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CHAPTER I

INTRODUCTION

For every C*-algebra A, let Z(A) ={z € A; az = za for all a € A} be its centre
and M(A) = {x € A*; AxUaA C A} its multiplier algebra (see e.g. [1], 3.12 or [2],
2.2).

We recall that a *-representation = : A — B(H) is called non-degenerate if for any
0 # £ € H there is some a € A with 7(a) £ # 0, or equivalently, if the closed linear
span H, of m(A)H is equal to H . To a given *-representation 7 : A — B(H) we always
can associate the non-degenerate x-representation A > a — w(a)|H, € B(H.). If
A is unital and 7 : A — B(H) is a non-degenerate x-representation, then 7 carries
the unit 14 of A to the identity map 1 on H.

Every non-degenerate #-representation 7 : A — B(H) extends to a unique unital
s-representation M(x) : M(A) — B(H), which is a *-isomorphism of M (A) onto the
C*-subalgebra {T € B(H); n(A) TUTw(A) C m(A)} € B(H) whenever 7 is injective
(see e.g. [1], 3.12 or [2], 2.2.11, 2.2.16, 2.2.17). More precisely, M () is the restriction
to M(A) of the normal extension A* '~ B(H) of w, so 7(A) and M (7)(M(A))
generate the same von Neumann algebra.

Let now C' be a unital abelian C*-algebra and let €2 denote its Gelfand spectrum.
If Ais a C*-algebra and ¢ : C' — Z(M(A)) is an injective unital *-homomorphism,
then we say that (A,¢), or simply A if ¢ is clear from the context, is a C*-algebra
over C. In this case, for any non-degenerate x-representation = : A — B(H), the

composition m o ¢ = M(m) o ¢ can be considered.



If (A,:)is a C*-algebra over C', then

L(t)={uec);ceC, ct)=0}A, te (1.1)

are closed two-sided ideals in A. We shall call them Glimm ideals. Let m,; denote the
canonical map A — A/I,(t). Then we have () I,(t) = {0}, that is ||a]| = sup ||7,+(a)||
teQ

teQ
for all a € A (see [3], Remarks on page 232). We notice that the functions

Q3t— ||m,+(a)] ac A

b)

are always upper semi-continuous (see [3]|, Lemma 9 or [4], Lemma 3.1 or [5], Lemma
2.3), but they are in general not continuous. If they are continuous, then (A, :) will
be called a continuous C*-algebra over C.

C*-tensor products of C*-algebras over C' were already considered by G. A. Elliott
(6] and G. G. Kasparov [7], 1.6, but a systematic study of such tensor products was
undertaken only later by E. Blanchard [8], [9], B. Magajna [10] and T. Giordano - J.
Mingo [11].

Let (A;, t;) and (A,, t,) be C*-algebras over C and let us consider the x-

homomorphisms
Tyt & Mot - A1 & AQ e (Al/[Ll (t)) & (AQ/IL2<t)) y te Q,

where ® stands for the algebraic tensor product over C. On every quotient (A4, /1,, ()

® (A2/I,,(t)) there exists the least C*-norm || - || (see [12] or [13], 6.4) and
AL ® Ay 3 a v (7, @ T0y.0) (@) fmin

is a C"*-seminorm. Following E. Blanchard, the minimal C*-tensor product of A1 and
Ay over C'is defined as the Hausdorff completion Ay ®¢ min A2 of A; ® Ay with respect

to the C*-seminorm

Al ® A2 S>ar— Ha“amin = Sug H(,/Ttl,t ® Wtz,t)(a)”mina (1'2)
te



that is the C*-algebra obtained by the completion of the quotient x-algebra
(A1 ® Ag) /T with T ={a€ A @ As; (1, @Tiyy)(a) =0, forall t € Q}

relative to the C*-norm induced by || - ||¢ min -

On the other hand, spatial tensor products of W*-algebras over abelian W*-
algebras were considered by S. Stratila and L. Zsid6. They showed in [14], Lemma 5.2
that if Z is an abelian W*-algebra, M, , My are W*-algebras and ¢, : Z — Z(M;),
Ly 1 Z — Z(Msy) are injective unital normal *-homomorphisms, then there exist in-
jective unital normal s-representations m, : M, — B(H), m, : M, — B(H) on the
same Hilbert space H, such that 7, o1, = m, 0, and m(M,) C N, m,(M,) C N’ for
some type I von Neumann algebra N C B(H) with centre equal to (7 0¢;)(Z). On
the other hand, according to [14], Lemma 5.4, if p, : M; — B(K), p, : M, — B(K)
are any injective unital normal #representations such that p, o ¢, = p, o, and
p1(M,) C R, py(M,) C R for some type I von Neumann algebra R C B(K) with

centre equal to (p; o ¢j)(Z), then there is a *-isomorphism
© 1wy (M) V my(My) — py(My) V py (M)
satisfying
O () (x1)my (w2)) =y (@1)py(a2) for all a1/€ My, zy € Ms.

In other words, the von Neumann algebra 7 (M) V 7, (M,) is unique up to canonical
x-isomorphism. Since in the case Z = C it is *-isomorphic to the usual spatial tensor
product (over C) M; ® My (see [15], Lemma 2), it is natural to call it in the general
case the spatial W*-tensor product of My and My over Z .

The goal of this thesis is to link the minimal C*-tensor product with the spatial

W*-tensor product.



The first main result (Theorem 4.4) claims that if C'is a unital abelian C*-algebra,
(A, ¢;) and (A,, t,) are C*-algebras over C' and 7; : A; — B(H), j =1, 2, are

non-degenerate s-representations such that
M(m))ot, = M(my)ot, and m(A;) C N, my(A,) C N’ (1.3)

for some type I von Neumann algebra N' C B(H) with centre (M (m;) 0 ¢;)(C)”, then
there exists a *-representation of Ay @¢cmin A2 on H, which carries the canonical
image (a1 ® az) /T € (A1 ® As) /T of any a; @ as € Ay @ A, to m(a;) Ty(a,) . This
x-representation is uniquely determined and we denote it by m; ®¢ min 7, . Clearly,
T ®C min Ty Maps the minimal C*-tensor product A; ®c min A2 into the spatial W*-
tensor product m; (A;)"” V my(Ay)" of m (A,)" and m,(A,)" over (m; 0¢;)(C)".

Chapter 5 is dedicated to tensor products of Hilbert modules occuring in the
theory of spatial tensor products of W*-algebras over abelian W*-algebras. This
chapter can be considered as belonging to the topological reduction theory of von
Neumann algebras, in the spirit of [16], [17], [18], [19] and [4]. In the main result of
this chapter (Theorem 5.5) we give a description of the elements in the tensor product
of the considered Hilbert modules, extending a previously proved result concerning
the description of the vectors in a Hilbert space tensor product (Proposition 5.1).
The results of this chapter are used in Chapter 6 to reprove a result of H. Halpern
about the structure of a normal conditional expectation of ‘a type I von Neumann
algebra-onto its centre (Theorem 6.6).

In Chapter 7 Glimm ideals are described in terms of a faithful spatial represen-
tation. As an application, Jc is characterized in terms of faithful non-degenerate
«-representations 7, : A; — B(H) satistying (1.3) (Corollary 7.7).

Finally, in Chapter 8 we first exhibit an example of faithful 7, and 7, for which

T, ®@Cmin Ty 1s not faithful (Proposition 8.2). Subsequently we prove criteria for



faithful non-degenerate *-representations m; : A; — B(H) satisfying (1.3) in order
that 7, ®¢ min Ty be faithful (Theorem 8.5). It will follow that if A, , A, are unital
and 7, , 7, are faithful in a stronger sense, then m, ®¢ min T, Will be faithful, providing
thus an identification of the minimal C*-tensor product Ay ®c min A2 with the C*-
subalgebra of the spatial W*-tensor product 7, (A4,)"Vm,(A,)” generated by the images
7 (4;) and m,(A,) (Corollary 8.7).

For the basic facts concerning C*-algebras and von Neumann algebras we refer to

the standard textbooks [20], [21], [13], [1], [22] and [23].



CHAPTER 11
PRELIMINARIES RELATED WITH SPATIAL
W*-TENSOR PRODUCTS OVER ABELIAN

W*-ALGEBRAS

In [14], Lemma 2.2, the commutation theorem of M. Tomita was extended to the
frame of spatial W*-tensor products over abelian 1/ *-subalgebras. The proof of this
general commutative theorem is based on a careful analysis of the Z,-submodule and
Z-submodule of Ne, where N is a type [ W*-algebra with centre Z and e is an abelian
projection in N, performed in [14], Chapter 2. In this chapter we recall certain facts
concerning such submodules, completing them when our needs require this.

We recall that if N is a type I factor and e is a minimal projection in N , then the

equality
exe = pe(x)e, reN
defines a normal state ¢, on N, Ne becomes a Hilbert space with the inner product
Ne x Nes (z,y) — @o(y*x)
and, associating to every x € N the left multiplication operator
Ne>yr— L,(y) =xy € Ne,

we get a *-isomorphism N > x +—— L, € B(Ne).
The above construction can be extended to arbitrary type I von Neumann algebras.

Let N be a type I von Neumann algebra with centre Z . If e is an abelian projection



in N with central support zy(e), then the map

Zizy(e)d zzy(e) — zzy(e)e = ze € eNe (2.1)

is a *-isomorphism. For every x € N, we denote the inverse image of exe in Z zy(e)
under this isomorphism by ®.(x). Then &, : N — Zzy(e) is a normal positive

Z-module mapping with ®.(1y) = zy(e) , uniquely defined by the equality

exe = P.(x)e, z €N (2.2)

(see e.g. [16], [17]). Furthermore, since (2.1) is isometric, we have

lezell = lj@el@)ll,  xeN. (2.3)

Furthermore, if zy(e) = 1y, then ®, is a normal conditional expectation of N onto
Z with support e. In this case Ne becomes a Hilbert Z-module with the Z-valued

inner product
Ne x Ne 5 (z,y) — P.(y*z)-

Let Bz(Ne) denote the set of all bounded Z-module morphisms of Ne into itself and,

for every x € N, let us consider the left multiplication operator
Ne > yr— L.(y) =xy € Ne.
Then Bz(Ne) becomes in a natural way a C*-algebra-and the map

N>z+— L, € Bz(Ne) (2.4)

is an injective *-homomorphism (see [14], 1.13.(4)). Actually we have more:

Lemma 2.1. Let N be a type I von Neumann algebra with centre Z, and e € N an

abelian projection of central support 1 . Then (2.4) is a x-isomorphism.



Proof. By well known classical results (see e.g. [24], 7.5 — 7.6), the closed unit ball of
Bz(Ne) is compact with respect to the topology of the pointwise w-convergence, so
the C*-algebra Bz(Ne) is the dual space of some Banach space and the corresponding
weak® topology on the closed unit ball of Bz (Ne) coincides with the topology of the
pointwise w-convergence. Therefore Bz(Ne) is a W*-algebra and the w-topology on
its closed unit ball is the topology of the pointwise w-convergence (see [22], 1.1.2,
1.13.3, 1.16.7 or [24], 8.4). In particular, since {Ly; x € N} 3 L1y = 1, (ve) is a
x-subalgebra of Bz(Ne), whose closed unit ball is closed with respect to the topology
of the pointwise w-convergence, it is a W*-subalgebra of Bz (Ne) .

Next we compute the relative commutant of the above WW*-subalgebra:
{Ly; x € NY NBz(Ne)={L,; z€ Z}. (2.5)
Forlet T € {L,; x € N} N Bz(Ne) be arbitrary. Then
T(zy) = (ToLy)(y) = (LuoT)(y) =2T(y), z€N,yé€ Ne. (2.6)

In particular, T'(e) = eT(e) € eNe = Ze, hence T'(e) = z; e for some z, € Z. Now

(2.6) yields for every z € Ne:

T(z) =T(we) = 2T(e) = wzpe = zpx = L. ().

By (2.5), the centre of Bz(Ne) is {L.; z € Z} ..In particular, the central support
of the projection L,-is L; = IBZ(NG) .
On the other hand, L. is an abelian projection. Indeed, since L.(z) = ex =
O (z)e, x € Ne, we have for every T € Bz(Ne)
(LeTLe)(z) = (LeT) (Pe(2)e) = Le(Pe(x)T(€)) = Pe(z) P (T'(€))e

= 2P (v)e = zp Le(2) = (LZTLQ)(x) :

50 L{TLe = L, L. € Z(Bz(Ne))-Le .



Consequently, Bz(Ne) is a type | W*-algebra. Since
Z(Bz(Ne)) ={L.;z€ Z} C{L,; x € N} C Bz(Ne),

(2.5) yields that {L,; x € N} = Bz(Ne) (cf. [14], 1.7.(4)). O

The next three simple lemmas concerning abelian projections are variants of well
known results. They are exposed here for further reference, for the convenience of

the reader:

Lemma 2.2. Let N be a type I von Neumann algebra. If f, p € N are projections,

f <pand [ is abelian, then there exists an abelian projection e € N such that

f£e<p, zn(e)=zy(p).

Proof. Let us first consider the case f = 0. Since N is of type I, so is pNp. Let e be
an abelian projection in p/Np with central support one, that is z,n,(e) = p. Since
exeye = e(pwep)(pyep) = e(pyep)(prep) = eyexe,  x,y €N,
e is an abelian projection also in N. Clearly, e < p implies zx(e) < zy(p). On the
other hand, since e < pzy(e)p € Z(pNp) and z,n,(e) = p, we have
p<pzn(e)p=pzn(e) <zn(e).

Consequently also the converse inequality zy(p) < zy/(e) holds.
The case of a general f can be reduced to the above treated case. Indeed, by the

above part of the proof there is an abelian projection e, € NN such that

eo <p—pzn(f), zn(e) =2n (p —pZN(f)) =zn(p) — zn(f)
and then e = f 4+ e, € N will be an abelian projection satisfying f < e < p and

zn(e) = 2n(p) - O
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Lemma 2.3. Let N be a type I von Neumann algebra. Then
|z|| = sup {||zv||; v € N partial isometry, v'v <e}, z€N
holds for any abelian projection e € N with zy(e) = 1y . On the other hand,
|z]|* = sup {||®.(z*2)||; e € N abelian projection, zy(e) = 1n}, x € N.
Proof. First we prove that
|z|| = sup{||@fll; f € N abelian projection }, x & N. (2.7)

For let x € N and ¢ > ( be arbitrary. By the spectral theorem there exists a

projection p € N commuting with #*z such that
zzp = ([2*z]| —€)p, (2.8)

#'z (Iy —p) < (llo"z] —¢)(An —p)
(see e.g. [23], Corollary 2.21). Note that p # 0, because p = 0 would imply z*z <

|x*x|| — €, a contradiction. Since N is of type I, p majorizes a non-zero abelian

projection f € N and (2.8) yields

fowf = faapf > ("] =€) f.
Consequently [laf|>=Afa fl| ZA]z"z] ~ )l f =N |* —e-
Now let e be any abelian projection in N with zy(e) = 1y . Let further x € N be

arbitrary. Taking into-account (2.7),
||| = sup {||zv]|; v € N partial isometry, v*v < e}

will follow once we show that for every abelian projection f € N there exists a partial
isometry v € N such that v*v < e and ||z f|| < ||zv|| .
But zy(f) < 1y = zy(e) implies the existence of a partial isometry v € N such

that vo* = f, v*v < e (see e.g. [23], Proposition 4.10). Then
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lzfI1* = llzfz* || = [levvz*|| = [|av]*.
Finally, let € N be arbitrary. Again by (2.7),
|z||* = sup {||®(x*z)|| ; € € N abelian projection, zy(e) = 1y}

will follow once we show that for every abelian projection f € N there exists an
abelian projection e € N with zy(e) = 1y such that ||z f]|* < [|[®.(z*z)|| .
But Lemma 2.2, applied with p = 1, , implies the existence of an abelian projec-

tion e € N such that f <e and zy(e) = 1y . Then (2.2) yields
lzf1I* < Nzell® = llea*ze|| = [|@c(z*a)elf < [|Pe(z"2)]] .
0

Lemma 2.4. Let N C B(H) be a type I von Neumann algebra, e an abelian projection

in N, and f an abelian projection in N'. Then ef is an abelian projection in N V N’

with zyyni(ef) = zy(e) zn(f) and
D r(zy) = Pel(x)Pf(y) zxeEN,ye N'.
Moreover, if zy(e) =an:(f), then
O, = Dof|y and Py = Pep|nr.

