 ◦ M(π1) ◦ ι1 = χ2 ◦ M(π2) ◦ ι2 . Taking into account that π1 , π2

are injective and using Corollary 7.6, we obtain that (ϕ1 ⊗ ϕ2)(a) = 0 for all ϕ1 ∈

P (A1) , ϕ2 ∈ P (A2) with ϕ1 ◦ ι1 = ϕ2 ◦ ι2 . In other words,

(ψ1 ⊗ ψ2)
(
(πι1,t ⊗ πι2,t)(a)

)
= 0 , ψj ∈ P

(
Aj/Iιj(t)

)
, j = 1, 2 , t ∈ Ω .

It follows that (πι1,t ⊗ πι2,t)(a) = 0 for every t ∈ Ω , that is a ∈ JC .



CHAPTER VIII

FAITHFUL TENSOR PRODUCTS OF

∗-REPRESENTATIONS OVER ABELIAN C∗-ALGEBRAS

Let C be a unital abelian C∗-algebra, (A1 , ι1) and (A2 , ι2) C∗-algebras over C ,

and πj : Aj → B(H) , j = 1 , 2 non-degenerate ∗-representations such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for some type I von Neumann algebra N ⊂ B(H) with centre
(
M(πj) ◦ ιj

)
(C)′′. In

this chapter we prove criteria for the faithfulness of π1 ⊗C,min π2 .

We notice that π1⊗C,minπ2 can be faithful without that π1 , π2 be faithful. Indeed,

in [8], before Proposition 3.3, an example of non-zero A1 , A2 is given such that

JC = A1 ⊗ A2 , that is A1 ⊗C,min A2 = {0} . Then, choosing for π1 and π2 the zero

∗-representation, π1 ⊗C,min π2 is faithful, while π1 and π2 are not. Nevertheless:

Proposition 8.1. Let C be a unital abelian C∗-algebra with Gelfand spectrum Ω ,

(A1 , ι1) , (A2 , ι2) C∗-algebras over C , and πj : Aj −→ B(H) , j = 1, 2, non-

degenerate ∗-representations such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for a type I von Neumann algebra N ⊂ B(H) with centre Z =
(
M(πj) ◦ ιj

)
(C)′′. If

π1⊗C,minπ2 is faithful and Iι2(t) 6= A2 for all t ∈ Ω , then π1 is faithful. In particular,

if M(π1)⊗C,min M(π2) is faithful and A2 6= {0} , then π1 is faithful.

Proof. Let us assume that π1 ⊗C,min π2 is faithful, Iι2(t) 6= A2 for every t ∈ Ω , and

a1 ∈ A1 , π1(a1) = 0 .
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Let a2 ∈ A2 be arbitrary. The injectivity of π1 ⊗C,min π2 and

(π1 ⊗C,min π2)
(
(a1 ⊗ a2)/JC

)
= π1(a1)π2(a2) = 0

imply that a1 ⊗ a2 ∈ JC , that is πι1,t(a1) ⊗ πι2,t(a2) = 0 for all t ∈ Ω . Since, for

any t ∈ Ω , πι2,t(a2) 6= 0 for some a2 ∈ A2 , it follows that πι1,t(a1) = 0 , t ∈ Ω .

Consequently, ‖a1‖ = sup
t∈Ω

‖πι1,t(a1)‖ = 0 , that is a1 = 0 .

Now, if A2 6= {0} , then 1M(A2) /∈ Ĩι2(t) , so Ĩι2(t) 6= M(A2) for all t ∈ Ω . Therefore,

by the above part of the proof,

M(π1)⊗C,minM(π2) faithful =⇒ M(π1) faithful.

According to Proposition 8.1, by looking for the faithfulness of π1 ⊗C,min π2 it is

natural to assume the faithfulness of π1 and π2 . However, the faithfulness of π1 and

π2 alone does not imply the faithfulness of π1 ⊗C,min π2 , as the next proposition will

show.

We shall denote by l∞(N) the C∗-algebra of all bounded complex sequences, by

c(N) the C∗-subalgebra of l∞(N) consisting of all convergent sequences, and by l2(N)

the Hilbert space of all square-summable complex sequences.

Proposition 8.2. Let us consider the unital abelian C∗-algebras C = c(N) , A1 =

A2 = l∞(N) and the inclusion maps ιj : C → Aj , j = 1, 2 . Let further πj denote the

faithful unital ∗-homomorphisms Aj → B
(
l2(N)

)
which associates to every a ∈ l∞(N)

the multiplication operator with a on l2(N) . Then π1 ⊗C,min π2 is not faithful.

