In studying the coefficidbkfof Jongitudinal dispersion D , cn?/s

, during fluid flow through packéd #le€ , the following items will be
discussed in detaid { ﬁl the dynamic methods in
mlar , and the response
data analysis . '

3.1

ion dynamics of a packed bed

system for debormiming ing-cheraeteristics and eventually

f A
its model , tlﬁ t%xcite the system with a
detectable a:bstancp obser%:tts response . Several methods of

e B 4] 94 V1A e s

suggested , for instance g, smusoﬂal forcing Junetmns , step
o Q8 VR Y T A e e
dis ta.ges such &s being time consuming when allowing the system
to reach steady state , or being unstable during operation becaunse
of oscillation , and difficulties in constructing and operating the
apparatus required to induce sinusoidal disturbances with adequate

variations in frequencies .
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Although creating impulses may seem difficult but it is actually
straightforward . Therefore , further studies for mixing of fluids
in flow systems will make wide use of impulse injections .This
method sctuslly employs a single arbitraty pulse to excite the
system with all frequencies at once . By applying a suitable

caleculation technique 1@ freguency response informetion as well

as mixing characteristics can/ be xtracted from the resulting

response which  is i y)sed¥H copnstruct a model . Hence the

Suppose & volumetric flow rate @
into a system of W€

M’ is introduced

- amount of miscible tracer
short as possible . Let cg
equal the effluen . Thus the materisl balance

gives rise to |

\F~> ,,E'J

lﬂ 2
MY ’Jtﬁ“ﬂﬂﬁ W FRGee

Q W'\"ﬁﬁﬂ?ﬁd%ﬁﬂ WEDH ) 3

The above eguation yields the total area of concentration -

time response curve from which M can be found in practice when Q is
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known . Since the response curve shows that only a fraction of the
tracer exits for a particular residence time , thus let us define it

as follows :
Y(t) 3.2
fce(t)ldt
Similarly , if the &4 A& méasured at the inlet , the fraction of
tracer inlet can
X(t) oy N2 o 3.3
| ey (t)ldt
For -"i mat! itmerit it is more convenient to
i¥
transform this trs.t:.m J.stnl:utim into a probability

mmﬂ HEH ¥ ﬁwqﬁﬁg T
amaﬂn‘iﬁuum'mma d

:f_sj_m = /':n,_.m_ = 1 3.4
(M/Q)dt (M7Q)dt

equations 3.2 and 3.3 eventually become

1103032144
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Jtewnae = oo gt = 1 3.5
i !::e(t}dt
ﬁx(t)]dt = _dt = 1 3.8
?isl”// cl{t}dt
This probability  d ! -,1.‘ is us o analyze response data .
s

Furthermore considg extracted from this

characteristic featufe M ,1 res e system flow pattern .
3.1.2
As one of the d tracer has traditionally

been wvery

measurements ;-':‘ P ’: of methane tracer is
injected into ﬂ pre lﬁmﬂ through a packed bed
filled with ‘ A molecular 5im carbon adsorbents . This

perfamanﬂ w&‘] ‘G}.EJ %ﬁ %ﬂtﬂc@h the bed with none

appreeu.bly entering the %dsnrbent pores - Alt in practice , a

~ QR IRTRLHANIAY Y i

short injection time af the smallest magnitude of tracer

axial dispersion coefficient

will improve this situation . Thus the response data can be
recovered . And the model is optimized with the experimental data
using solely the exit response which corresponds to the exit age
distribution .
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3.2 Response data analvsis

Various mathematical trestments have been used to analyse the
response data and correlate them in the form of equation 3.4 to the
model perameters of the system . However , the moment snalysis and

frequency response snalysi | be used in this study and will be

This method™
experimental respons rangs fe Function is obtained by
applying the Fourde atior both Y¥(t) and X(t) . By
taking their ratio we obt&s

- mc’? dmin . FI‘L‘II thﬂ

S Y
B(j LemIOPY (1) 3.7

f' ferI@tx(t)1dt

ﬂ‘lJEJ’J‘VIEJVlﬁWEJ’]ﬂ‘i
IR FOUHBARH HRAGE o »son

variahae which return to their initial values after a certain time
and remain so as time progress , the integrals exist and may be
evaluated for each value of . In order to simplify egquation 3.7 into
a stendard complex varisble form , one can proceed as follow
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X(t)coswt)dt - j X(t)sin(@t)dt

ket g = ﬁ(t)ms{wt}dt
B =
C =
D
hence eguation 3
Hy (&)
or V = -:, =
%(ju . ﬁ;"— :,I!'—'i : 3‘9
V.
..I
where

ﬂumﬂw%’wmm
ammnimumﬁﬂmaa

Similarly , the transfer function derived from an appropriate
model can also be expressed in term of the frequency domain as

H(3®) = R@  + W) 3.10
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If the selected model is good enough to represent the flow pattern ,
there must exist a corresponding set of parameter values contained in
HP(jm} such that