Proof. Let us denote for convenience Z = Z(N) =Z(N') = Z(N V N').
Clearly, ef = fe is a projection'in N V N’. Since, for every x;, o € N and

yl)?/QGN/a

(efriyief)(efrayaef) =(exrexae)(fyi fyaf)
=(exzexie)(fyafyif) = (efrayaef)(efriyref),

ef is an abelian projection in N V N'.

If p € Z is a projection such that ef < p, then it follows successively
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ey f€E=yefpl =pyefE e pH forall y e N, € H,ie eN'fH CpH,
€ZNf<f)H C pH, ie. ZN/<f)€ = GZN/(f) <p,

zne(flye€ = yezn (f)§ = ypezn(f)§ = pyzn(fle§ €pH, ye N, (€H, ie.

ZN/<f>N€H C p’H,
ZN/(f) ZN<€)H @ pH, i.e. ZN/(f) ZN<€> < p .

Therefore zy/(f)zn(e) < zyynr(ef). But the converse inequality is trivial, so we

actually have
zyvi(ef) =z (f) zn(e) . (2.9)

Let x € N, y € N’ be arbitrary. According to (2.2), we deduce

efwyef = (exe)(fyf) = Pe(x)ePyp(y)f = Pe(2)Ps(y)ef .
Since, by (2.9), we have @, (2)®(y) € Zan(e) zn(f) = Z zyun(ef) , it follows that
Def(zy) = Pe(2)Py(y) -
Assume now that zy(e) = zx:(f) = zyvar(ef) - Then, for every z € N, efzef =
(exe)f = o(x)ef and B (x) € Zzxyni(ef) imply that @, () = ®.(x). Therefore

P, = O ¢|y . Similarly we deduce also @y = D ¢|n . H

The following result concerning the structure of the Z-submodules of Ne, where
N is a type I von Neumann algebra with eentre Z and e is an abelian projection in

N, will be used in the sequel:

Lemma 2.5. Let N C B(H) be a type I von Neumann algebra with centre Z , and
e € N an abelian projection. If X C Ne is a Z-submodule, then there is a unique

projection p € N such that

s

X =pNe, zn(p) < zn(e),
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namely p is the orthogonal projection onto lin X'H (the closed linear span of {x&; x €
X, £ € H}). Moreover, if X = Me, where Z C M C N is a von Neumann subalgebra,
then

peM NN, e<p, zn(e)=2zn(p).

Proof. All the above statements, except those concerning central supports, were
proved in [14], 1.6 and 1.7. For zy(e) > zy(p), let ¢ € Z be a projection ma-
jorizing e. Then xe = xeq = que for every z € M , so q(zef) = ze for every £ € H.

Since p is the projection onto lin MeH , it follows that ¢ > p. O

We shall need also the following variant of [14], Lemma 1.2, for which we have

just to reproduce the proof of [14], Lemma 1.2:

Lemma 2.6. Let N be a type [ von Neumann algebra with centre Z and e € N an

abelian projection. For every x-subalgebra B C N and z € Be”, ||z|| = 1, we have

zefyc BeZi; [yl <1},
where Z;" denotes the set of all elements z € Z with0 < z < 1y .

Proof. Let x € Be” be such that ||z|| = 1. Consider a net
Bes b=y — .

Then

D (zizy) 2 25, (27x) 2.
Let f,g:[0,00) — [0,1] be functions such that
f)y=1 fort<1,

gt)y=1 fort>1,

and g(t)=tf(t) forallte[0,00).



Since f is operator continuous,

Zn 3 [(Pe(zizn)'?) =5 f(Pe(2™2)'?) = 1,

£ (@ (x52)?)|| <1 for all A.
Therefore f(®,(z}xy)?)zy — & with

£ (®e(a5zn) ) an]| = || e (@3 f (Re(z320) /%)) |
= [/ (De(@320)?) "D (w50 |
= Hf( %%)1/2)‘1)6@313,\)1/2“2

= g (@(z50 ) <1,

and f(®.(z322)"/?)2\ € BeZ because z, =

(@c(zin) )] < 1.

14



CHAPTER II1
PRELIMINARIES RELATED WITH MINIMAL
C*-TENSOR PRODUCTS OVER ABELIAN

C*-ALGEBRAS

Let C' be a unital abelian C*-algebra and let 2 denote its Gelfand spectrum.
If (A,:) is a C*-algebra over C', then also (M(A),¢) is a C*-algebra over C'. To
distinguish between the ideals defined by (1.1) for (A, ¢) and for (M(A),¢), we shall

keep the notation

for the ideals of A and shall set

IL(t)y={uc);ceC,ct) =0} M(A), te.

Similarly, we keep the notation m,,; for the canonical map A — A/I,(t) and shall
denote the canonical map M(A) = M(A)/Z(t) by 7,4 .
The next proposition establishes a link between I,(¢) and 7,(¢) , as well as between

m,¢ and 7,4 (ef[4]; Lemma 3:4):

Proposition 3.1. Let C' be a unital abelian C*-algebra, ) its Gelfand spectrum, and
(A,t) a C*-algebra over C'. Then

(i) me(e(c)a) = c(t)mila), teQ,ceC,acA,;

() Ime(@ll = inf Ju(call = inf [ilc)al, teQ aeA

c(t)=1 0<c<1¢
c(t)=1



16
(iii) for any t € Q we have
L) =AnL@E), @) =T, acA.

Proof. (i) Since t(c)a — c(t)a = (v(c) — c(t)1ray)a = t(c — c(t)1c)a € I,(t), we have
Tt (t(c)a — c(t)a) = 0.

(ii) Since ||m,4|| < 1, by the above proved (i) we have

Im@)ll = in Jle®malali= nf fzuldca)l < inf [l

c(t)=1 c(t)=1 c(t)=1

< i 2
<.inf_Je(e)a] .
Ogcglc

c(t)=1

For the converse inequalities, let e > 0 be arbitrary. Since

{ZL(C]-)CL]'; c;j €C,ci(t) =0,a, EA,nGN}

=1
is dense in I,(t) and ||m,.(a)|| = lla/L(t)|| = inf{|la — y||,y € L(t)}, there exist
1,62, ... ,¢, € Cand ay,a9, ..., a, € Asuch that ¢;j(t) =0forall j =1,2,...,n
and
@l 2 fJa— 3 ejas]|
j:

and then there is an open set t € V, C ) such that
s eV = (8)| < 55 forall 1< i< n.
nla |

By Urysohn Lemma, there is ¢, € C''such that 0 <e¢, < 1¢,¢,(t) =1, and ¢,(s) =0

for every's € Q \V, . Since |(coc;)(8)] =0 for's € QNV, and |(cp¢)(s)] < m for
j

s €V,, we have for every 1 < 7 <mn:

HL(COCj)ajH < HL(COCj)H HaJH < m H(LJH = %

Therefore

n

I (@)l + = || = 3 ules)a;

=1

>

t(co)a — il t(coc)ay
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> [|e(co)all - Z lelcocs)asll = [le(co)all =

=
50 || 4(a)ll +2¢ = [le(co)al = inf - le(c)all.

0<c<L1¢
c(t)=1
(iii) Let a € A be arbitrary. Applying (ii) to m,+(a) and to 7,4(a), we get

Im(a)ll = inf [e(c)al = |IT(a)]-

c(t)=1
In particular, a € AN (t) = a € L,(t), henee the inclusion AN, (t) C I,(t) holds.

Since the converse inclusion is trivial, we have I,(£) = AN I,(t) . O
Proposition 3.1.(iii) implies immediately:

Corollary 3.2. Let C' be a unital abelian C*-algebra, € its Gelfand spectrum, and

(A1) a C*-algebra over C'. Then, for every t € ), the map

puid AIL(8) 3 74(a) i Foola) € M(A)/T,(1)

15 a well defined injective x-homomorphism and the diagram

A inclusion M ( A)

WL,tJ/ J/%L,t

ATty =" M(A)/ 1Y)
15 commutative.
Now let C' be a unital abelian C*-algebra with Gelfand spectrum (2 and let
(A, 1), (Ay, 1) be C*-algebras over C'. For every t € €, Corollary 3.2 entails
the existence of the injective *-homomorphisms p,; 4, p,,+ and then the tensor prod-

uct *-homomorphism

Dot Ormin Puat * A1/ 1, (£) @unin Ao/ Iy (8) — M(A1)/T, (t) @unin M(A2) /1, (1)

is injective, hence isometric, and the diagram

Al ®A2 inclusion M(Al) ® M(AQ)

7rL1,t®7rL2,tl l?&l,t@ﬁnz,t

(A1) 1, (8)) @uin (Ao/ Ly (8)) L2020 (MT(AN) /T, (1)) @nin (M (A) /T, (8))
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is commutative. Consequently:

Corollary 3.3. Let C' be a unital abelian C*-algebra with Gelfand spectrum €} and

let (A, ;). (Ay, ty) be C*-algebras over C'. Then, for everyt € 1,
(721t @ T00,6) (@) [[inin = [|(Fort @ Top ) (@) || min a€ A ®A;.
As a consequence of the above corollary, we have

sup “(’”u,t ® sz,t)(a)Hmin = Sup H(%Llyt ® %Lz,t)(a)”min ) a€ A ® A,
teQ teQ

hence the restriction of the C*-seminorm

M(A)® M(Az) S 2z +— sup |[(T, ¢ ® 7oy 1) () || min

teQ)

to A1 ® Ay is equal to the C*-seminorm

A ® Ay 3 ar— s (7, + ® 75.4)(@) |l min -
te

Therefore the C*-seminorm (1.2) can be defined also by the formula
lallcmin = Sug (Tt ® Tg,) (@) llmim a€ A ®A.
te

Every bounded linear functional ¢ on a C*-algebra A can be considered in the
natural way a linear functional on A**, hence also on M(A) C A*: the obtained
linear functional on' M (A), which will be still denoted by ¢, is actually the strictly
continuous extension of the original functional-on M (A) (for-the strict topology see
e.g. [2], 2.3).

The next result is slightly more general than [21], Proposition 4.3.14 and can be

deduced from [24], Corollary 4.7:

Proposition 3.4. Let C be a unital abelian C*-algebra, Q) its Gelfand spectrum, (A, 1)

a C*-algebra over C', and ¢ a state on A. Then, for every t € ), the conditions
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(i) (,O(L(C)a) = c(t) p(a), ceC,a€A,
(11) SO|]L(15) = 07
(iii) ¢ (u(c)) = (), ceC
are equivalent. Moreover, if ¢ is a pure state on A then the above conditions are

satisfied for an appropriate t € ).

Proof. (i) = (ii) is obvious and (ii) = (iii) follows easily: any approximate unit {u,},
for A is strictly convergent to Iacay (see e.g. [2], Lemma 2.3.3) and the strict conti-
nuity of ¢ on M(A) yields
gp(b(c — c(t)lc)u)\> — go(c(c = c(t)lo)) =(ule)) — c(t), ce(C.
Now let us assume that (iii) is satisfied and let @ € A" | ||la|| < 1, be arbitrary.

For p(a) = 0 we have by the Schwarz Inequality

e(ule) a)=0=c(t)p(a), ceC,

while for ¢(1x7¢4)y — a) = 0 we deduce, again by the Schwarz inequality,

o (1(c) a) = B(de))—plehe) ey — @) = el =c(t) p(a),  c€C.

On the other hand, if p(a) > 0 and ¢(1y;a) — a) > 0 then

C5crs e(u(a), OBC&WSO(L(.)“M(A)_G))

are states satisfying gor = p(a) 1 +¢(1aa)—a) 12 . Since o is by (iii) a character,

hence a pure state, it follows that ¢, = 15 = ¢ o «. Therefore
p(ilc)a) = p(a)¥ri(c) = p(a) p(u(c)) = c(t) p(a),  c€C.
Finally, let us assume that ¢ is a pure state on A. Let 7, : A — B(H,) denote
the GNS representation associated to ¢ and let &, be its canonical cyclic vector.

Then 7, , hence also M (r,,) is irreducible and it follows that M (m,)(:(C)) = C 1y, .

Therefore
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(M(mp) 01)(c) = c(t) 13, , ceC
for some ¢ € 2 and we obtain

P (U0) = (M) (0) &

&) =clt) (6 16) =clt),  ceC.

]

S(A) will denote the set of all states of the C*-algebra A, while P(A) will stand
for the set of all pure states of A. If C and (A,¢) are as in Proposition 3.4, then we
denote by S,(A) the set of all states ¢ of A for which ¢ o is a character on C'. By
Lemma 3.4, P(A) C S,(A).

As a corollary, we get, the following formula for the minimal C*-tensor product

norm (see [6], Sublemma 2.1):

Corollary 3.5. Let C' be a unital abelian C*-algebra with Gelfand spectrum € and

let (A;, ty), (A, ty) be C*-algebras over C'. Then, for any a € A ® As,

(01 ® pa)(ba*ab) ¥i € P(A;),j=1,2, 001 = py01
(1 ® 2)(b*b) be A & Ay, (91® ) (b*D) > 0

||a’Hé’,min = sup

Proof. The well known formula for the spatial tensor product norm (see e.g. [24],

Corollary 3/4.20 or [5], Lemma 4.7) yields that [|(7,,+ ® 7,,)(a) is, for every

I
min

t € 2, the supremum of

(101 @ ¥2) (7,4 @ Ty ) (b*aab)) _ (1 0 mie) @ (g 0y ) ) (b a™ab) (3.1)
(¢1 2 ¢2) ((7TL1,t %Y ﬂLz,t)(b*b)) ((@Z}l o 77L1,t) ® (¢2 © 7TL2,t)> (b*b) ‘

over all ¢; € P(Aj/Lj (t)) ,be A ® Ay with (¢ ®¢2)((m1,t®m27t)(b*b)) > (0. Thus

l|al|& min is the supremum of (3.1) over

all ; € P(A;/1,(1)), b€ A @ Ay with (1 ® ¥o) (.1 ® m,,4) (b7D)) > 0

and all t € Q).
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But, taking into account Proposition 3.4, it is easy to see that this supremum is equal

to that one in the statement. O

We can consider on the quotients (A4;/1,,(t)) ® (A2/I,,(t)) also the greatest C*-

norm || - ||max (see e.g. [13], 6.3) and define the C*-seminorm

Al ® Ay 3 ar— “aHC,max F 7 Sug ||<7TL1,t ® 77L2¢)<a)Hmax .
te

Following E. Blanchard, the maxzimal C*-tensor product of Ay and Ay over C' is
defined as the Hausdorff completion A; ®cax A2 of A1 ® Ay with respect to the
above C*-seminorm, that is the C*-algebra obtained by the completion of the quotient
x-algebra (A, ® Ay) /T relative to the C*-norm induced by || - ||c,max -

The subscripts max and min for the seminorms ||+ ||c max and || || ¢ min are explained
by the following extremality properties proved by G. A. Elliott (see [6], Sublemma

2.1) and E. Blanchard (see [8], Propositions 2.4 and 2.8):

Proposition 3.6. Let C' be a unital abelian C*-algebra and let (A, t,), (Ay, ty) be

C*-algebras over C. If p(-) is a C*-seminorm on A; ® Ay, then
Jo C{a € A ® Ay pla) =0} = pla) < |lallomax, a € A ® Ay,

Jo={a€ A ®Ay; pla) =0} = pla) > ||a]lcmin, a € A1 @ As.