Proof. We notice that the Gelfand spectrum of c(N) can be identified with the one-

point compactification N̂ = N ∪ {∞} of N .

Let χodds ∈ l∞(N) denote the characteristic function of all odd natural numbers,

and χevens the characteristic function of all even natural numbers. Then

(π1 ⊗C,min π2)
(
(χodds ⊗ χevens)/JC

)
= π1(χodds)π2(χevens) = 0 .
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We shall show that ‖χodds ⊗ χevens‖C,min = 1 , hence (χodds ⊗ χevens)/JC 6= 0 , which

completes the proof of the non-injectivity of π1 ⊗C,min π2 .

Let evn denote the evaluation map l∞(N) 3 a 7−→ a(n) . Then every evn is a state

on l∞(N) . Let ϕ1 be a weak∗limit point of {evn}n odd , and ϕ2 a weak∗limit point of

{evn}n even . Clearly, ϕ1(χodds) = 1 and ϕ1 carries c ∈ C to c(∞) , so by Proposition

3.4 we have ϕ1|Iι1 (∞) = 0 . Therefore ϕ1 = ψ1 ◦πι1,∞ for some state ψ1 on A1/Iι1(∞) .

Similarly, ϕ2(χevens) = 1 and ϕ2 = ψ2 ◦ πι2,∞ for some state ψ2 on A2/Iι2(∞) . Since

1 = (ϕ1 ⊗ ϕ2)(χodds ⊗ χevens) = (ψ1 ⊗ ψ2)
(
(πι1,∞ ⊗ πι2,∞)(χodds ⊗ χevens)

)
≤

∥∥(πι1,∞ ⊗ πι2,∞)(χodds ⊗ χevens)
∥∥

min

≤ ‖χodds ⊗ χevens‖C,min ≤ 1 ,

we conclude that ‖χodds ⊗ χevens‖C,min = 1 .

In the sequel we shall prove criteria in order that the tensor product of two faithful

∗-representations over a unital abelian C∗-algebra be still faithful.

Let H be a Hilbert space, A ,B ⊂ B(H) C∗-subalgebras with B containing 1H ,

and ϕ ∈ S(A) . If C∗(A ∪B) denotes the C∗-algebra generated by A ∪B , then{
θ ∈ S

(
C∗(A ∪B)

)
; θ|A = ϕ

}
is a weak∗closed convex subset of S

(
C∗(A ∪B)

)
, so the subset

K(A ,B ;ϕ) =
{
θ|B ; θ ∈ S

(
C∗(A ∪B)

)
, θ|A = ϕ

}
⊂ S(B)

is convex and weak∗closed.

Let X be a non-empty convex set in some vector space. We recall that x ∈ X is

an extreme point of X if and only if x = 1
2
(x1 + x2) , x1, x2 ∈ X , is possible only for

x1 = x2 (cf. [4], Theorem 5.2). We denote the set of all extreme points of X (the

extreme boundary of X) by ∂eX .
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Lemma 8.3. Let H be a Hilbert space, A ,B ⊂ B(H) C∗-subalgebras with B con-

taining 1H , and ϕ ∈ P (A) . Then

∂eK(A ,B ;ϕ) ⊂
{
θ|B ; θ ∈ P

(
C∗(A ∪B)

)
, θ|A = ϕ

}
.

If additionally B ⊂ A′, then{
θ|B ; θ ∈ P

(
C∗(A ∪B)

)
, θ|A = ϕ

}
⊂ P (B) ,

hence also the converse inclusion holds.

Proof. Let ψ ∈ ∂eK(A ,B ;ϕ) be arbitrary. Then

Kψ =
{
θ ∈ S

(
C∗(A ∪B)

)
; θ|A = ϕ , θ|B = ψ

}
is a non-empty weak∗compact convex set, so by the Krein-Milman Theorem it has an

extreme point θo . We claim that θo ∈ P
(
C∗(A ∪B)

)
.

For let us assume that θo = 1
2
(θ1 + θ2) with θ1, θ2 ∈ S

(
C∗(A ∪ B)

)
. Since

ϕ ∈ P (A) = ∂eS(A) and ϕ = θo|A = 1
2
(θ1|A + θ2|A) , we have θ1|A = θ2|A = ϕ .

Therefore θ1|B and θ2|B belong to K(A ,B ;ϕ) . But ψ = θo|B = 1
2
(θ1|B + θ2|B) , so,

using that ψ ∈ ∂eK(A ,B ;ϕ) , we obtain θ1|B = θ2|B = ψ . Consequently θ1, θ2 ∈ Kψ

and the extremality of θo in Kψ yields θ1 = θ2 = θo .