Ho(Ge) = Holdop) for i = 32,0

The criterion of )| £u65e" 8 set of parameters such that

$ = - I5(@3))2] 3.11
The advantage thi xis explaified by Parseval’s theorem
‘ '
S Ivpce) - Yot w) - Yo(3w) | % 3.12

v—— —1]

which implies t e ‘:';Jv” se deviations in the
M

frequency :Imain a}so leads to a uinmmtlm of response deviations

o U RRIHEAR Foe s

rawntten

quﬁ\ﬂﬂ‘im UNIINYIRY

7 S a0 tool = 12/ x| 2ol 3.13

This implies that the minimization of the deviations between the
predicted &nd observed transfer function in the freguency domain
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with respect to a given input gives rises to the minimization of the
deviations of response in the time domain . On the other hand
disadvmtnge'a arise from the fact that the expression for lejul'
must be obtained by substituting je for s in Hy(s) and separating it

into real and imaginary parts . This is a formidable task for a

.~ the model transfer function .

oF _Parta for each take more

computational time to--compute coppared to that of the moment’s

The general Jprg d deals with a definition

of the Ktb distribution ce(t) or the

Y :
Myk Iﬂ it - 1,2,--, 3.14
ﬁuaﬁwwm

QW?ﬁﬂﬂ‘imﬂJﬁﬂﬂmﬁﬂ

Now let us consider a general Laplace transform of Y(t)

Y(s) = Je Sty(t)dt 3.16
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1f we differentiate equation 3.16 successively with respect to s and

take the limit as s approaches zero we obtain

ii:—“le!l = (-1)EMggy g S 3.17

when K = 1 this expressio thn first moment of Y(t) in

the time domain whieh equals to —— Y(t) . That is

= -1lim dY(s) 3.18
5+0

£
ds

-

— : .\. :
Wy
" '#‘-‘ \
hed as » which can be written as
y .;";: Vo r
¥ e
' 631-_, : -"-"r’”" " 774

L

o(t)dt

ﬂumwwﬂmm
ammn‘imuwf 918 6 &

Al J"tr

)2y (t)dt



. iﬂ;[dﬁiizl__ (313:921 3.19

Similarly , it can be expressed as a mean and a variance of X(t) ,

in the following forms , respectively .

gt o= Jexidie = -lin di(s) 3.20

fdx(s )2] 3.21

) j |
AR
QRIANIYIRNINGNNY

X(s)

<
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-l
i = 1i -st = dt = 1 3.23
lin Y(s) = lim J(e7St¥(t)lat /e
lim X(s) = 1lim ﬁs*ﬂtx(t}]dt = Jixydt = 1 3.24
S=0 S+0 3
hence

As s apprnachas ;m and the ralatims derived in eguation 3.16

o > FHHEREN TNE N
IMINTUNNING A

lim dH(S) = ~(Uty ~Mix) = 3.28
5=+0

ds

= ﬂm-(mﬂ = Py S = s 3.2
ds
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These last two expressions imply that the parameter values in
the model transfer function can be fitted to the experimental data

using such relationships .

The moment's method ribed here seems to be the simplest

means of fitting models xy ental data since this method
requires less : < other methods . However , a

o much weight is placed on

serious fault

the tail par large values of t .

Furthermore t not be reliable due to the
difficulty of# ' . tracge '!" ion accurately at low

concentrations necessity of using higher
moments for fi -‘:t{-'” his aethod tends to become less
reliable . Anot advs ur; ha the results of the analysis

provide no i-"rl;.""; icular model fits the data ,

unless nth-f‘,,rrzzvnm- TE& Chos 'f;f-re the response of the
model with t@ experim ponise iﬁﬂ:e time domain after the

parameters have bien, computed .

ﬂuﬂqwﬂﬂ5Wﬂ1ﬂﬁ
Rk iR

Due to the convenience of the moment's method in response data

handling all experimental parameters will be derived from the

mathematical treatment using such method in this study . As only a
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number of equidistant measured data points are involved , the
equations from 3.18 to 3.21 acquired in the last section need to be

modified so as to yield the following expressions (24) :

P ﬂ‘lJEl’J ﬂﬁmﬂﬂﬂjﬂt‘i N
ARIBMIBIAN I N A
T R(t-#) W (t) F E:LﬂE::l- (ﬁd{:})] 3.33
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Owing to the use of delta inputs as forcing functions in this
work , the A4, and ‘ztx terms vanish . Consequently equations

3.28 and 3.29 become

lim dH(s) = -~Mgy 3.34

<2ty 3.35

ong of the transfer function

given in the pr [ equation 2.28 ), and by allowing s

3.36

o ﬁ'u?f’la ﬁm's?;]{ ‘ 7&7’1%*%]
QMR TN INY 1A

6/The derivation of equations 3.36 and 3.37 is presented in appendix E
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In order to confirm the reliability of values obtained from the
moment’s method , it was suggested to fit the two computed
parameters obtained to the proposed model in the frequency domain as
referred to in equation 2.30 . Since the minimum error function

shown in eguation 3.11 requires the transformstion of experimental

data into the fraqusmc}r' It , thus , increases the

&h& problem and to guarantee

, the inversion of the

difficulty of this
the best Ffit in..bhe
derived fmrier.'s
Ultimately both

domain is done
Fitted using the criteria

given below :

ﬂ‘UEI’J‘VIEWIﬁWEI']ﬂ‘E
ammnimummmaﬂ
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