We recall that the algebraic tensor product Ay ®c As is the quotient x-algebra
(A1 ® As) /IC, where Z, is the self-adjoint two-sided ideal of A; ® Ay equal to the

linear span
lin <{ (Ll(C) al) Rag —a; @ (LQ(C) ag) a1 €A, ay € Ay, cE C’}) )
Since Z is clearly contained in

jc:{a€A1®A2; ||@||C,min:0}:{a€A1®A2; ||a’HC,maX:0}7
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the seminorms || - ||c.min and || - [|¢max factorize to C*-seminorms on A; ®¢ A, still
denoted by || - [[c;min and || - ||¢max - These C*-seminorms are not always C*-norms,
because in general Z, # J (see [8], Section 3).

Nevertheless, according to [8], Propositions 2.2 and 3.1, we have:

Proposition 3.7. Let C be a unital abelian C*-algebra and let (A, 1), (Ay, ty) be
C*-algebras over C'. Then any C*-seminorm on A, ® As, which vanishes on I,

will vanish on whole Jp . Moreover, if (A, . ty) or (A, ty) is continuous, then even

We remark that T. Giordano and J. A. Mingo studied the case when A;, A; and
C' are von Neumann algebras and the mappings ¢ +— ¢1(c) and ¢ — 15(c) are normal
(see [11], Section 3). They showed that in this case, for given spatial representations
A; C B(H) and Ay C B(K), one gets a faithful representation of A; ®¢ Az on the
Hilbert space H ®¢ K constructed by J.-L. Sauvageot [25], such that ||z||cmi is the
operator norm on ‘H ®¢ K for all z € Ay ®c Ay . In particular, || - ||¢mn IS @ norm on
Ay ®c A, , that is I, = J . None the less, since in this case (4, , ¢;) and (A4, )
are continuous (see [3], Lemma 10), the above equality follows also from Proposition
3.7.

A proper C*=algebra over C' isa C*-algebra (A, ¢) over C such that, for some
faithful unital -representation © : M(A) — B(H), (m o ¢)(C). is weak operator
closed, i.e. (mo)(C) € B(H) is a von Neumann algebra. B. Magajna extended the
above quoted result of Giordano and Mingo to the case when (A4, , ¢;) and (A4,, ¢,) are
proper C*-algebras over C' (see [10], Section 3). We notice that proper C*-algebras

over C are still continuous.



CHAPTER IV
TENSOR PRODUCTS OF »-REPRESENTATIONS OVER

ABELIAN C*-ALGEBRAS

In this chapter we prove that if C' is a unital abelian C*-algebra, (A, ¢;) and
(Ay, 1y) are C*-algebras over C' and 7; : A; — B(H), j =1, 2, are non-degenerate

x-representations such that
M(my) o1, = M(m,) oty and m(A;) € N, my(4,) C N

for some type I von Neumann algebra N C B(H) with centre (M (7;) 0 ¢;)(C)”, then

the *-homomorphism 7 : A; ® Ay — B(H) defined by
7T(a1®a2):7r1(a1)72(a2), aq EAl, CLQEAQ.

can be factored through A; ®c min A2 and so gives rise to a *-representation A; ®¢ min

Ay — B(H), the C*-tensor product over C of m; and 7.

Lemma 4.1. Let N.C B(H) be a type I von Neumann-algebra of centre 7, Z C
M, Cc N,Z C My C N’ von Neumann subalgebras, By C M,, By C My s-dense
x-subalgebras, and e, f abelian projections in N, N, respectively. Let further p €

M{ NN and g € MjN N' be the projections such that

Mlessz67 egpa ZN(e):ZN(p)u

M—Z.fS:qN/fa fgqa ZN'(f):ZN'<q)

(such p, q exist and are unique by Lemma 2.5). Then
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(i) ef is an abelian projection of central support pq in pg(N V N')pq ;
(i) (MyVMyef =pg(NV N)ef;

(iii) for every x € NV N', we have

lzpg|| = sup {|lzy|l; y € lin(B1Ba)efZy , |lyll < 1}.

Proof. (i) By Lemma 2.4, ef is an abelian projection in NV N’. Since ef < pq, it is
an abelian projection also in pg(N V N')pq.

On the other hand, since the centre of the reduced algebra pg(INV N')pq is equal to
pgZ(N V N') = pqZ , the central support z,qnvnnpg(ef) is of the form pgz, for some

projection z, € Z . Now, taking into account Lemma 2.4, we deduce successively
ef £ Zpgnvnrypglef) = pazo < 2o,
pq < zn(p) 2 (q) = zn(€) 2 (f) = zvuni (ef) < 2,
Pq= PqZo = Zpg(nun')pq(€f) -
(ii) Since
T1T2ef = Tiexsf = priequaf = pgrizaef T € My, x5 € My,

we have (M; V ]\/[Q)efS C pg(N V N')ef .
To prove the reverse inclusion, lety € N, ' &N’ be arbitrary. Then pye € Me"
and qy'f € Myf ", so by Lemma 2.6 there exist nets {axe}, C Me and {buf}, C Myf

such that

axe — pye and [laxe|| < [[pye]| for every A,

buf — qy'f and |[b.f| < gy f|| for every p.

It follows that axb,ef % pqyy'ef , hence pqyy'ef € (M; V Mz)efs.
Y

(iii) Let x € N V N’ be arbitrary.
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According to (i), ef is an abelian projection of central support pg in the type I

von Neumann algebra pg(N V N')pg. Thus Lemma 2.3 and (ii) yield
lzpall® = [[pgz*zpq]|

= sup {||pqx*xv|| ;v € pg(N V N')pg partial isometry , v*v < ef}

< |lzpg|| sup {||zv|| ; v € pg(N V N')pq partial isometry, v*v < ef},
SO

|zpg|| = sup {||zv||'s v € pg(N V N')pg partial isometry , v*v < ef }

sup {||zv|| ;v € pg(N V N')pg partial isometry }
= sup {||lzyll; y.€ pa(N V N'ef , |ly|l < 1}
= sup {[leyl|s y € My VILJef , yll <1}

Since lin (B Bs) is a *-subalgebra of N V N’ and

lin(B1By)ef =lin(MyMy)ef = (M, V Mef

Lemma 2.6 entails that

{y € OLVIB)ef", |y <1} = {y €M(Bi By ef 2] [yl <1}
Consequently
lzpall = sup {llzy] ; y € MLV IL)ef |yl < 1}
= sup {||$yH sy elin(BiBo)efZi, llyll < 1}. O
Lemma 4.2. Let C' be a unital abelian C*-algebra with Gelfand spectrum €2 and let

(A, 1), (Ay, L) be C*-algebras over C'. Let further mj : A; — B(H), j = 1,2, be

non-degenerate x-representations, such that

M(m) ot = M(my) oty and 7 (A)) C N, my(Ay) C N
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for a type I von Neumann algebra N C B(H) with centre Z = (M(m;) o 1;)(C)", Q
the Gelfand spectrum of Z , and m : A1 ® Ay — B(H) the x-homomorphism defined
by
(a1 ® az) = m(ar)ma(az), a; € Ay, ag € Ay
If pe m(A) NN, q € m(As) NN’ are projections such that

S Y < .S

pNe = 7T1(A1)€ s QN,f = 7TQ(A2)f
for some abelian projections e € N and f € N’ satisfying

GSP,ZN(G):ZN(]?), qu,ZN’(f):ZN’(Q),

then, denoting z, = zyyn/(€f) = zn(e) zn (f), we have for alla € Ay ® As :

|7 (a)pql| =
be A ® Ay, z€ 7, yeQ

= sup { x(2)(x 0 Bof o w)(b*a*ab)/*; (4.1)
[m(b)efz]] <1

= sup { x(2) (€0, o) 8 (0 B o)) B

beA ®Ay,2€72F, e
TUR ! } (4.2)

[m(b)efz]l <1

< sup H(Wn,t ® 7TL27t)(a)Hmiﬂ . (4.3)
teQ)

Proof. We'notice that. the equality zyyni(ef) = zy(€) zy:(f) in the definition of z,
holds by Lemma 2.4.

Set

Applying Lemma 4.1(iii) with B; = 7;(4;), j = 1,2, we obtain for every x € NV N':
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|zpg|| = sup {ny“ ; y € lin (71(A1)7T2(A2)) efZf, Iyl < 1}
=sup {[|zyll; y € m(Ar @ Ag)efZ, |lyll < 1}
=sup {[lam(befz|; be A1 ® Ay, z € Z, ||m(b)efz| < 1}.
Let a € A} ® Ay be arbitrary. Using the above equality with x = m(a), as well as
(2.3), we deduce (4.1) :
|7 (a)pall* =
=sup {||m(ab)efz||*; b e AL @ A, 2 € ZF, |[w(b)efz|| < 1}
=sup {|lef2*m(b*a*ablef|| ; b€ Ay ® Ay, z € Z, ||w(b)efz| < 1}
= sup {||@cs(*m(bia*ab))||; b€ AL ® Ay, 2 € ZT, ||m(b)efz]| < 1}
= sup {||z%(Pey o m)(b*a*ab)|| ; be A1 ® Ay, z € Zf , ||w(b)efz] < 1}
be A®@Ay, zeZt, xeq
=sup } x(2)%(x o Py om)(b*a*ab) ;
[m(bef =] <1
By Lemma 2.4, we have for every y € Q) and ay € Ay, ay € Ay
(x 0 oy o m)far &azy = x (e, (Ti(ar)ma(an))

)7
ZX( ezo(ﬂ-l ap )(I)fz()(ﬂ-Q ag )>

= (x © ez, o m1)(a1)(x © Py, 0 ) (a2)
i ((X 0B, 0m) & (X0 b, 0 7r2)> (a1 ® ay) .

Therefore
XoPepom=(xoPe, om)R(xoPs, om), XEQ (4.4)

and (4.2) follows.
According to Corollary 3.3, for the proof of (4.3) we can assume without loss of

generality that both A; and Ay are unital. (4.3) will follow once we show that, for
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every be A1 ® Ay, z € Zi and x € Q with ||[w(b)efz|| <1,

V(22 (0 @z, 0m) @ (x 0 D, ©72) ) (b'a"ab) < sUp (M0 @ 7o) (@)l - (45)

teQ
If x(2,) =0, then xyo®,, om = xo®Py, omy =0 and (4.5) holds trivially. Therefore

we shall assume in the sequel that y(z,) # 0. Since x(2,)x(2,) = x(22) = x(2,),

o

then x(z,) = 1.
Let us denote, for convenience,
1= X0, 0m, @Yr=x0®Ps, omy.
@1 and @, are positive linear functionals and |lo;[| = ¢;(14,) = x(2,) = 1, so they
are states. Furthermore, since
(w5 015)(c) = x(20(mj015)(c)) = x(zo)x((m5 0 15)(¢)) = (x o mj 0 5)(c), c€C,
p10L; = XOT;0L; = P,01L, is a multiplicative state on C', that is a character ¢, € Q.

We claim that ¢, vanishes on I, (¢,). Indeed, for every ¢ € C, ¢(t,) = 0, and

aleAl,

o1 (1)) = (71 000 Py (Frla)) ) = clt:) 1 () = 0.
Consequently there exists a state ¢, on Ay /1, (ty) such that ¢ = ¢yom, ¢ . Similarly,
¢, vanishes on I,,(t,) and'so @y =1, o m,,, forsome state ¥, on As/I,,(ty). Then

19 factors by the tensor product state ¥ ®pmints on (Al/IL1 (tx)) Rmin (AZ/L2 (tx)) :

@1 @ @2 = (V1 Quin Vo) © (Ty,ty ® Tnt,) - (4.6)

Now, the norm of the positive linear functional

0 = x(2)? (1 @in ¥2) (T ® T JO) + (v © 7 ) (0))

on (A1/1,(ty)) @min (A2/1,(ty)) is < 1. Indeed, since [|6]| is equal to the value of 6

in the unit of (Ay/1,(ty)) ®min (A2/1,(ty)) , by (4.6) and (4.4) we obtain
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18] = x(2)? (1 @uin 2) ((Tuni @ T ) (B75) )
= X(2)? (1 ® 2) (D) = X(2)? (x © Doy 0 T)(b*D)
= x(@er (27 (0'0) ) = x(@es (zef7(0) 7 (D)e ) )
< |m(befz]? < 1.
Thus, by (4.6),
X(2)? (0 Bezy 0m1) @ (i © Bz, 072) ) (b0 ab) =
= x(2)* (1 ® @o)(b*a*ab)
= x(2)? ((r Euit Y5) O (T, © o) ) (" ab)
=0((m, 4, ® Ty )(a*a))

< (ot @it )00 i = (171, © Tnr, ) (@) |
and (4.5) follows. O

Lemma 4.3. Let N # {0} be a type I von Neumann algebra with centre Z , and
Z C M C N a von Neumann subalgebra. Then there exists a set P of mutually

orthogonal non-zero projections in M'N\N such that > p = 1x and, for everyp € P,
peEP

pNe= Me’
for some abelian projection e € N satisfying e < p,zy(e) = zn(p)-.
Proof. Let P be a maximal set of mutually orthogonal non-zero projections in M'NN
such that, for every p € P,
pNe, = M_eps

for some abelian projection e, € N satistying e, < p, zy(e,) = zn(p). Such family

P exists by Lemma 2.5 and by Zorn Lemma. We will show that Y p=1y.
peP
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Suppose the contrary, that is 1y — > p # 0. By Lemma 2.2 there exists an
peP

abelian projection e € N such that

e<ly— S p, zN(e):zN(1N—zp).

peP pEP

In particular, e # 0. Further, by Lemma 2.5
Me® = p,Ne for some projection p, € M' NN with e < p,.

Let y € N be arbitrary. Since p,ye € p,Ne = Me" , there is a net {z }rin M

such that zye —— p,ye. Since P-C M’ N N, it follows that

Tye ZxA(lN 7 ZP)€= <1N_ ZP)%G = <1N - ZP)poye-

pEP peP peP

Consequently p,ye = <1N 53 p)poye, ie. > ppye=0.

pEP pEP
We conclude that Y pp,/Ne = {0} and so, since zy(e) is the orthogonal projection
peP
onto the closed linear span of NeH, > pp,zn(e) = 0. Thus
pEP

M' NN 2 p,zy(e) = <1N - Zp)pozN(e) <lIy-—> p.

PEP peP

Furthermore, zy(e) > pozn(€)po = popo = € # 0 implies that p,zy(e) # 0 and
zN(po zN(e)) =zn(e).

Thus p, zy(e) is a non-zero projection in M’ N N such that p,zy(e)Ne = p,Ne =
Me”’ with e an abelian projection in N satisfying e < p, zy(e) and zy (€) = zy (Pozn(€)).