Now let us assume that B ⊂ A′ and ψ = θ|B for some θ ∈ P
(
C∗(A ∪ B)

)
with

θ|A = ϕ . Let πθ : C∗(A ∪ B) −→ B(Hθ) be the GNS representation associated to θ ,

and ξθ its canonical cyclic vector. Since θ is a pure state, πθ is irreducible.

Let Po denote the unit of the weak operator closed ∗-subalgebra πθ(A)
wo

of B(Hθ) .

Then Po ∈ πθ(A)′ ∩ πθ(B)′ = πθ
(
C∗(A∪B)

)′
= C 1Hθ

. Moreover, since θ|A = ϕ 6= 0 ,

Po is non-zero. Consequently Po = 1Hθ
, and so πθ(A)

wo
is a von Neumann algebra.

In particular, ξθ belongs to Hθ,ϕ = πθ(A)ξθ ⊂ Hθ .

The orthogonal projection P ′ onto Hθ,ϕ clearly belongs to the commutant πθ(A)′

of πθ(A)
wo
. The central support of P ′ is the orthogonal projection on
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lin
(
πθ(A)′P ′Hθ

)
⊃ lin

(
πθ(B)πθ(A)ξθ

)
= lin

(
πθ

(
C∗(A ∪B)

)
ξθ

)
= Hθ ,

so zπθ(A)′(P
′) = 1Hθ

. Therefore the induction ∗-homomorphism

ρθ,ϕ : πθ(A)
wo
3 T 7−→ T |H

θ,ϕ
∈ B(Hθ,ϕ)

is injective. But the ∗-representation πθ,ϕ : A 3 a 7−→ πθ(a)|H
θ,ϕ

∈ B(Hθ,ϕ) is

unitarily equivalent to the GNS representation πϕ : A −→ B(Hϕ) of ϕ and ϕ ∈ P (A) ,

so πθ,ϕ is irreducible and consequently the range of ρθ,ϕ is equal to πθ,ϕ(A)
wo

=

B(Hθ,ϕ) . Therefore N = πθ(A)
wo

= ρ −1
θ,ϕ

(
B(Hθ,ϕ)

)
is a type I factor.

Now, πθ(B) ⊂ N ′ and the relative commutant of πθ(B) in N ′ is

πθ(B)′ ∩N ′ = πθ(B)′ ∩ πθ(A)′ = πθ
(
C∗(A ∪B)

)′
= C 1Hθ

.

Since the bicommutant theorem holds in type I factors, we get πθ(B)
wo

= N ′ . We

claim that P ′ is a minimal projection of N ′.

For let T ′ ∈ N ′ , 0 ≤ T ′ ≤ 1Hθ
, be arbitrary. Since(

πθ(a)T
′ξθ

∣∣ξθ) ≤ (
πθ(a)ξθ

∣∣ξθ) = ϕ(a) , a ∈ A+

and ϕ ∈ P (A) , there exists 0 ≤ λ ≤ 1 such that
(
πθ(a)T

′ξθ
∣∣ξθ) = λϕ(a) for all a ∈ A

(see e.g. [24], 4.7). Consequently(
(T ′ − λ 1Hθ

)πθ(a1)ξθ
∣∣πθ(a2)ξθ

)
=

(
πθ(a

∗
2 a1)T

′ξθ
∣∣ξθ)− λϕ(a ∗2 a1) = 0

for all a1, a2 ∈ A and it follows that P ′(T ′ − λ 1Hθ
)P ′ = 0 , i.e. P ′T ′P ′ = λP ′ .

By the minimality of P ′ in N ′, for every b ∈ B there exists λb ∈ C such that

P ′πθ(b)P
′ = λb P

′. Since λb = (λb P
′ξθ|ξθ) =

(
P ′πθ(b)P

′ξθ|ξθ) = θ(b) = ψ(b) , we have

P ′πθ(b)P
′ = ψ(b)P ′.

Let π be a ∗-isomorphism of the type I factor N ′ onto some B(K) . Then π(P ′) is

an one-dimensional projection and, choosing a vector η ∈ π(P ′)K , ‖η‖ = 1 , we have

ψ(b) =
(
(π ◦ πθ)(b)η

∣∣η) , b ∈ B . Since (π ◦ πθ)(B) is weak operator dense in B(K) ,

we conclude that ψ is a pure state.
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Now we study the extreme points of the intersection of K(A1 , B ;ϕ1) and

K(A2 , B ;ϕ2) :

Lemma 8.4. Let H be a Hilbert space, A1 , A2 , B ⊂ B(H) C∗-subalgebras with B

abelian and 1H ∈ B ⊂ A1
′ ∩ A2

′, and ϕ1 ∈ P (A1) , ϕ2 ∈ P (A2) . If

ψ ∈ ∂e
(
K(A1 , B ;ϕ1) ∩K(A2 , B ;ϕ2)

)
then, for j = 1, 2 , there exists τj ∈ P

(
C∗(Aj ∪B)

)
such that

τj|Aj
= ϕj , τj|B = ψ and τj(ab) = τj(a) τj(b) , a ∈ C∗(Aj ∪B) , b ∈ B .