But, since p,zy(€) < 1y — Y p, this contradicts the maximality of P . O
peEP

Theorem 4.4. Let C' be a unital abelian C*-algebra with Gelfand spectrum €1 and
let (A, 4y), (Ay, ty) be C*-algebras over C'. Let further mj : A; — B(H), j = 1,2,

be non-degenerate x-representations, such that
M(my) 0 vy = M(my) 01y and m(A;) C N, my(A,) C N

for a type I von Neumann algebra N C B(H) with centre Z = (M (w;) 0 ¢;)(C)", and

7 Al ® Ay — B(H) the x-homomorphism defined by
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7T(CL1 (29 ag) = 7T1((11)7T2(a2) s a; € Al , a9 € AQ .

Then

(@)l < sup [(7y 0 ® 7, 1) (@) [mine = llallemin, @€ Ar@Ay  (47)
te

and thus there is a unique x-representation T : Ay ¢ min A2 — B(H) such that
m(a) =7(a/T), a€ A ®A,,

where a/jc denotes the natural image of a € Ay ® Ay in the quotient x-algebra

(A ® AQ)/jC C Ay @C min As .

Proof. It H = {0}, then (4.7) holds trivially. It remains to prove it in the case
H # {0}.

By Lemma 4.3 there exists a set P C m; (A1)’ NN of mutually orthogonal non-zero
projections such that Y  p =14 and, for every p € P,

peP

S

pNe, =m(A1)"e,

for some abelian projection e, € N satisfying e, < p, zn(e,) = zn(p) .
Similarly, there exists a set @ C mo(Az)' N N' of mutually orthogonal non-zero

projections such that Y ¢ = 1 and, for every ¢ € Q,
qeQ

gN'f, = 7o (As)"fy"

for some abelian projection f, € N" satisfying f;, < ¢, zn/(f,) = zn/(q) .

Let a € A; ® Ay be arbitrary. By Lemma 4.2 we have
Im(a)pqll < llallcmin for every pe P, g€ Q.

Since > p= >, ¢g= 1y and PUQ C m(A) Nm(As) C m(A; ® Ay)", we have
peEP qeQ
m(a*a) = Y m(a*a)pq, where the operators m(a*a)pq are positive and mutually or-
P
thogonal. Consequently:
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Iw(a)[I* = lIm(a*a)|| = sup [|7(a*a)pql| = sup |7 (a)pg|* < [|al|é i -
p,q p,q

]

We will denote 7 in Theorem 4.4 by 71 ®¢ min 72 and call it the tensor product of

m and o over C'. We notice that the *-representation m ®¢ min T2 maps A; ®¢ min

A, onto the C*-subalgebra lin (m(A1)7(A2)) € B(H) and it is non-degenerate.
Indeed, if {u A} , Is an increasing approximate unit for A; and {v“}u is an increasing

approximate unit for A, , then we have
71 (ux) —= 13 and o (v,) .
(see e.g. [24], Lemma 3/4.1), so

(M1 ®c,min ) (U ®v,) [T ) = T (un)m2(vy) == 14

Therefore M(lin (m1(A1)ma(As)) > can be identified with

{ T € B(H); m(Ay)ma(As) T U Tmi(Ag)ma(As) C lin (11 (A1) ma(As)) } .

With this identification,

(A1) U ma(Ag) © M(nn (1 (Ar)ma(A2)) ) and

7T1(CL1)7T2(UM) w 7r1(a1) , (G Al , (48)
7T1(U)\)7T2(CL2) m 7T2(CL2) s o € A2 .

Indeed, we have for-every b; € A, by € Ay

[(m1(a1) — mi(an)ma(vy)) w1 (ba)ma(be) | = [l (arby) mo(be — vuba)|— 0,
71 (b1)ma(Be) (mi(a@r) — mi(an) e (v)) | = (171 (Brar) o (ba = v )l — 0,
[(m2(az) — m1(un)ma(az)) mi(br)ma(ba)l| = ||[m1(br — uaby) ma(asbe) || — 0,
||7r1(b1) 7o (b2) (Wg(aQ) — 7y (uy)ma(az) )|| = [|ma(boas) (b1 — byuy)|| — O .

We notice that it can happen that, for given non-zero C*-algebras (A;, ¢;),
(A,, ty) over C', only the s-representations m; : A, — {0} and m, : A, — {0}

satisfy the assumptions in Theorem 4.4. Let, for example, (A, t,), (A,, t,) be the
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C*-algebras over C'([0, 1]) defined in [8] before Proposition 3.3, for which A; ®¢((0,1]),min
A, ={0}. Then, if 7; : A; — B(H), j = 1,2, are any non-degenerate *- representa-
tions satisfying the conditions in Theorem 4.4, then the *-representation m; ®¢ min T2
can be non-degenerate only if H = {0} . Nevertheless, this pathology is possible only
in the case of non-unital A; and A, (cf. Corollary 8.8).

Criteria for the faithfulness of 7 ®¢ min T2 Will be proved in Chapter 8.



CHAPTER V

ON TENSOR PRODUCTS OF HILBERT MODULES

We shall denote the support of a self-adjoint element a of a von Neumann algebra
M by sy, (a) .

Let N C B(H) be a type I von Neumann algebra with center Z ande € N, f € N’
be abelian projections of central support 14, . Then, by Lemma 2.4, the Z-valued inner

product
(NVNYefx (NVN)ef s (w,ws) — Per(wgw)
defines a Hilbert Z-module structure on (N V N')ef = Z'ef , the mappings
Nesaxvr—afe(NVN)ef, Nfsy—yeec (NVN)ef
are isometric Hilbert module imbeddings of

Ne endowed with Ne x Ne 3 (21, x2) — P (z5x1) and

N'f endowed with N'f x N'f 3 (y1,12) — ®(ysv1)

in the above Hilbert module, which can be considered, up to the above imbeddings,
the W*-tensor product over Z of the Hilbert modules Ne and N’ f. The aim of this
chapter is to develop the elements of (N'V N')ef in series of products of elements of
Ne and N'f (elementary tensors).

Let us first consider the case when N is a factor, that is H = Hi®@Hs, N =

B(H1)®1H2 s N, = 1H1®B(H2> and N V N, = B(Hl @Hg) .

Proposition 5.1. For Hy,Hy Hilbert spaces and 0 # ¢ € Hy @ Ho, there are
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e ve{2,3,...} U{co},
e orthonormal sequences {&x b1<k<y C Hi1 and {nx}1<k<» C Ha,

o real numbers {\}1<r<y With Ay > X > ... >0 and >, M =||C|?
1<k<v

such that

¢= Z \//\_kfk:®7ik-

1<k<v

Consequently,

(@ @15,)610) = > Mla&ilée), @ € B(Hy).

1<k<v

Proof. For every 6 € H; ® Hs, let Ty : Hy — Ho be the anti-linear map defined by
(To(&) |m) = (@|¢@n), €€Hi,neH,.

Then Ty is compact.

Indeed, if £ € H; and n € H,, then Teg, = (§] - )n, hence T, has rank < 1.
Consequently, Tj is of finite-dimensional rank for any 6 in the algebraic tensor product
Hi ® Ha. Now, any 6 € Hy ® Hy is the limit of a sequence {0, },>1 C H; ® Hs and,
since [Ty — Ty, || = | To—o, |l < |60 — 0,|| — 0, Ty is the operator norm limit of
anti-linear operators of finite-dimensional rank.

It follows that T31¢ : Hi — Hy is @ non-zero positive compact linear operator. So

there exist
e ve{23, .. . }U{o0},
e orthonormal sequences {& }1<k<, C Hi
o rcal numbers {A;}1<pe, With Ay > X0 > ... >0, Ay — 0if v = 00,

such that
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TETe= > Mgy

1<k<v

where pe, is the orthogonal projection from H; onto the subspace C¢; and the sum
is convergent in the operator norm (see e.g. [21], 2.8.26, 2.8.29).

For any 1 < k, k" < v, we have

(Te(ENTe (&) = (EITETL(ER)) = MlEwén) -
&

In other words, the vectors T¢(&;), 1 < k < v, are mutually orthogonal and ||T¢ (&)

= A\ > 0. Setting n, = H_Tm T: (&) = \/L)\_k Te(€k) » {nk }1<k<w 1s an orthonormal
sequence in Ho .
Forevery 1 <k <w, Vgt Hy3n— & @1 € Hy @ Hy is a linear isometry such

that Vg, Vi is the orthogonal projection P, from H; ® Hs onto (C&) @ Hs . Since
(Ve (Q)|n) = (¢l @m) = (Te(&)|n), n € Ha,
we have V¢ () = T¢ (&) - In particular,
Ao = [ Te(G)lI* = VeI = Ve Ve, (O = | Pe. (O

Now, by the Bessel Inequality, we get > M= > [P (Ol* < I[<]I?, so we

1<k<v 1<k<v
can consider the vector (, = > VA& @ € Hy ® Hs. Then
1<k<v
Te,(&) = 22 VA Tgem, (&) = VA = Te(&r) l<k<v

1<k/<v

and

IZ4©)1 = (€7 Te6) = (8] = Mléleng) =0,
Te,(©) =" X2 VN Tqen €)= "3 VA (&IEm =0

1<k<v 1<k<v
for all € € {&; 1 <k < v}, so Ty =T, . Consequently,

ClE@n) = (Te(O)|n) = (Te,()|n) = (Gl ®n), £€Hi, nEH;

and we conclude that ( = (,, in particular

KP= ¥ [VEGen = X A
1<k<v 1<k<v



Finally, for any =z € B(H;),

(@ 1,)C[0) = X VA@E&G M) = X Mel(a&l&) -

1<k<v 1<k<v
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]

For the treatment of the general case we follow the same idea as in the proof of

the above proposition, but replace the used Hilbert space theory with the Hilbert

module methods developed in [26], [27], [14]. In the next 3 lemmas N C B(H) will

be a type I von Neumann algebra with center Z , while e € N | f € N’ will stand for

fixed abelian projections of central support 15 .

Lemma 5.2. For anyw € Z'ef , there exist

(i) a unique Z-module antimorphism T, : Ne — N'f such that
Ocp(z yw) = 8p(y'Tu(a)), a€Ne,yeN'f,
(ii) a unique Z-module antimorphism T, : N'f — Ne such that
(IDf(y*Tw(a:)) :<I>e(:c*Tuf(y)), x€Ne,ye N'f,

(iii) a unique a(w) € N such that

(T)T,) (z) = a(w) z, x € Ne.

Moreover, a(w) > 0 and, la(w)|| =TTl =Tl = | T3 12 < llw]*.

(5.1)

(5.2)

(5.3)

Proof. For every x € Ne, N'f 3y — @ ¢(x*y*w) € Z is a Z-module antimorphism

bounded by ||w|| ||z]| and thus, by [26]; Theorem 5 or by [14], Lemma 1.11.(b), there

exists a unique T,,(x) € N'f such that the equality in (5.1) holds for all y € N'f.

Moreover, || T, (z)|| is equal to the norm of the above Z-module antimorphism, hence

1T ()| < flwll ]

Therefore, T, : Ne 5 x +—— T,(x) € N'f is the mapping required in (i) and

|Tw]l < |Jw||. Now, by [26], Theorem 6 or by [14], Lemma 1.12, 1.13.(3), there
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exists a unique Z-module antimorphism 7,* : N'f — Ne satisfying (5.2) (the Hilbert
module adjoint of T,,) and it has the same norm as T, .

Finally, T*T,, : Ne — Ne is a Z-module morphism of norm ||T,[|*, so by
Lemma 2.1 there exists a unique a(w) € N such that (5.3) holds and it clearly

satisfies a(w) >0, ||la(w)|| = [T Tw|l = || Twll*- ]
Lemma 5.3. For anyw € Z'ef and mutually orthogonal abelian projections ey, ..., e,
€ N, if a(w) is the element of N defined in Lemma 5.2, then

> P, (a(w)) < Pep(w*w). (5.4)

1<k<n
Proof. Let 1 < k < n be arbitrary.

Since zy(e) = 1y > zn(ex), we have ep < e, that is upuy = ey, ufu, < e for
some partial isometry uy € N . Then u, € Ne so upN'f is a Z-submodule of Z'ef .
We prove that this submodule is s-closed.

Indeed, if 2/ € Z'ef belongs to the s-closure of uyN'f, then by [14], Lemma
1.2 there is a net {yy}x C N'f with upyy —— 2" and |[uzys| < ||#|| for all X.
Since [lupyall = Nuwwgueyall = llupwgyauell < llextnll = llueypugll < luryall, we
have |lexyn]] = |luryall < ||2']] for all A. Using the fact that the induction map
N'zy(ex) — (N'zy(ey)) ex'= N'ey is a s-isomorphism, it follows that || zy (ex)y|| =
lexyall < ||2']] for all A and therefore a subnet of {zy (ex )y} is w-convergent to some
y € N'f. But then a subnet of {uyzy(ex)ynts is w-convergent to uzy and, since
uk zn (ex)yr = zn(er) Ut Uy = exurys = Ukl , it follows that 2" = upy € u N'f .

Applying now [26], Theorem 3 or [14], 1.5, 1.6, there is a unique Z-module mor-
phism P, nif: Z'ef — w,N'f C Z'ef acting identically on u;N'f and vanishing in
any z' € Z'ef with (/) u,N'f = {0} .

Let us consider the bounded Z-module map Uy : N'f 2 y — wpy € Z'ef . Using
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Lemma 2.4 we deduce for every y1,y2 € N'f:

Doy (Un(11) Uk(y2)) = ey (uruny;y2) = Pe(zn (upur)e) @1 (y;yo)

(5.5)
= zn(ex) Pr(yrye) -
Let U} : Z'ef — N'f be the Z-module map defined by
Dor () Uny) = @4 (U (Z)'y)s = F€Zef,yeN'f, (5.6)

whose existence is guaranted by [26], Theorem 6 or by [14], Lemma 1.12, 1.13.(2).

Then U, U} = P, n¢ . Indeed, since

* * (5-6) *
(Ui (wetn)y2) = Per((wnyr) Us(yo))
5-5) * *
D v (en) @) = O (2n(er))'sa) , vr,ys € N'F,

we get for every y € N'f first U (ugy) = zy(ex) vy, and then

(Up U ) (ury) = up zn(er) y = zn(er) upugugy = ugpy .
On the other hand, if 2 € Z'ef satisfies (2')*uxN'f = {0}, then (5.6) implies that
®(Us(2)'y) =0forally € N'f and so Uy (') =0, (U U;)(2)) =0.
We notice also that, since

O (v U (w) 2 0,y (Un(y) w) = Bop(upyw) 2 & (' Tu(u)), y e N'F,

we have

T, (i) = U (w): (5.7)

Now we recall that @, (a(w)) € Z zy(ey) and @, (a(w)) e = era(w)er, so we

have

D, (a(w)) ufug = up P, (a(w))ekuk = ujepa(w)epur = ua(w)uy ,

P, (a(w))ufur = @, (a(w)) zy(ujup)e = ., (a(w)) zy(er)e = P, (a(w))e.
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Consequently, ®., (a(w))e = uja(w)u; and we obtain

@, (a(w)) = @, <<I>ek (a(w))e) = P, (upa(w)uy)

@ 0 (1;1,)0)) @ (1) T )
D (U () U () = @ (0 (U0 ()
=, (w*PukN/f(w))

Now it is easy to see that X = > wxN'f is an s-closed submodule of Z’ef and
1<k<n
the Z-orthogonal projection Py : Z'ef — X C Z'ef (see [26], Theorem 3 or [14],

1.5,1.6) is equal to Y P, n/p. Therefore

1<k<n

> O (aw) = 3 @ep(W Py np(w)) = Poy(w* Pa(w)) = ey (|Pr(w)?)

1<k<n 1<k<n

< Oos ([P (w)f + |[w = Pr(w)]?) = Pep(w*w) . O
The next lemma is an immediate consequence of Lemma 5.3 and [27]:

Lemma 5.4. For any 0 # w € Z'ef, if a(w) is defined as in Lemma 5.2, then there

exist
e ve {23, ...} U{oo},
o a sequence {ex}1<k<, of mutually orthogonal-abelian projections in N ,

e {zih<aa CZN, 1 >2> ..., ||zl — 0 ifv =00, s Z 2z, < Dep(ww)
1<k<v

such that

zy(er) =s,(2k) 0 forall 1 <k <vwv,

a(w) =Y zer, (5.8)

1<k<v

where the series converges in the operator norm.
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Proof. By Lemma 5.3 and by the second half of the proof of [27], Proposition 4.2,
a(w) belongs to the norm-closed two-sided ideal of N, generated by the abelian
projections. Therefore the spectral theorem [27], Theorems 2.2 and 2.3 (cf. [19],
Theorem 6.14) can be applied to a(w) and it follows the existence of v, {ex}i1<k<y
and {2 }1<k<, satisfying all the required conditions except s— > 2z < O p(w'w).

1<k<v
But, since @, (a(w)) = 2z, Lemma 5.3 yields that

>oa= > @ (alw)) < Poplwrw)forall 1 <n<v. O

1<k<n 1<k<n
We notice that, according to [27], Theorem 2.3, v and {z}1<k<, are uniquely
determined by w. Also, (5.8) implies that

sy (a(w)) = s— Z e - (5.9)

1<k<v

Now we prove the module version of Proposition 5.1:

Theorem 5.5. Let N C B(H) be a type I von Neumann algebra with centre Z
e € N, f € N abelian projections of central support 1y, and 0 # w € Z'ef . Then

there are
e ve{23,...} U{oo},

e partial isometries {ug}1<k<, C N with ufu, < e,1 < k < v, and mutually

orthogonal wu; , 1 <k <v,

o partial isometries { v }1<p<y C N with viv, < f,1 < k < v, and mutually

orthogonal v,vy, 1 <k <v,

o {Zrh<kar CZT, 212 20> .., ||zl — 0if v = andsfz 2 =
1<k<v
Q. p(ww)

such that
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zn(upuy) = 2y (V07) =s4(2) 0 forall 1 <k <v,

w:sfz zkl/zukvk, (5.10)
1<k<v
Consequently,
w*xw:sfz 2k upxuy, f reN. (5.11)
1<k<v

Proof. Let T,, and a(w) be as defined in Lemma 5.2, and v, {ex}1<k<, and {zx }1<p<y
as in Lemma 5.4. Choose for every 1 < k < v a partial isometry uy € N such that

upuy, < e and wyu;, = e, . We notice that
upuy, = 7 (upuy,) e = zy(ex) e, 5o Pe(uguy) = zy(er) =s,(2k) . (5.12)

Clearly, a(w)/?Ne C Ne is a Z-submodule with s-closure

sy (a(w))Ne &y (s=' X e;)Ne.

1<k<v

For every x1, 9 € Ne we have

(5.3)

B (To(21) T(22)) 2 @, (x2 T (Twm))) 5 @e((a(w)1/2x2)*a<w)1/2x1) ,
so a(w)?Ne > a(w)?z —— T,(x) € N'f is a well defined Z-isometric Z-module
antimorphism. Furthermore, by [14], Lemma 1.3 it can be extended to an s-continuous
Z-module antimorphism V,, (s = ek)Ne — N'f, which is still Z-isometric.

1<k<v
Since uy € e, Ne, we can consider the elements

vp =V (ug)e N'f, Ir<k<w
and we have

. D (ug uy,) for ky = ky
<I>f(vk1vk2) = <1>6(uk2uk1) = ) (5.13)
O ibr k17ék2

In particular,

x x,y (5:12)
Dyp(vgvp) = Peluguy) =" sgz(2k) - (5.14)
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| o=

Since v, € fN'f, we have |lvfu ]| =) @) (vrv)]| "= [|s,4(z)] = 1 and so

viv, < f. On the other hand, zy(u;u,) = zn(ex) = s, (2x) yields

VS, (2k) = Vw(uk SZ(Zk)) = Vi (ug) = v,
80 Uy = Vg vy sz (2k) < [lvgvgllsg(zk) = sz (2) -

Consequently viv, <s,(zx)f, that is s,(z)f — viv, > 0. But

i * (5'14)
q)f(sz(zk)f A Uk) =s,(2)— Dyp(vy, v,) = 0,

so viv, = s,(zx)f. In particular, v, is a partial isometry with viv, < f and
2 (0g0F) = 2y (U 0) = S 520 )

The projections vjfv, , 1 < k < v, are mutually orthogonal: if k; # ks then (5.13)
. . “ 4 3 (2.2) ¥
implies @ (v vy,) =0, s0ov; v, = fogv, f = Pp(viv,)f =0.

Since the series ) zj is w-convergent and, for any 1 <n <m < v,

1<k<v
1/2 1/2 2 /4 1/2 1/2 4 *
| Y A Pue - P u e S g, v,
1<k<m 1<k<n n<ki,ko<m
= D ULV
n<k<m
S Z Rl — Z Zk
1<k<m 1<k<n

{ > zkl /2 ukvk}l <nsy 18 @ Cauchy sequence with respect to the s-topology.
1<k<n -

Taking into account that ‘ > zkl/Q ukvk|2 < >z < @ p(w*w) and the closed

1<k<n 1<k<n
balls of Z’ are s-complete; it follows that w, = s=>_ 2,3/2 upvy € Z'ef exists.
1<k<v

Next we show that T,, = T, . Since T, and T, are by (5.1) s-continuous,
according to [26], Theorem 3 or [14], 1.5, 1.6 it is enough to prove that
T, (ug) = Ty(ug) forall 1 <k <wv
and Ty, (x) =0=T,(z) for all z € Ne with z*uy =0,1 <k <v.

Let 1 < k < v be arbitrary. For every y € N'f we have

* (5'1) * * * *
O (YT, (ur)) "= @ (ufyw,) = 27 ®op(ufury*or)
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LemmaZ2.4 1/2 * * (5.12) « _1/2
22 P (w0 (o) = @y 2 )

Thus T, (u) = zkl/z v = Vw(zkl/2 ug) 8 Vi (a(w)l/2 ui;) and the definition of V,,

yields Ty, (ux) = T (uy) -

On the other hand, let x € Ne be such that z*u;, =0, 1 < k < v. Since

5.1
Dy (5 T, (@) B Bes @ty wg) = 57 B 2 (e uy'n) =0, ye NS,
1<k<v
we have T, (z) = 0. But epr = wuiz = 0,1 <k < v, implies a(w)/?x = 0 and

by the definition of V,, we get also T,,(z) = V,, (a(w)"?z) = 0.

Using T, = T\, , we obtain for all x € Ne,y € N'f:

5.1

*, ( (5.1)
CI)ef(x ) wo) e

) * * * ) ok
(I)f(?/ Two(x» N (I)f<y Tw($)> = (I)ef(a7 Yy w)-
Therefore w, = w, so that (5.10) holds.

Since uuy = s, (2zx)e and viv, =s,(2z)f, by (5.10) we get successively

zref = ZLUT ULV U = 212 UV 2w, wrw
k k k ’
1<k<n 1<k<n 1<k<n
Z 2 = (I)ef( Z zkef) L @ef(w*w),
1<k<n 1<k<n
s— Y, 2= D p(wrw).
1<k<v

Finally, let x € N be arbitrary. Since the s-topology and the s*-topology coincide

on Z'ef (see [14], 1.1), the bounded sequence { - 2,3/2 ukv’f}1<n<y is s*-convergent
1<k<n =

to w. Consequently

1<k1<n 1<ka<n
But
/2 « « 1/2 - 1/2 _1/2 4 N
( Z Zkl uk‘lvk‘l)x< Z Zkz uk‘zvk‘z - Z Zkrl Zkg uklxukgvk‘lvk‘z
1<k1<n 1<ka<n 1<kq,k2<n
_ *
= > zugzu,sy(z)f
1<k<n
— *
= Y zugzuf,
1<k<n
sow'rw = Ss— g Zpupxuy f . O

1<k<v
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Corollary 5.6. Let {0} # N C B(H) be a type I von Neumann algebra with centre

Z, and p € Z" an abelian projection of central support 13, . Then there exist
e ve{23,...} U{oo},
o mutually orthogonal abelian projections {ex}1<k<y in N,

o {Zihi<ka CZT, 1222 ..., ||zl —>0ifV:OO;3*Z 2 = 1y
1<k<v

such that

zy(er) =sy(2,) #0 for all 1 <k < v,
x):34z 2 P, (), r€N. (5.15)

Proof. Let e € N, f € N’ be abelian projections of central support 13,. By Lemma
2.4 ef is an abelian projection of central support 14 in NV N’ = 7', so there exists a
partial isometry w € Z’ such that w*w = ef , ww* = p. Let v, {u}1<k<v s {Vk }1<t<r
{2k }1<k<» be as in Theorem 5.5.

Now let x € N be arbitrary. By (2.2) we have ®,(z)ww* = ww*zww*, so, using

(5.11) and Lemma 2.4, we deduce successively

P, () ef = w* (Py(z)ww*)w = w'w = s— Z 2 upruy f
1<k<v

D, () = Py (Pp(z) ef) = 5 Z 2 Pop(upruy f)=s— Z 2k Pe(uyzuy)

1<k<v 1<k<v

But, using (2.2),.it-is easily-seen that ®.(u;zuy) =P, (@) and (5.15) follows. O



CHAPTER VI
CONDITIONAL EXPECTATIONS ONTO

W*-SUBALGEBRAS OF THE CENTRE

We shall denote the support of a normal linear functional ¢ on a von Neumann
algebra M by s,,(¢) .
The proof of [17], Theorem 3.1 works to prove the following theorem (cf. [16],

Theorem 1 and [18], Proposition 1.4):

Theorem 6.1. Let M be a von Neumann algebra, Z C Z(M) a von Neumann
subalgebra, and ¢ a positive linear functional on M such that ¢|z is normal. Then

there exists a unique positive Z-module mapping £ : M — Z such that

p=9poFE and sy (E(1nm)) <sy (¢lz) -
Moreover, then E(1y) = s, (¢|z) and E is normal whenever ¢ is normal.

If Aisa C*-algebra, € C B(K) is an abelian. C*-algebra and ® : A — C'is a

positive linear mapping, then
D(y2) d(yr) < ©(yy?) ©(x"w),  ~ r,yc A
(see e.g. [18], Proposition 1.1). In particular, if A is unital then
D(z)*®(z) < ®(14) P(z*2) < |z|* ®(1y)?, z€A (6.1)

and so ||®|| = ||®(14)||. Moreover, ® is necessarily completely positive (see e.g. [24],

Proposition 5.5). Therefore, by the Stinespring Theorem (see e.g. [24], Theorem 5.3),



47

there exist a x-representation 7 : A — B(H) and a bounded linear map V' : K — 'H

such that

O(z)=Vir(x)V, reA,
H is the closed linear span of m(A)VC (hence 7 is non-degenerate),

Vil = Ji2]1*/2.

The pair (7, V) is uniquely determined up to natural equivalence and is called the
Stinespring dilation of ® . We notice that if A is a von Neumann algebra, C' is a von
Neumann subalgebra of B(KC) and @ is normal, then also 7 is normal (see e.g. [24],

Corollary 4/8.4).

Corollary 6.2. Let M # {0} be a von Neumann algebra, and Z C Z(M) a von

Neumann subalgebra. Then there exists a normal conditional expectation - M — Z .

Proof. Let P be a maximal set of mutually orthogonal non-zero countably decom-
posable projections in Z . Then > p= 1.
pEP
For every p € P there exists a normal state ¢, on Z such that s,(¢,) = p. Let

©p be a normal state on M which extends v, . By Theorem 6.1 there exists a normal

positive Z-module mapping E, : M — Z such that

Y= Yo Eyand Ep(lM) = Sz(wp) =p.

By (6.1) we have, ||E,|| =1 and s, (E,(z)) < p forall z € M .
Now it is easy to verify that £ : M 3 x +—— >_ E,(x) € Z is a normal positive
peEP
Z-module mapping with E(1,;) = 1)/, that is a normal conditional expectation. [J
Theorem 6.3. Let M be a von Neumann algebra, Z C Z(M) a von Neumann

subalgebra, and ® : M — Z a positive Z-module mapping. Then there exists a unique

positive Z-module mapping E : M — Z such that
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s;(E(1a)) <sz(®(1y)) and ®(z) = E(z) ®(1y), z € M.
Moreover, then E(1y) = s,(®(1a)) and E is normal whenever ® is normal.

Proof. Let Z be imbedded in B(K) as a von Neumann subalgebra and let (7, V)
be the Stinespring dilation of ®. Since V*V = V*r(1)V = ®(15), by the polar

1/2

decomposition of V' we have V = U ®(1,,)"*, where U : K — H is a partial isometry

with U*U = s,(®(1)) . Define E : M — B(K) by
F(z)=U*n(z)U, reM.
Then E is a positive linear mapping with E(1y) = U U = s,(®(1u)) -

Let x € M and T € Z' be arbitrary. Since

(1) 2 E(x) ®(1ar)'? = @(1p) PU () U ®(14) "% = V1 (2) V ‘s
= ®(2), .
we obtain successively
O(13)?T E(z) @(1a)* =T ®(2) = ®(2) T = (1) 2 E(z) T ®(15)Y/?,
®(13)"*(T E(z) = B(2) T)®(1m)"? =0,
s,(®(1y)) (T E(z) — E(x)T) s, (®(1x)) =0,
Tsy(@(1u)) E(x) = E(x)sz(®(1a)) T

But s, (®(1x)) = U*U yields
s,(®(1n)) B(x) = UU U n(x) U = Utn(2) U = E(x) (6.3)

and, similarly, E(z)s,(®(1y)) = E(z). Consequently, T E(z) = E(z) T .
We conclude that E(x) € (Z') = Z for all x € M, hence E maps M into Z .

Thus (6.2) entails

®(z) = ®(1y) 2E(2) ®(10)Y? = BE(z) ®(1p), € M.
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It follows also the Z-linearity of E. For let x € M and z € Z be arbitrary. Using the
above formula and (6.3), we deduce succesively
(E(zz) — 2 E(2))®(1y) = ®(22) — 2®(z) =0,
E(zz) — 2 E(z) = (E(22) — 2 E(z)) s, (®(1y)) = 0.
For the uniqueness, let F': M — Z be any Z-module mapping such that
sz (F(1y)) <sy(®(1y)) and ®(z)= F(z)®(1y), v € M

and let € M be arbitrary. Then (F(z) — E(z)) ®(1y) = ®(z) — ®(z) = 0, so
(F(z) — E(z)) s, (®(1ar)) = 0. But, by s,(F (1)) < s,(®(1x)) and by (6.1) we
have F(z) s, (®(1y)) = F(x), hence, taking into account (6.3), we conclude that
F(z) — E(z) = (F(z)= E(x)) sz (®(1)) = 0.