In particular,

∂e

(
K(A1 , B ;ϕ1) ∩K(A2 , B ;ϕ2)

)
= ∂eK(A1 , B ;ϕ1) ∩ ∂eK(A2 , B ;ϕ2) .

Proof. Let us denote, for convenience,

K1 = K(A1 , B ;ϕ1) , K2 = K(A2 , B ;ϕ2)

and set

Kψ =

(θ1, θ2) ∈ S
(
C∗(A1 ∪B)

)
× S

(
C∗(A2 ∪B)

)
;
θj|Aj

= ϕj , θj|B = ψ

for j = 1, 2

 ,

K =
{

(θ1, θ2) ∈ S
(
C∗(A1 ∪B)

)
× S

(
C∗(A2 ∪B)

)
; θ1|B = θ2|B

}
.

Since Kψ 6= ∅ is convex and compact with respect to the product of the weak∗

topologies, by the Krein-Milman Theorem it has an extreme point (τ1, τ2) .

First we show that (τ1, τ2) ∈ ∂eK . For let (θ1
′, θ2

′) , (θ1
′′, θ2

′′) ∈ K be such that

(τ1, τ2) =
1

2

(
(θ1

′, θ2
′) + (θ1

′′, θ2
′′)

)
. (8.1)

Then, for j = 1, 2 , we have

ϕj = τj|Aj
=

1

2

(
θj
′|Aj

+ θj
′′|Aj

)
and, since ϕj ∈ P (Aj) , it follows that

θj
′|Aj

= θj
′′|Aj

= ϕj , hence θj
′|B , θj ′′|B ∈ Kj .
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But θ1
′|B = θ2

′|B and θ1
′′|B = θ2

′′|B , so actually θ1
′|B = θ2

′|B ∈ K1 ∩ K2 and

θ1
′′|B = θ2

′′|B ∈ K1 ∩K2 . Now

ψ = τ1|B
(8.1)
=

1

2

(
θ1
′|B + θ1

′′|B
)

and ψ ∈ ∂e(K1 ∩K2) ,

yields θj
′|B = θj

′′|B = ψ , j = 1, 2 , and therefore (θ1
′, θ2

′) , (θ1
′′, θ2

′′) ∈ Kψ . So, by

the extremality of (τ1, τ2) in Kψ , we conclude that

(θ1
′, θ2

′) = (θ1
′′, θ2

′′) = (τ1, τ2) .

Next we prove

τj(ab) = τj(a) τj(b) = ϕj(a)ψ(b) , a ∈ C∗(Aj ∪B) , b ∈ B , j = 1, 2 . (8.2)

Clearly, it is enough to prove (8.2) in the case that ε 1H ≤ b ≤ (1 − ε) 1H for some

ε > 0 . Set for j = 1, 2 :

θj
′ =

1

ψ(b)
τj( · b) , θj ′′ =

1

ψ(1H − b)
τj( · (1H − b)) ∈ S

(
C∗(Aj ∪B)

)
.

Since τ1|B = ψ = τ2|B , both pairs (θ1
′, θ2

′) and (θ1
′′, θ2

′′) belong to K . Thus

(τ1, τ2) = ψ(b) (θ1
′, θ2

′) + ψ(1H − b) (θ1
′′, θ2

′′) and (τ1, τ2) ∈ ∂eK

imply that (θ1
′, θ2

′) = (τ1, τ2) , i.e. (8.2).

Finally we prove that τj ∈ P
(
C∗(Aj ∪ B)

)
, j = 1, 2 . Then, by Lemma 8.3, we

have also ψ ∈ ∂eK(A1 , B ;ϕ1) ∩ ∂eK(A2 , B ;ϕ2) .

For τ1 ∈ P
(
C∗(A1 ∪B)

)
, let us assume that

τ1 =
1

2

(
θ′ + θ′′

)
for some θ′, θ′′ ∈ S

(
C∗(A1 ∪B)

)
.

By (8.2) τ1 is multiplicative on B , so τ1|B is a pure state on B . Therefore the above

relation implies θ′|B = θ′′|B = τ1|B = ψ = τ2|B and it follows that

(τ1, τ2) =
1

2

(
(θ′, τ2) + (θ′′, τ2)

)
, where (θ′, τ2), (θ

′′, τ2) ∈ K .

Using (τ1, τ2) ∈ ∂eK , we get (θ′, τ2) = (θ′′, τ2) = (τ1, τ2) , hence θ′ = θ′′ = τ1 .

The proof of τ2 ∈ P
(
C∗(A2 ∪B)

)
is completely similar.
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The main result of this chapter is the next theorem, which yields faithfulness

criteria for π1 ⊗C,min π2 :

Theorem 8.5. Let C be a unital abelian C∗-algebra with Gelfand spectrum Ω and

let (A1 , ι1) , (A2 , ι2) be C∗-algebras over C . Let further πj : Aj → B(H) , j = 1, 2,

be faithful non-degenerate ∗-representations, such that

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for a type I von Neumann algebra N ⊂ B(H) with centre Z =
(
M(πj) ◦ ιj

)
(C)′′, Ω̃

the Gelfand spectrum of Z , and π : A1 ⊗ A2 → B(H) the ∗-homomorphism defined

by

π(a1 ⊗ a2) = π1(a1)π2(a2) , a1 ∈ A1 , a2 ∈ A2 .

Then the following statements are equivalent:

(i) π1 ⊗C,min π2 is faithful ;

(ii) the kernel of π is equal to JC ;

(iii) if Tj,k ∈ πj(Aj) , j = 1, 2 , 1 ≤ k ≤ n , and
∑

1≤k≤n
T1,k T2,k = 0 , then∑

1≤k≤n
(χ1 ◦ Φe)(T1,k) (χ2 ◦ Φf )(T2,k) = 0

for all abelian projections e ∈ N , f ∈ N ′ with zN(e) = zN ′(f) = 1H

and all χ1 , χ2∈ Ω̃ with χ1◦M(π1) ◦ ι1 = χ2◦M(π2) ◦ ι2 ;

(iv) for any ϕ1 ∈ P (A1) and ϕ2 ∈ P (A2) with ϕ1 ◦ ι1 = ϕ2 ◦ ι2 we have

K
(
π1(A1) , Z ;ϕ1 ◦ π−1

1

)
∩K

(
π2(A2) , Z ;ϕ2 ◦ π−1

2

)
6= ∅ .

Proof. By the definition of π1 ⊗C,min π2 , (ii) is equivalent to the injectivity of the

restriction of π1 ⊗C,min π2 to (A1 ⊗ A2)
/
JC , so (i) implies (ii). Conversely, if (ii) is

satisfied, then the C∗-seminorm A1 ⊗ A2 3 a 7−→ ‖π(a)‖ vanishes exactly on JC ,

so Proposition 3.6 entails that ‖π(a)‖ ≥ ‖a‖C,min for all a ∈ A1 ⊗ A2 . Taking into
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account (4.7), it follows that π1⊗C,min π2 is isometric on (A1⊗A2)
/
JC , hence on the

whole A1 ⊗C,min A2 .

By the aboves we have (i)⇔ (ii). Next we prove that (i)⇒ (iii)⇒ (ii).

Let us assume that (i) is satisfied and Tj,k ∈ πj(Aj) , j = 1, 2 , 1 ≤ k ≤ n are

such that
∑

1≤k≤n
T1,k T2,k = 0 . Then Tj,k = πj(aj,k) for some aj,k ∈ Aj and, setting

a =
∑

1≤k≤n
a1,k ⊗ a2,k ∈ A1 ⊗ A2 , we have

(π1 ⊗C,min π2)
(
a
/
JC

)
= π(a) =

∑
1≤k≤n

T1,k T2,k = 0 ,

and by (i) it follows that a ∈ JC . Using Corollary 7.7, we conclude that, for any

abelian projections e ∈ N , f ∈ N ′ with zN(e) = zN ′(f) = 1H , and any χ1 , χ2 ∈ Ω̃

satisfying χ1◦M(π1) ◦ ι1 = χ2◦M(π2) ◦ ι2 ,∑
1≤k≤n

(χ1 ◦ Φe)(T1,k) (χ2 ◦ Φf )(T2,k) =
∑

1≤k≤n
(χ1 ◦ Φe ◦ π1)(a1,k) (χ2 ◦ Φf ◦ π2)(a2,k)

=
(
(χ1◦ Φe ◦ π1)⊗ (χ2◦ Φf ◦ π2)

)
(a) = 0 .