Finally, if ® is normal, then also 7 is normal and the normality of F follows from

its definition. O

Corollary 6.4. Let M be a von Neumann algebra, Z C Z(M) a von Neumann
subalgebra, and ® : M — Z a positive Z-module mapping. Then there exists a

conditional expectation E : M — Z such that
O(z) = E(x) ®(1n), xeM.
Moreover, if ® ‘is normal then E can be chosen normal.

Proof. By Theorem 6.3 there exists a positive Z-module mapping Fy: M — Z such
that Ei(Ly) = s, (®(1y)) and ®(z) = Ey(x) ®(1y), 2 € M . Further, by Corollary
6.2, there exists a normal conditional expectation

Now E: M 5 2 — Ey(v)+E, (:U(lM—sZ(CID(lM)))> € Z is a conditional expectation

such that E(z) ®(1y) = E1(x) ®(1y) = ®(z) for all x € M .
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If ® is normal, then F; is normal by Theorem 6.3 and the normality of E follows

from its definition. OJ

The next result about the ‘GNS-representation’ associated to a conditional expec-

tation onto a von Neumann subalgebra of the centre is a variant of [17], Proposition

4.2:

Lemma 6.5. Let M be a von Neumann algebra, Z C Z(M) a von Neumann subal-
gebra, E : M — Z a conditional expectation, and m, : Z — B(K) an injective normal
unital x-representation such that w,(Z) is a mazimal abelian von Neumann subalgebra
of B(K). If (7T : M — B(H), V) 18 the Stinespring dilation of m, o E , then
7|z is mormal and injective,
VV* is an abelian projection of central support 14, in w(Z)",
T(E(x)) = Qyy«(m(2)), x € M.

Moreover, if E is normal and E|zy) is faithful, then 7 is normal and injective.

Proof. Since E acts identically on Z , we have
To(2) = (mo 0 E)(2) = V¥ (2)V, z€Z. (6.4)
Therefore 1x = m,(1y) = Vin(ly)V = V*V,so V : K — H is an isometry. In
particular, VV* & B(H) is a projection. We notice also that
Vim(z)= malz) Wy 2 € 4. (6.5)
Indeed, if z € Z, then we have for every x € M and n € K:
Vor(2)m(@)Vi = (10 0 B)(22) 1 = 10(2) (70 0 E) (&)1 = mol2) VPm(a)Vi.

Since H is the closed linear span of 7(M)VIC, (6.5) follows.
The projection VV* belongs to the commutant 7(Z)". Indeed, using (6.5) and

(6.4), we get successively for every z € Z:
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VV*n(z) = Vr,(2)V* = VV*r(2)VV*|
T()VV* = (VVir(z) = (VV*r(z*)VV*) = VVir(z)VV*,
VVin(z) = VV*r(2)VV* = n(2)VV*.

Taking now into account that VV* € n(Z)", (6.4) yields
Vr,()V* = VV r(2)VV =z (2)VV™, z€ 7. (6.6)

Next we show that VV*x(Z)VV* C n(Z)VV* and so VV* is an abelian projection

in 7(Z)". Indeed, if T' € 7(Z)" then we have for every z € Z:
VTV, (2) =V IV, (2 )V L VT2 VVV = VT (2)V

=Vir@2) TV =V VV*r(2)TV

= V() Vvery &

To(2)V*TV .
Consequently, V*TV € m,(4) = m,(Z) and, taking into account (6.6), we conclude
that VV*TVV* € Vi (Z2)V* € n(Z)VV*.

The injectivity of 7|z is easy to see: if z is in the kernel of 7|z, then (6.5) implies
To(2) = mo(2)V*V =V m(2)V = 0 and the injectivity of 7, entails that z = 0.

For the normality of 7|, let us consider a net z) /' z in Z*. Then we have, for

every xr1,xo € M and ny,m, € K,

V*7T<x2* (z— ZA)ﬁl)an ‘ 7]2)

)
")

To(2 — 20)Th ’ (7o 0 E)(a:l*xg)ng> — 0.

<7r(z — zy)m(x)Vm ‘ W(mg)Vm) Y

(7, 0 B) (x;(z - z,\)xl)m

(00 E) (»’172*33'1)%(2 — )M

Since H is the closed linear span of 7(M)V K, it follows that 7(zy) " 7(z).
The normality of 7|z implies, in particular, that 7(Z) C B(H) is a von Neumann

algebra. Since 7(Z) C n(Z)", we actually have



52

Z(m(Z)) =72 Nn(Z)' =7(Z) Nn(Z)=7(Z).
Therefore the central support of VV* € w(Z) is of the form w(p) with p € Z a
projection. Using (6.4) and VV* < 7(p), we obtain
To(p) = Vin(p)V = Vin(p)VV*V = VVV*V = 1.
Now the faithfulness of 7, yields p = 137 and 50 zrz) (VV™) = w(1a) = 13
For every x € M , using (6.6) we deduce
VV* @)V V* =V (r, 0 E)(2)V*=x(E(z))VV*

and by (2.2) it follows that ®yy«(m(z)) = 7w (E(z)) .

Finally, let us assume that F is normal. Since Stinespring dilation preserves
normality, then also 7 is normal. In particular, the kernel of 7 is of the form Mp,
for some projection p, € Z(M). If we assume also that E|zy is faithful, then

(7r0 o E) (pr) = V*1(p:)V = 0 implies that p, = 0, i.e. 7 is injective. O
Lemma 6.5 and Corollary 5.6 imply [16], Corollary of Theorem 2:

Theorem 6.6. Let N # {0} be a type I von Newmann algebra, and E : N — Z(N)

a normal conditional expectation. Then there exist
e ve{2,3,...} U{oo},
o mutually orthogonal abelian projections {ex}1<k<y C N,

o {Zrhicker TZ(N)T, 212 23 200 2| —0f v.= 0, S—Z 2 = 1n
1<k<v

such that

zy(er) = sz (z) #0 forall 1 <k <v,

E(x):sfz 2, @, (), r€eN.

1<k<v
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Proof. Letm, : Z(N) — B(K) be an injective normal unital #-representation such that
T,(Z(N)) is a maximal abelian von Neumann subalgebra of B(K) and let (7 : N —
B(H),V) denote the Stinespring dilation of m,0 E'. By Lemma 6.5, V'V* is an abelian
projection of central support 14 in W(Z(N))/, W(E(JZ)) = Oy (71'(.17)) , x € N, and
7 is normal and injective.

By Corollary 5.6 there exist
e ve{23,...} U{oc},
e mutually orthogonal abelian projections {ej}i<r<, in N,

o {mhickar CZN)S 25> 202 ] — 0 if V:OO,S*Z e =1y
1<k<v

such that

zy(ex) = szvy(2) #0 forall 1 <k <v,

T(E(z)) = @y« (m(2)) = s Z T(21) Pr(ey) ((2)) | r€N.

1<k<v

But @, (m(z)) =7(P,,(#)) and so the injectivity of 7 yields

E(x)zs—z 2, P, (), z€eN. O

1<k<v



CHAPTER VII
DESCRIPTION OF THE GLIMM IDEALS IN SPATIALLY

REPRESENTED C*-ALGEBRAS

If Ais a unital C*-algebra and 14 € C' € Z(A) is a C*-subalgebra with Gelfand
spectrum 2, then we shall denote by ¢ 4(t) the ideal I,(t), where ¢ is the inclusion

map of C' in Z(A). In other words,

Ioeat) = {ceC clt) =0} A, teQ. (7.1)

Proposition 3.1.(ii) implies the following dependence of I 4(t) on A: If M is a unital

C*-algebra and 1), € C' C A C M are C*-subalgebras such that C C Z(M), then
]CCA(t) :AﬂICCM(t), tel. (72)
The dependence of Igea(t)-on C is described in the following lemma:

Lemma 7.1. Let M be a unital C*-algebra, 1y, € Z C Z(M) a C*-subalgebra with
Gelfand spectrum ﬁ, and 1y € C C Z a C*-subalgebra with Gelfand spectrum €) .

Then
Teen ()= {Lzcar(0)s X-€ Qs x(e) =e(t)for all.c € C}. - t€Q.
Proof. Let t € € be arbitrary and let us denote
Q, = {x € Q; x(c) =c(t) for all ¢ € C}={xce Q; Xioe s = 0}.
The inclusion Iccp(t) C () Iz (x) follows at once from definition (7.1): if ¢ €

XEﬁt
C, c(t) =0and x € Q, then x(c) = c(t) =0, so cM C I,-5(x). Thus it remains

to show the converse inclusion.
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According to (7.2) Iccz(t) = Z N Iocm(t), so
Zy = Z/[Ccz<t) > Z/[Ccz(t) — Z/ICCM(t) S M/[CCM(t) = M,

is an injective x-homomorphism, through which we can identify Z; with a C*- subal-
gebra of M;. On the other hand, the map which associates to y € ﬁt the character
Xe 0 21 2 z/locz(t) = x(2), is a homeomorphism of , onto the Gelfand spectrum

of Z;. Thus

() Tziean () = {0] -

XEﬁt
Now let x € [\ I () be arbitrary. For every x € Q,, the quotient map
XEQt

M — M, brings 1,-,,(x) into Iz,can(x,): if 2 € Z, x(2) =0 and y € M, then we

have

(Z?/)/ICCM(t) 73 (Z/ICCZ(t)) (y/ICCM<t))

with v,/ Ieca(®) = () = 0.
hence (zy)/Iccm(t) € Iz,cu,(x;) - Consequently,

l"/ICCM(t) = Q Iz,can(x,) = {0},

XEQ:
that is x € ICCM<t> . ]

Lemma 7.1 enables us to prove the following extension of [19], Theorem 4.2 (see

also [4], Theorem 4.17):

Theorem 7.2 Let M 'C B(H) be a von Neumann algebra, 7 C Z (M) a von Neu-
mann subalgebra with Gelfand spectrum Q , 1y € C C Z a C*-subalgebra with Gelfand

spectrum Q , and C C A C M an intermediate C*-algebra. Then

x(E(a)) =0 for every
Icca(t) = ¢ a € A; normal conditional expectation E: M — Z ¢, t €.

and y € Q with x(¢c) =c¢(t) =0, ceC
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Proof. Let t € Q) be arbitrary.

By [19], Theorem 4.2 and by Corollary 6.4 we have for every x € Q:

X(@(x)) =0 for every
Iep(x)=(zeZ,

normal positive Z-module mapping ¢ : 7' — Z
\
(

7 x(E(x)) = 0 for every
=<4 T E ;

normal conditional expectation F : 72/ — Z
\

Using Lemma 7.1, it follows

Iocr(t) = {zer ()i X €Q, x(c) = c(t) for all c € C'}
X(E(:U)) =0 for every

= ¢z €Z'; normal conditional expectation F : 7' — Z

and y € Q with x(c) =c(t) =0, ce C

and by (7.2) we conclude that

Ioca(t) = ANIccz (1)
Y(E(a)) =0 for every

= 4 a € A normal conditional expectation E : Z' — Z
and y € Q with x(¢) =c(t) =0, ce C
X(E(a)) =0 for every

D4 a € Aj;normal conditional expectation E : M — Z ¢ D loca(t) .

and y € D with x(c) = c(t) =0, ceC

The next simple result should be known, but we have no reference for it:

Lemma 7.3. Let N be a type I von Neumann algebra with centre Z , e, € N an

abelian projection of central support 1x, and b € N . Then there exists an abelian
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projection e € N of central support 1 such that
O, (b*xb) = D, (b*D) (), reN. (7.3)

Proof. Let be, = w/|be,| be the polar decomposition of be, and let p denote the
central support of b*b. Then |be,| = (eb*be,)/? = ze, with 0 < z € Zp and
w*w = sy(eb*be,) < e,, so that w*w = zy (w*w)e, = pe,.

Since pe, is an abelian, hence finite projection in N, there is a unitary w € N
such that w = wpe, (see e.g. [23], E.4.9 or [21], 6.9.7). Then e = we,w* is an abelian
projection of central support 1y in NV . For every x € IV, since

exe = w(e,wx we,)w* = ¢, (W 'z w)we,w* = d, (W*rw)e,
we have
O, (0'zw) = Pe(x), (7.4)
hence
D, (b*zb) = D, ((beo)*xbey) = Do (e0zw* s wze,) = 22 P, (w*z W)
= 20, (cp@zipe,) = 2pd.(a) = 2P, (x).

In particular, for x =1y, @, (b*b) = 22 ®.(1y5) = 2% and so (7.3) holds. O

To prove a variant of Theorem 7.2 for type I von Neumann algebras, in which only
normal conditional expectations of form ®, , e abelian projection, occur, we need the

following result, which is essentially [4], Lemma 5:13:

Lemma 7.4. Let N be a type I von Neumann algebra with centre Z | Q the Gelfand

spectrum of Z , e, an abelian projection of central support 1 in N, and x € Q. Then

Ien(x)={z € N; x(®,(b*zb)) =0 for every be N}

o, =0 f
_Jaen. X (Pe(z)) or every

abelian projection e € N with zy(e) = 1y
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Proof. Clearly, {m € N; X(@eo(b*xb)) =0 for every b € N } is a norm-closed two-
sided ideal J of N, which contains I,-n(x). Let us assume that this inclusion
is strict. Then there exists a positive element in J \ I,-n(X) and an appropriate
spectral projection f of it will still belong to J \ I,-n(X). Since zy(f)e, < f, there
exists u € N such that u*u = zy(f)e, and vu* < f. Thus zy(f)e, = u*fu € J
and it follows that x(zy(f)) = P, (2zy(f)es) = 0. But then, by definition (7.1),
f=2z5(f)f € I,cn(x), in contradiction with the assumption f € T\ I,-n(x)-

To complete the proof, we have to prove that

®.(z)) =0 for ever
g xeN;x( () y

abelian projection e € N with 7z, (e) = 1y

If 2 € J and e € N is an abelian projection, then there exists v € N with
vt < e,, v0* = e and, taking into account that v*v = zy(v*v)e, and P.(z) €
Zzy(e) = Zzy(v*v), we obtain successively

*

viav = vt (eze)v = 0F (Delz)e)v = (@) v = D, (2) 25 (v* ) e, = Pe(T)e,

This proves the inclusion C .

For the converse inclusion, let z € N be such that x(®.(z)) = 0 for every abelian
projection e € N of central support 1y . For every b € N, according to Lemma
7.3, there exists an abelian projection e € N with central support 1y such that

O, (b*zb) = Pp, (b*D) Po(z). Then
X(®eo(b*m b)) = X(q)eo(b*b))x(cbe(x)) =0. O
Now we improve Theorem 7.2 in the case of type I von Neumann algebras:

Theorem 7.5. Let N be a type I von Neumann algebra with centre Z | Q the Gelfand

spectrum of Z , 1y € C C Z a C*-subalgebra with Gelfand spectrum 2, and C C



29

A C N an intermediate C*-algebra. Then

X(®e(a)) =0 for every
Toca(t) = qa € A; abelian projection e € N with zy(e) =1y ¢» T € Q.
and y € Q with x(¢) =c(t) =0, ce C
Proof. Let t € Q) be arbitrary.