Now we assume that (iii) is satisfied and a ∈ A1⊗A2 is such that π(a) = 0 . Then

a =
∑

1≤k≤n
a1,k ⊗ a2,k with aj,k ∈ Aj , so

∑
1≤k≤n

π1(a1,k)π2(a2,k) = π(a) = 0 . By (iii) it

follows that(
(χ1◦ Φe ◦ π1)⊗ (χ2◦ Φf ◦ π2)

)
(a) =

∑
1≤k≤n

(χ1 ◦ Φe)
(
π1(a1,k)

)
(χ2 ◦ Φf )

(
π2(a2,k)

)
= 0

for all abelian projections e ∈ N , f ∈ N ′ with zN(e) = zN ′(f) = 1H and all χ1 ,

χ2∈ Ω̃ satisfying χ1◦M(π1) ◦ ι1 = χ2◦M(π2) ◦ ι2 . By Corollary 7.7 it follows that

a ∈ JC .

Finally we prove that (i)⇒ (iv)⇒ (ii).

Let us assume that (i) holds and let ϕ1 ∈ P (A1) and ϕ2 ∈ P (A2) be such that

ϕ1 ◦ ι1 = ϕ2 ◦ ι2 . Then there is t ∈ Ω such that ϕ1

(
ι1(c)

)
= ϕ2

(
ι2(c)

)
= c(t) for all

c ∈ C and by Proposition 3.4 it follows that ϕ1|Iι1 (t) = 0 , ϕ2|Iι2 (t) = 0 . Therefore



71

|(ϕ1 ⊗ ϕ2)(a)| ≤ ‖(πι1,t ⊗ πι2,t)(a)‖min ≤ ‖a‖C,min , a ∈ A1 ⊗ A2

and so there exists a state ϕ̃ on A1 ⊗C,min A2 such that

(ϕ1 ⊗ ϕ2)(a) = ϕ̃(a/JC) , a ∈ A1 ⊗ A2 .

Then τ = ϕ̃◦(π1⊗C,minπ2)
−1 is a state on linπ1(A1)π2(A2) , which can be extended by

strict continuity to a state on M
(

linπ1(A1)π2(A2)
)

, still denoted by τ . We notice

that, by (4.8), C∗
(
π1(A1) ∪ π2(A2)

)
⊂M

(
linπ1(A1)π2(A2)

)
. Since

τ
(
π(a)

)
= τ

(
(π1 ⊗C,min π2)(a/JC)

)
= ϕ̃(a/JC) = (ϕ1 ⊗ ϕ2)(a)

for all a ∈ A1 ⊗ A2 , choosing some increasing approximate units
{
uλ

}
λ
,
{
vµ

}
µ

for

A1 respectively A2 and using (4.8), we obtain

τ
(
π1(a1)

)
= lim

µ
τ
(
π1(a1)π2(vµ)

)
= lim

µ
ϕ1(a1)ϕ2(vµ) = ϕ1(a1) , a1 ∈ A1 ,

τ
(
π2(a2)

)
= lim

µ
τ
(
π1(uλ)π2(a2)

)
= lim

µ
ϕ1(uλ)ϕ2(a2) = ϕ2(a2) , a2 ∈ A2(

for ϕ2(vµ) −→ ‖ϕ2‖ = 1 and ϕ1(uλ) −→ ‖ϕ1‖ = 1 see, for example [24], Theo-

rem 4.5.(i)
)
. Consequently, if θ is an extension of τ |

C∗
(
π1(A1)∪π2(A2)

) to a state on

C∗
(
π1(A1) ∪ Z ∪ π2(A2)

)
, then θ|πj(Aj) = ϕj ◦ π−1

j , j = 1, 2 , and so

θ|Z ∈ K
(
π1(A1) , Z ;ϕ1 ◦ π−1

1

)
∩K

(
π2(A2) , Z ;ϕ2 ◦ π−1

2

)
.

Now let us assume that (iv) holds and let a ∈ A1 ⊗ A2 with π(a) = 0 and

ϕ1 ∈ P (A1) , ϕ2 ∈ P (A2) with ϕ1 ◦ ι1 = ϕ2 ◦ ι2 be arbitary.

By (iv) the weak∗compact convex set

K
(
π1(A1) , Z ;ϕ1 ◦ π−1

1

)
∩K

(
π2(A2) , Z ;ϕ2 ◦ π−1

2

)
is not empty, so by the Krein-Milman Theorem it has some extreme point ψ . Now,

by Lemma 8.4, there exist θj ∈ P
(
C∗

(
πj(Aj) ∪ Z

))
, j = 1, 2 , such that

θj|πj(Aj) = ϕj ◦ π−1
j , θj|Z = ψ ,

θj(T z) = θj(T ) θj(z) , T ∈ C∗
(
πj(Aj) ∪ Z

)
, z ∈ Z .

(8.3)
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On the other hand, if a =
∑

1≤k≤n
a1,k ⊗ a2,k with a1,k ∈ A1 , a2,k ∈ A2 , then∑

1≤k≤n
π1(a1,k)π2(a2,k) = π(a) = 0 and π1(a1,k) ∈ N , π2(a2,k) ∈ N ′ .

By a classical result of Murray, von Neumann and Kadison (see e.g. [22], Theorem

1.20.5, or [21], Theorem 5.5.4, or [24], Proposition 7.20) it follows that there are

zj,k ∈ Z , 1 ≤ j, k ≤ n , such that∑
1≤j≤n

π1(a1,j) zjk = 0 for every 1 ≤ k ≤ n ,∑
1≤k≤n

zj,k π2(a2,k) = π2(a2,j) for every 1 ≤ j ≤ n .

Using (8.3) and the above equalities, we deduce that∑
1≤j≤n

ϕ1(a1,j)ψ(zj,k) =
∑

1≤j≤n
θ1

(
π1(a1,j)

)
θ1(zj,k) = θ1

( ∑
1≤j≤n

π1(a1,j) zj,k
)

= 0 for every 1 ≤ k ≤ n ,

∑
1≤k≤n

ψ(zj,k)ϕ2(a2,k) =
∑

1≤k≤n
θ2(zj,k) θ2

(
π2(a2,k)

)
= θ2

( ∑
1≤k≤n

zj,k π2(a2,k)
)

= θ2

(
π2(a2,j)

)
= ϕ2(a2,j) for every 1 ≤ j ≤ n .

Consequently

(ϕ1 ⊗ ϕ2)(a) =
∑

1≤j≤n
ϕ1(a1,j)ϕ2(a2,j)

=
∑

1≤j≤n
ϕ1(a1,j)

( ∑
1≤k≤n

ψ(zj,k)ϕ2(a2,k)
)

=
∑

1≤k≤n

( ∑
1≤j≤n

ϕ1(a1,j)ψ(zj,k)
)
ϕ2(a2,k) = 0 .

But if a belongs to the kernel of π , then all b∗a b , b ∈ A1 ⊗ A2 , belong to the

kernel of π , so by the aboves we have

(ϕ1 ⊗ ϕ2)(b
∗a b) = 0

for all ϕ1 ∈ P (A1) , ϕ2 ∈ P (A2) with ϕ1 ◦ ι1 = ϕ2 ◦ ι2 and all b ∈ A1 ⊗ A2 . By

Corollary 3.5 it follows that a/JC = 0 , that is a ∈ JC .

A first application concerns the proper C∗-algebras over C :
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Corollary 8.6. Let C be a unital abelian C∗-algebra and let (A1 , ι1) , (A2 , ι2) be

C∗-algebras over C . If π1 : A1 −→ B(H) and π2 : A2 −→ B(H) are faithful non-

degenerate ∗-representations and

M(π1) ◦ ι1 = M(π2) ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for a type I von Neumann algebra N ⊂ B(H) with centre
(
M(πj) ◦ ιj

)
(C) , then

π1 ⊗C,min π2 is faithful.

Proof. Since M(πj) ◦ ιj is injective and
(
M(πj) ◦ ιj

)
(C) =

(
M(πj) ◦ ιj

)
(C)′′, any

characters χ1 , χ2 on
(
M(πj)◦ ιj

)
(C)′′ with χ1◦M(π1)◦ ι1 = χ2◦M(π2)◦ ι2 are equal.

Thus condition (iii) in Theorem 8.5 is trivially satisfied, by Lemma 2.4.

The next application of Theorem 8.5 concerns unital ∗-representations, whose

normal extension on a substantial part of the second dual is faithful:

Corollary 8.7. Let C be a unital abelian C∗-algebra and let (A1 , ι1) , (A2 , ι2)

be unital C∗-algebras over C . If πj : Aj −→ B(H) , j = 1, 2 , are unital ∗-

representations, such that the normal extension π̃j : A ∗∗
j −→ B(H) of πj is faithful

on C∗
(
Aj ∪ ιj(C)∗∗

)
, and

π1 ◦ ι1 = π2 ◦ ι2 and π1(A1) ⊂ N , π2(A2) ⊂ N ′

for a type I von Neumann algebra N ⊂ B(H) with centre (πj◦ιj)(C)′′, then π1⊗C,minπ2

is faithful.