By Lemmas 7.1 and 7.4 we have

Icen(t) = ﬂ {I,cn(X)5 x € Q, x(c) =c(t) for all ¢ € C}

x(®e(x)) =0 for every
= 42 €N abelian projection e € N with zy(e) = 1y
and y € Q with x(c) = ¢(t) =0, ce C

and, using (7.2), we conclude that

Ioca(t) = ANIcen(t)
X(®@e(a)) = 0 for every
= ¢ a € A; abelian projection e € N with zy(e) = 1y
and y € Q with x(c) = c(t) =0, ce C
O
Corollary 7.6. Let N be a type I von Neumann algebra with centre Z | Q the Gelfand
spectrum of Z , 1y € C C Z a C*-subalgebra with Gelfand spectrum 2, C C A C N

an intermediate C*-algebra and t € ). Then every pure state ¢ on A with ¢(c) =

c(t), c € C', belongs to the weak* closure of
e € N abelian projection with zy(e) = 1y

xo P ; N
X € Q with x(c) =c¢(t) =0 forall ce C

Proof. For every abelian projection e € N with zy(e) = 1y and every x € Q with

x(c)=¢(t)=0,ceC,let m., : A — B(H.,) be the GNS representation associated
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to the restriction of x o ®. to A and let & , denote its canonical cyclic vector. By

Theorem 7.5 and Proposition 3.4 we have

ﬂ ker(7e,y) = Toca(t) C ker(yp),

e?X

so we can apply [20], Proposition 3.4.2 or [13], Theorem 5.1.15, deducing that ¢

belongs to the weak™ closure of the states

U {43 a— (rel@)|€) 56 €., €] =1}
ex
Since every ¢ € H., with [[£|| = 1 is norm-limit in H., of unit vectors of the form

Ten(b)€ey and then x (Pe(b*0)) = (e (b70)Ec 1 |€ex) = 1, it follows that ¢ is in the

weak* closure of the linear functionals

A3 a = (Tep@)fen (D)6 x| Tex(0)Se) = X(®Pe(ba))
with x (@.(b*b)) =1
But, according to Lemma 7.3, for every abelian projection e € N of central support
1n and every b € N, there exists an abelian projection e(b) € N of central support
1y such that ®.(b*zb) = ®.(b*D) Pepy(z), © € N . Therefore every linear functional
A3 ar— x(Pe(b*ab)) with x(P.(b*b)) = 1 is of the form A > a — x(Pey(a)) =

(x 0 Pe(w)(a) - O

Corollary 7.6 implies the following description of 7 in terms of appropriate spatial

representation:

Corollary 7.7. Let (A, ¢;). (A, ty) be C*-algebras over a unital abelian C*-algebra
C,and m; : Aj — B(H), j = 1,2, two faithful non-degenerate *-representations
such that

M(my) oty = M(my) 0ty and m(A;) C N, my(A4,) C N

for a type I von Neumann algebra N C B(H) with centre Z = (M (m;) 0 ¢;)(C)". Let

Q denote the Gelfand spectrum of Z . Then a € Ay ® Ag belongs to J if and only if



61

(Co@eom)® (x0 @0 m))(a) = 0
for all
abelian projections e € N, f € N with zy(e) = zy.(f) = 1n,

X1+ Xo € Q with x,0 M(my) 01 = xy0 M(ma) 0 1.

Proof. Let Q) denote the Gelfand spectrum.
Assume first that a € J, and let e € N, f € N’ be abelian projections with
zy(e) = 2y (f) = 1y, while x;, X, € Q with x,0 M(m) 0ty = x,0 M(m3) 0 t5. Then

xjo M(mj)ov;is C3 cr— ¢t) for some ¢t € 2. Since

(x10 @, 0 1) (11(6) a) = Xl((M(@ o 11)(c) Do (m (a))) — ¢(t) (x,0 @, o m)(a)
for all a € Ay and ¢ € C, Proposition 3.4 yields x,0 ®. o 7T1‘I W = 0. Similarly,
1
X0 @y O7T2|I m =0 Thus y,0 ®.om = 6, om,, ; for some state §; on A;/I,,(t) and
L2

X0 @ o my =0y 0m,, for some state ¢, on Ay/1,,(t). Consequently

< (7t @ 7,0) (@) lmin < @l ymin = 0

(o @ om) @ (xa0 0 0m) ) (0)
Now let us assume that a € A; ® A, is such that
(10 @ 0m) @ (xp0 @7 07m2) ) (a) = 0
for all abelian projections e € N, f € N’ with zy(e) = z,/(f) = 1y and all x,,
Xy € Q with X130 M(m) 011 = x90 M(my) © t5. Taking into account that m, mo

are injective and using Corollary 7.6, we obtain that (¢1 ® ¢2)(a).= 0 for all ¢y €

P(Ay), oo € P(Ay) with @1 011 = pa019. In other words,

(’17/)1 ® ¢2)((7TL1,7€ ® 7T-Lz,t)(a)) =0, 77ij € P(Aj/lbj (t)) ,J=12, teQ.

It follows that (7, ; ® 7, )(a) = 0 for every t € Q, that is a € J. O



CHAPTER VIII
FAITHFUL TENSOR PRODUCTS OF

x*-REPRESENTATIONS OVER ABELIAN C*-ALGEBRAS

Let C be a unital abelian C*-algebra, (A, ¢,) and (A,, t,) C*-algebras over C,
and 7; : A; — B(H), j =1, 2 non-degenerate *-representations such that

M(m,) ot = M(my)ot, and 7 (A) C N, my(A,) C N

for some type I von Neumanu algebra N' C B(H) with centre (M (m;) o 1;)(C)". In
this chapter we prove criteria for the faithfulness of 73 ®¢ pmin T2 -

We notice that m ®c min T2 can be faithful without that m; , m9 be faithful. Indeed,
in [8], before Proposition 3.3, an example of non-zero A;, A, is given such that
Jo = A1 ® Ay, that is Aj @ min A2 = {0}. Then, choosing for m; and m, the zero

x-representation, m; e.min w2 is faithful, while 7y and 75 are not. Nevertheless:

Proposition 8.1. Let C' be a unital abelian C*-algebra with Gelfand spectrum €2,
(Ay, 1), (Ay, 1) C*-algebras over C, and mj-+ A; — B(H), j = 1,2, non-
degenerate x-representations such that

M () 0Ly =M (m5)0 & and 711(A;) ©N [my(A,) C N
for a type I von Neumann algebra N C B(H) with centre Z = (M (w;) o ¢;)(C)". If
T Q¢ min T2 18 faithful and I,,(t) # As for all t € Q, then my is faithful. In particular,

if M(m1) @cmin M (72) is faithful and Ay # {0}, then my is faithful.

Proof. Let us assume that m ®c¢ min 72 is faithful, [,,(t) # As for every t € Q, and

ay € A1,7T1<CL1) =0.
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Let as € Ay be arbitrary. The injectivity of 73 ®¢ min T2 and

(771 ®C’,min 71'2)((@1 & a2)/\7€) = 7T1(Cl1) 7T2(a2) =0

imply that a; ® ay € J,, that is 7, 1(a1) @ m,,4(a2) = 0 for all ¢ € Q. Since, for
any t € Q, m,(az) # 0 for some ay € Ay, it follows that 7, +(a;) = 0, t € Q.
Consequently, ||a;] = stué) |7, t(a1)]| =0, that is a; = 0.

Now, if Ay # {0}, tlfen Laray) ¢ L, (t) . s0 L, (t) # M(A,) for all t € Q. Therefore,

by the above part of the proof,

M (1) ®gimin M () faithful = M (m;) faithful. O

According to Proposition 8.1, by looking for the faithfulness of m ®¢ min m2 it is
natural to assume the faithfulness of 7 and m . However, the faithfulness of 7; and
m alone does not imply the faithfulness of 7 ®¢ min 72, as the next proposition will
show.

We shall denote by [*°(N) the C*-algebra of all bounded complex sequences, by
¢(N) the C*-subalgebra of [*°(N) consisting of all convergent sequences, and by ?(N)

the Hilbert space of all square-summable complex sequences.

Proposition 8.2. Let us consider the unital abelian C*-algebras C = ¢(N), A} =
Ay = 1°(N) and the inclusion maps 1; : C — A; 5= 1,2. Let further m; denote the
faithful unital *-homomorphisms A; — B(I*(N)) which associates to every a € [°°(N)

the multiplication operator-with-a-on lQ(N) . Then Ty @i 7o t5 ot faithful.

Proof. We notice that the Gelfand spectrum of ¢(N) can be identified with the one-
point compactification N = NU {oo} of N,
Let Xoqas € (™(N) denote the characteristic function of all odd natural numbers,

and X,,ons the characteristic function of all even natural numbers. Then

(7]-1 ®C’,min 7T2> ((Xodds ® Xevens)/jC) =Tm (Xodds> 7T2<Xevens) = O .
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We shall show that ||Xoaqs ® Xevens|lc;min = 1, hence (Xoqas @ Xevens)/Je # 0, which
completes the proof of the non-injectivity of m ®c min T2 -

Let ev,, denote the evaluation map (*°(N) 5> a — a(n). Then every ev,, is a state
on [*(N). Let ¢, be a weak*limit point of {ev,}n odd, and ¢, a weak*limit point of
{eVy}n even - Clearly, 1 (X qqs) = 1 and ¢, carries ¢ € C to ¢(c0), so by Proposition
3.4 we have <p1|1L1(oo) = 0. Therefore ¢; = 11 o7, » for some state 1)y on A,/I,,(c0).

Similarly, ¢, ) =1 and s = 1)y 0 7,, o fOr some state ¥, on Ay/I,,(c0). Since

Xevens

1= (901 ® (102)(Xodds & Xevens) 73 (Qf/jl ® dj?) ((7@1,00 ® 7TL2700)(X0dds & Xevens))
S H (7TL1700 %y 7TLQ,OO)(XoddS ® Xevens) Hmin

- HXOddS ® Xevens“C,min < 1 )

we conclude that ||X,q4s ® Xevens | cmin = 1 - u

In the sequel we shall prove criteria in order that the tensor product of two faithful
x-representations over a unital abelian C*-algebra be still faithful.
Let ‘H be a Hilbert space, A, B C B(H) C*-subalgebras with B containing 14,

and p € S(A). If C*(AU B) denotes the C*-algebra generated by AU B, then
{6 € S(C*(AUB)); bla=¢}
is a weak*closed-convex subset of S(C*(AU B)) , so the subset
K(A,B;¢)={0lp; 0 € S(C*(AUB)), la=¢} cS(B)

is convex and weak*closed.

Let X be a non-empty convex set in some vector space. We recall that x € X is
an extreme point of X if and only if # = 1 (z1 + x2), 1,22 € X , is possible only for
x1 = xo (cf. [4], Theorem 5.2). We denote the set of all extreme points of X (the

extreme boundary of X) by 0.X .
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Lemma 8.3. Let ‘H be a Hilbert space, A, B C B(H) C*-subalgebras with B con-

taining 14, and ¢ € P(A). Then
0.K(A,B;p)C{blp;0€ P(C(AUB)), 0la=¢}.
If additionally B C A’, then
{6lp; 6 € P(C*(AUB)),0la= ¢} C P(B),

hence also the converse inclusion holds.

Proof. Let ¥ € 0.K(A, B ;) be arbitrary. Then
Ky={0€5(C*(AUB));0la=¢, 0|l =1v}

is a non-empty weak*compact convex set, so by the Krein-Milman Theorem it has an
extreme point 6,. We claim that 6, € P(C*(AU B)).

For let us assume that 0, = %(91 + 0,) with 6,60, € S(C’*(A U B)) Since
¢ € P(A) = 8.5(A) and ¢ = Ooln = 5 (1|4 + 02]4), we have 014 = Oo]|a = o.
Therefore 61| and 6| belong to K (A, B;¢). But ¢ = 0,5 = 3 (61| + b2|5) , so,
using that ¢ € 0. K(A, B; @), we obtain 8|5 = |5 = ¢ . Consequently 6,0, € K,
and the extremality of 6, in K, yields 6, =0y =0,

Now let us assume that B C A’ and ¢ = 6| for some § € P(C*(AU B)) with
0)a = . Let mp: C*(AUB) — B(Hy) be the GNS representation associated to 6,
and &y its canonical cyclic vector. Since 6 is a pure state, my is irreducible.

Let (P, denote the unit of the weak operator closed x-subalgebra mwo of B(Hy) .
Then P, € mg(A)' Nmy(B) = my(C*(AU B))/ = C1y, . Moreover, since 0|4 = p # 0,
P, is non-zero. Consequently P, = 14, , and so mwo is a von Neumann algebra.
In particular, & belongs to Hy , = mo(A)Ep C Hy .

The orthogonal projection P’ onto H, , clearly belongs to the commutant my(A)’

of me(A) " The central support of P’ is the orthogonal projection on



66

lin (79 (A)' P'Hg) D lin (me(B)me(A)&) = lin (me(C*(AU B))&) = Ho,
SO Zny(ay (P') = 1y, . Therefore the induction *-homomorphism

Doy : 7T9(A)wo 5T +— T|H9’SD € B(Hy,,)

is injective. But the *-representation my, : A > a WQ(G)’HG(‘O € B(H,,) is

unitarily equivalent to the GNS representation 7, : A — B(H,,) of p and ¢ € P(A),

so my, is irreducible and consequently the range of p, ., is equal to m, (A) Y=

B(Hy,,) . Therefore N =mp(A) "= pgj (B(Ha(p)) is a type I factor.

Now, my(B) C N’ and the relative commutant of my(B) in N’ is

mo(B) NN' =mg(B) Ng(A) = 74 (C*(AU B)) = C 1y, .

wo

Since the bicommutant theorem holds in type 1 factors, we get my(B) = N'. We
claim that P’ is a minimal projection of N'.

For let T € N', 0 < T" < 14, , be arbitrary. Since

(mo(a)T"Eo|&0) < (mgla)éo|So) = (a), a€ A"

and ¢ € P(A), there exists 0 < X < 1 such that (mg(a)T"&|&) = A¢(a) for alla € A

(see e.g. [24], 4.7). Consequently

((T" = My, ) mo(ar)E|mo(a2)Eo) = (molasar)T'é|és) — Aplagar) =0

for all a1, as € A-and it follows that P/(1T" — A1y,)P = 0, ie. PT'P' = \P'.

By the minimality of P" in N’ for every b € B there exists \, € C such that
P'mg(b)P' =X, P'. Since X, = (A, P'&&) = (P'mo(b) P'&y|€) = 6(b) = ¢(b) , we have
P'mg(b)P" = (b) P'.

Let 7 be a *-isomorphism of the type I factor N’ onto some B(K). Then x(P’) is
an one-dimensional projection and, choosing a vector n € m(P")IC, ||n|| = 1, we have
Y(b) = ((mome)(b)n|n), b € B. Since (7 o my)(B) is weak operator dense in B(K),

we conclude that ¢ is a pure state. O
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Now we study the extreme points of the intersection of K(A;, B ;1) and

K(A2aB;502):

Lemma 8.4. Let H be a Hilbert space, Ay, Az, B C B(H) C*-subalgebras with B
abelian and 19, € B C A;' N Ay, and ¢, € P(Ay), o € P(As). If
(S 36<K(A1,B;901) HK(A%B;SOQD
then, for j = 1,2, there exists T; € P(C’*(Aj U B)) such that
Tila, = @;, 7j|p = and 7;(ab) = 7;(a) 7(b) , a € C*(A;UB),bc B.
In particular,

@6<K(A173;901)ﬂK(AQaB;(fD?)) :86K(AlyB;901)maeK(A27B;§02)‘

Proof. Let us denote, for convenience,
Kl 7 K<AIJB;901)7 K2 1 K(A27B7§02)
and set
Oila, = 05 O3ls = ¥
Ky ={ (61,05) € S(C*(A; U B)) x S(C* (AU B)) o
for j=1,2

K:{@ﬁgesmwmuansww@uB»;mB:%@}
Since Ky # @ is convex and compact with respect to the product of the weak*

topologies, by the Krein-Milman Theorem it has an extreme point (71, 7).

First we show that (71,73) € 0. K= For let (6,';6y'), (6,",6,") € K be such that

1
(11, 72) = B ((91/,92/) + (91”,92”)> : (8.1)
Then, for 7 = 1,2, we have
1
vi=Tila, =5 (9/|Aj + 93‘"|Aj)

and, since p; € P(A;), it follows that

0j’|Aj = 0j”|Aj = @j, hence Qj/|B, 6)]'”|B € Kj.
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But ‘91/|B = 02,|B and Q1H|B = 02”|B, SO actually ‘91/|B = 02,|B S K1 N K2 and

01”’3 = ‘92”|B € K;NKy. Now
(81) 1 / "
’(,D = 7'1|B = 5 <91 ’B +91 ’B) and w c (‘L(Kl ﬂKg),
vields 6;'|p = 0,"|p = v, j = 1,2, and therefore (0,",6,), (,",6>,") € Ky . So, by
the extremality of (71, 72) in K, , we conclude that
(91/, 92/) = (91”7 92//) = (7'177'2)-

Next we prove
7;(ab) = 7;(a) 7;(b) = w;(a)(b), a € C*(A;UB), be B, j=12. (8.2)

Clearly, it is enough to prove (8.2) in the case that e1y4 < b < (1 — ¢) 1y for some

e>0. Set for j =1,2:
w(b)Tf'<'b)’ 0 _1/}(1%_@73( (1 = b)) € S(C*(A; U B)) .

Since 71| = 1 = 73|, both pairs (6,’,65") and (6,”,6,") belong to K . Thus

9/ —

(11, 72) = (D) (01,0") + (1 — b) (6,",05") and (71, 72) € 0. K

imply that (6,",0y) = (71, 7), i.e. (8.2).

Finally we prove that 7; € P(C’*(Aj U B)) , 7 = 1,2. Then, by Lemma 8.3, we
have also ¢ € 0K (A 4B ;1) NOK (A, B @2) .

For 71 € P(C*(A; U B)), let us assume that

= % (0" + 0") for some ¢',0" € S(C*(A,UB)).
By (8.2) 71 is multiplicative on B, so 7i|p is a pure state on B. Therefore the above
relation implies 0'|p = 0"|p = 71|p = ¥ = T»|p and it follows that
(11,72) = % ((0’,7'2) + (0",7'2)> , where (6',75), (0", 72) € K .

Using (11, 72) € 0.K , we get (¢, 72) = (0", 72) = (11, 72) , hence 0/ = 0" =7,

The proof of 7, € P(C*(A5 U B)) is completely similar. O
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The main result of this chapter is the next theorem, which yields faithfulness

criteria for m; ®¢ min T2 :

Theorem 8.5. Let C' be a unital abelian C*-algebra with Gelfand spectrum €1 and
let (A, 1), (Ay, ty) be C*-algebras over C'. Let further mj : A; — B(H), j =1,2

)y =

be faithful non-degenerate x-representations, such that
M(m)) o, = M(my) 0ty and m(Ay) C N, my(A,) C N’
for a type I von Neumann algebra N C B(H) with centre Z = (M(ﬂ—j) o Lj)(C’)”, Q
the Gelfand spectrum of Z , and m : Ay @ Ay — B(H) the x-homomorphism defined
by
(a1 ® ay) = mi(ar)ma(as) , a; € Ay, ag € Ay

Then the following statements are equivalent:

(1) 7 ®cmin Ty 1 faithful ;

(ii) the kernel of w is equal to Jc ;

(i) if T em(A4;), 7 =12, 1<k<n,and Y Ti;T5;=0, then

1<k<n

> (X0 Pe)(Thk) (X © Pp)(T2) = O
1<k<n
for all abelian projections e € N, f € N" with zy(e) =z (f) = 1y
and all x5 X5 € Q With! x, 0 M{ny) /o1y = x40 M(w5)0 i3 ;

(iv) for any p1 € P(A1) and vy € P(As) with-p o 11 = ¢y 0 tg-we have

K(W1<A1) AR e 7r1'1) N K(Wz(Az) 2 a0 7T271) Vi

Proof. By the definition of 7T, ®cmin 7y, (i) is equivalent to the injectivity of the
restriction of M ®¢min Ty to (A1 ® As) /T, so (i) implies (ii). Conversely, if (ii) is
satisfied, then the C*-seminorm A; ® As 5 a — ||w(a)|| vanishes exactly on J¢,

so Proposition 3.6 entails that ||7(a)|| > ||a||cmn for all a € A; ® Ay. Taking into
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account (4.7), it follows that m; ®¢ min T, is isometric on (4; ® Aj) / Jc , hence on the
whole A; ®¢ min A2 .

By the aboves we have (i) < (ii). Next we prove that (i) = (iii) = (ii).

Let us assume that (i) is satisfied and T, € mj(4;), 7 = 1,2, 1 < k < n are
such that >  T1,T5, = 0. Then T}, = m;(a;) for some a;, € A; and, setting

1<k<n

a= Y. a1 ®ag; €A ® Ay, we have

1<k<n

(WIQ§Cmﬁnﬂé)(a/éZ?)::'ﬂ(a) E: TLkIEk ::Oa

1<k<n

and by (i) it follows that a € J¢ . Using Corollary 7.7, we conclude that, for any
abelian projections e € N, f € N' with zy(e) = zy(f) = 1y, and any x;, X, € Q

satisfying y,0 M (m) 0 1p = yo0 M(my) 0 Lo,

22 (o ®e)(Tik) (6 0@ (Tok) = 22 (Xy © Peom)(ark) (xg © Pf 0 m2)(azk)

1<k<n 1<k<n
~ (10 @ om) & (x,0 @5 0m2) ) (a) = 0.
Now we assume that (iii) is satisfied and @ € A; ® A, is such that 7(a) = 0. Then
a= Y, a1 ®ay, with aj, € Ay, 50 > m(a) m(azy) = m(a) = 0. By (iii) it

1<k<n 1<k<n
follows that

(o @eom) ® (oo @pom) (@)= 5 (x; 0 @o)(Ta(a14)) (x © Py (malazs))

1<k<n

for all abelian projections e € IV, f € N’ with zy(e) = zp5(f) = 1y and all x,,
Xy € Q. satisfying X1© M (m1) 044 = X0 M(7g) 09+ By Corollary 7.7.it follows that
a € Jo.

Finally we prove that (i) = (iv) = (ii).

Let us assume that (i) holds and let ¢; € P(A;) and ps € P(Az) be such that
01011 = 3 01y. Then there is t € Q such that ¢ (Ll(c)) = o (LQ(C)) = ¢(t) for all

c € C' and by Proposition 3.4 it follows that ¢,

n,) =0, w2[1,, 1) = 0. Therefore
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(01 @ w2)(a)] < [[(7,0 @ 7o) (@) limin < [|@]|Cmin a€ A ®A

and so there exists a state ¢ on Ay ®c min A2 such that

(1 ® p2)(a) = p(a/To) , ac A ®A,.

Then 7 = @o (7, @cminT,) * is a state on linm (A;)m2(As) , which can be extended by

strict continuity to a state on M <lin7T1(A1)7r2(A2)) , still denoted by 7. We notice

that, by (4.8), C*(m(Ay) Uma(Ay)) C M(linm(Al)m(Ag)) . Since
7(m(a)) = 7((m @emin 1) (0/ Ta)) = (a/Tc) = (¢1 ® 2)(a)

for all a € A; ® Ay, choosing some increasing approximate units {u,\} N {vu}# for

A, respectively A, and using (4.8), we obtain

7(m(ar)) = liin 7(m (a1)me(v,)) = hin o1(ar) pa(vy) = p1(ar), a1 € Ay,

T(Wg(ag)) = liin T(7T1(U)\)7T2(CL2)) = hin e1(uy) pa(as) = pa(az), ag € Ag

(for ¢y(vy) — |lesll = 1 and @i(uy) — |l¢,|| = 1 see, for example [24], Theo-

rem 4.5.(i)). Consequently, if # is an extension of T ) to a state on

[0k (71'1 (Al)U7T2 (AQ)
C*(m1 (A1) U Z Uma(As)) , then 0]r,a,) = pj© 7rj_1, j =12 and so

0)z € K(mi(A1),Z;prom ') NK(ma(As), Z;pa0m; ).

Now let us assume that (iv) holds and let a € A; ® Ay with 7(a) = 0 and
01 € P(Ay), g2 € P(Ay) with ¢ 01 = s 0 15 be arbitary.

By (iv) the weak*compact convex set
K(m (A1), Z jprom )N K(m(A3) /25 g0 my )
is not empty, so by the Krein-Milman Theorem it has some extreme point ¢. Now,
by Lemma 8.4, there exist §; € P<C* (Wj(Aj) U Z)) , 7 = 1,2, such that

ej\wj(A]-) =<PjO7Tj71, 9j|Z =1,

0;(Tz)=0;(T)0;(z), TeC*(m(A)UZ),z€Z.
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On the other hand, if a = ) ay; ® agy with a1, € Ay, asy € As, then
1<k<n

> mi(ark) m(azy) = m(a) =0 and m(a1) € N, me(agy) € N'.

1<k<n

By a classical result of Murray, von Neumann and Kadison (see e.g. [22], Theorem
1.20.5, or [21], Theorem 5.5.4, or [24], Proposition 7.20) it follows that there are

zjr € 4,1 <3,k <n, such that
> mi(ary) zjk =0 forevery 1<k <n,
1<j<n

Y. 2k ma(Ggk) = ma(ag;) forevery 1 <j<mn.
1<k<n

Using (8.3) and the above equalities, we deduce that

> pilary) ¥(ziw) = X5 Ou(mi(ary)) Oi(zin) = 01( > milas;) zjx)

1<j<n 1<j<n 1<j<n

=0 for every 1 < k < n,

> ¢(Zj,k) polagr) = > 92(Zj,k) 92(772(a2,k)) 292( > Zj,k772<a2,k))

1<k<n 1<k<n 1<k<n

= Oy(m2(as)) = @alag;) for every 1 < j <n.
Consequently

(pr@pa)(a) = > wilar;) pa(az;)

1<j<n

= . 901(a1,j)< > ?/)(Zj,k:)@z(az,k)>

1<j<n 1<k<n

| ( 3/ sol(al,j)w(zj,k)) s(asy) =0.

1<k<n Y1<j<n

But if a belongs to the kernel of 7, then all ¥*ab, b € A; ® As, belong to the

kernel of 7 so by the aboves we have

(1 ® @) (b*ab) =0

for all p; € P(Ay), p2 € P(Az) with ¢1 011 = pgo01p and all b € A} ® Ay. By

Corollary 3.5 it follows that a/J, = 0, that is a € J, . O

A first application concerns the proper C*-algebras over C':
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Corollary 8.6. Let C be a unital abelian C*-algebra and let (A,, t;), (Ay, 1) be
C*-algebras over C'. If m : Ay — B(H) and 7 : Ay — B(H) are faithful non-
degenerate x-representations and

M(my) o vy = M(my) 01y and m(A;) C N, my(A,) C N

for a type I von Neumann algebra N C B(H) with centre (M(m;) o 1;)(C), then

T @Cmin Ty 1S faithful.

Proof. Since M (m;) o ; is injective and (M(w;) o ¢;)(C) = (M(m;) o ¢;)(C)”, any
characters x; , X, on (M(m;)ot;)(C)" with y,0 M (1) 0t = x50 M (m2) 015 are equal.

Thus condition (iii) in Theorem 8.5 is trivially satisfied, by Lemma 2.4. O

The next application of Theorem 8.5 concerns unital *-representations, whose

normal extension on a substantial part of the second dual is faithful:

Corollary 8.7. Let C' be a unital abelian C*-algebra and let (A, t;), (Ay, ty)
be unital C*-algebras over C. If n; + Aj — B(H), j = 1,2, are unital *-
representations, such that the normal extension 7; : A7* — B(H) of m; is faithful

on C*(A; U;(C)™), and
T Ol =Ty0ly and m(A)) C N, my(Ay) C N’

for a type I von Newmann algebra N -C B(H) with centre (mj015)(C)”, then T, ¢ minTy

18 fauthful.

Proof. Let € denote the Gelfand spectrum of C'and set Z .= (7 0¢;)(C)". We shall
verify that condition (iv) in Theorem 8.5 is satisfied.

For let ¢p; € P(A;) and ¢y € P(Ay) be such that ¢ 011 = ¢y 015. Then
C 3 c— (pjo1;)(c) is a character of C', whose normal extension to C** is equal to the
composition p;oc ™ of the normal state ; on A with the second transposed map ¢;™.

Since ;00" : C** — B(H) is a faithful normal *-representation with range Z , which
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does not depend on j = 1,2, we can consider the character x = (@;01;*)o(T;00;*)7!

of Z.
Now let j = 1,2 be arbitrary. Let 6; denote the composition of the normal state

@; of A with (7, ! Then 6; is a state on

C*(AjULj(C)**))
7 (C* (40 (0)7) ) = O (mi(A)) U (7 0 7))
whose restrictions to m;(A;) and to Z = (;0;%)(C**) are p;om; ' and x , respectively.

Consequently K (m1(Ay), Z; 1 0m ") N K (7a(As), Z ;0005 ) 2 x. O

The situation in Corollary 8.7 can occur for any pair of unital C*-algebras (A, ¢;),
(Ay, ty) over C'. Indeed, then ¢;* : C* — Z(AF), j = 1,2, are injective unital

normal *-homomorphisms, so by [14}, Lemma 5.2 there exist injective unital normal

kk

) and

-representations 7; : A — B(H), j = 1,2, such that 7, o ,* = T, 01
T (A7) C N, my(AS*) € N’ for some type I von Neumann algebra N C B(H)
with centre equal to (7; o +;*)(C™) and, denoting 7; = 7|4, , j = 1,2, the normal
extension m; of m; to A" is faithful and

T 0oL =Ty0ly, m(A) C N, m(Ay) C N, Z(N)=(mo1)(C)".

The above remarks and Corollary 8.7 imply immediately:

Corollary 8.8. Let C bea unital abelian C*-algebra and let (Ay, ty), (Ay, ty) be
C*-algebras over C'.. Then there exist faithful unital x-representations p; : M(A;) —
B(H), j =1,2, such that

P10l =Py 0Ly and P1(M(A1)) CN, PQ(M(A2>) C N
for some type I von Neumann algebra N C B(H) with centre (p;joi;)(C)" and p;@c min

py 18 faithful.

According to Corollary 3.3, if p,, p, are as in Corollary 8.8, then p; ®c min o is

faithful on A; ®¢ min Ay C M(A;) @cmin M (A,). However, in general we don’t have
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pj = M(m;), and so (p; @cimin P2)]A,00,mnA, = T1 ©Cmin T, for appropriate non-

2
degenerate #-representations m; : A; — B(H), because (p; ®cmin P2)]4,00,mnA, 19
not always non-degenerate. Taking, for example, for A;, Ay the non-zero C*-algebras
over C([0,1]) with Ay ®¢(jo,1)),min A2 = {0}, given in [8] before Proposition 3.3, we
will have p; # 0 and p, # 0, hence (p; ®c(jo1])min P2) 7# 0, While (p; ®c((0,1),min

Ps) |A1®c([0,1]),min‘42 =0,
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