Proof. Let Ω denote the Gelfand spectrum of C and set Z = (πj ◦ ιj)(C)′′. We shall

verify that condition (iv) in Theorem 8.5 is satisfied.

For let ϕ1 ∈ P (A1) and ϕ2 ∈ P (A2) be such that ϕ1 ◦ ι1 = ϕ2 ◦ ι2 . Then

C 3 c 7→ (ϕj ◦ιj)(c) is a character of C , whose normal extension to C∗∗ is equal to the

composition ϕj◦ι ∗∗j of the normal state ϕj on A ∗∗
j with the second transposed map ι ∗∗j .

Since π̃j ◦ ι ∗∗j : C∗∗ → B(H) is a faithful normal ∗-representation with range Z , which



74

does not depend on j = 1, 2 , we can consider the character χ = (ϕj ◦ ι ∗∗j )◦ (π̃j ◦ ι ∗∗j )−1

of Z .

Now let j = 1, 2 be arbitrary. Let θj denote the composition of the normal state

ϕj of A ∗∗
j with

(
π̃j

∣∣
C∗(Aj∪ιj(C)∗∗)

)−1
. Then θj is a state on

π̃j

(
C∗

(
Aj ∪ ιj(C)∗∗

))
= C∗

(
πj(Aj) ∪ (π̃j ◦ ι ∗∗j )(C∗∗)

)
,

whose restrictions to πj(Aj) and to Z = (π̃j◦ι ∗∗j )(C∗∗) are ϕj◦π−1
j and χ , respectively.

Consequently K
(
π1(A1) , Z ;ϕ1 ◦ π−1

1

)
∩K

(
π2(A2) , Z ;ϕ2 ◦ π−1

2

)
3 χ .

The situation in Corollary 8.7 can occur for any pair of unital C∗-algebras (A1 , ι1) ,

(A2 , ι2) over C . Indeed, then ι ∗∗j : C∗∗ −→ Z(A ∗∗
j ) , j = 1, 2 , are injective unital

normal ∗-homomorphisms, so by [14], Lemma 5.2 there exist injective unital normal

∗-representations π̃j : A ∗∗
j −→ B(H) , j = 1, 2 , such that π̃1 ◦ ι ∗∗1

= π̃2 ◦ ι ∗∗2
and

π̃1(A
∗∗
1

) ⊂ N , π̃2(A
∗∗
2

) ⊂ N ′ for some type I von Neumann algebra N ⊂ B(H)

with centre equal to (π̃j ◦ ι ∗∗j )(C∗∗) and, denoting πj = π̃j|Aj
, j = 1, 2 , the normal

extension π̃j of πj to A ∗∗
j is faithful and

π1 ◦ ι1 = π2 ◦ ι2 , π1(A1) ⊂ N , π2(A2) ⊂ N ′ , Z(N) = (πj ◦ ιj)(C)′′.

The above remarks and Corollary 8.7 imply immediately:

Corollary 8.8. Let C be a unital abelian C∗-algebra and let (A1 , ι1) , (A2 , ι2) be

C∗-algebras over C . Then there exist faithful unital ∗-representations ρj : M(Aj) −→

B(H) , j = 1, 2 , such that

ρ1 ◦ ι1 = ρ2 ◦ ι2 and ρ1

(
M(A1)

)
⊂ N , ρ2

(
M(A2)

)
⊂ N ′

for some type I von Neumann algebra N ⊂ B(H) with centre (ρj◦ιj)(C)′′ and ρ1⊗C,min

ρ2 is faithful.

According to Corollary 3.3, if ρ1 , ρ2 are as in Corollary 8.8, then ρ1 ⊗C,min ρ2 is

faithful on A1 ⊗C,min A2 ⊂M(A1)⊗C,min M(A2) . However, in general we don’t have
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ρj = M(πj) , and so (ρ1 ⊗C,min ρ2)|A1
⊗C,minA2

= π1 ⊗C,min π2 , for appropriate non-

degenerate ∗-representations πj : Aj −→ B(H) , because (ρ1 ⊗C,min ρ2)|A1
⊗C,minA2

is

not always non-degenerate. Taking, for example, for A1 , A2 the non-zero C∗-algebras

over C([0, 1]) with A1 ⊗C([0,1]),min A2 = {0} , given in [8] before Proposition 3.3, we

will have ρ1 6= 0 and ρ2 6= 0 , hence (ρ1 ⊗C([0,1]),min ρ2) 6= 0 , while (ρ1 ⊗C([0,1]),min

ρ2)|A1
⊗C([0,1]),minA2

= 0 .
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(1995): 81–92.
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