CHAPTER 2

CONCEPTS , MODELS , BOUNDARY CONDITIONS AND

TRANSIENT SOLUTIONS FOR AXIAL DISPERSION FLOW IN PACKED BED

The present apter present the concepts of axial

dispersion , a deriwation of ti ' u1on model with a discussion
of boundary conditions @nt solution for the model

will be obtained und tlacted oundary conditions .

In general Ben f—lﬁ;f 388 t ough the interstices of a
be subjected to splitting ,
ping . If these individual modes
of mixing n'a random order , then it

results in a p
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lech isms which contribute to axial dispersion ; molecular
diffusion and turbulent mixing arising from the splitting and

recombination of flow around the adsorbent particle , by ignoring the



influence from nonuniformity of pnckingl '

Under extremely low flow rates and assuming that all flow has
ceased , molecular diffusion would be the only operating mechanism

in the bed which is considered as an assemblage of randoply oriented

evlindrical pores iven shape of packing . Diffusion

in the axial di the dormant fluid within the

interstitial c g as shown in figure 2.1 .
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dispersion from wall effects if the ratio of bed to particle

diameter is not sufficiently large , usually a value larger than 10

should be appropriate ( 2u'1 .
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The molecular diffusion may be slowed down by two vital
characteristics of the bed . One factor is the constriction or
enlargement or branching of channels . Any of these constricted
points will form traffic bottle necks , and thus obstruct diffusion .
Another effect relates to the tortuous zigzsg path of chennels that
ace along the shortest and direct

path . Hence the constriction of channels

diffusion by a tortuosity

! \enved from dispersion
Boet, \r: number

spproximate value | 144 ortuosity . Carberry and

ibt afn ot -‘ \"\\ e Evan and Kenney ( 7 )

had a wvalue of #0.88 5% \\\ icles , and Edwards and

provide the hindrance £
factor . Many

, confirm an

‘\ 73 . Therefore molecular
diffusion mechanism sxial dispersion by the

relationship shown in

2.1
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turbulént mixing develops . Aris and Amundson ( 21 ) explained this
phenomena using & simple model based on a series of mixing chambers ,
separated on the aversge by the mean particle diameter . They
recommended & relationship between Peclet number and particle



diameter which was shown experimentally by Mc Henry and Wilhels ( B8)
to yield Peclet numbers in the region of 2 for high Reynolds numbers .

Thus , for very high flow rates the following equation has been

proposed 2
: / 2.2
Combination of th fects tepresents an axial dispersion
coefficient expressit ys (2412
1, *{u*dpl 2.3
or i m,.-l'
E,/(utd A Tt 1/2 2.4
. A
AL < 2y \
This ultimate _g’,ﬁﬁ ts the prospects of axial
dispersion da &=*=- 11y turbulent region quite well , but at
intermediate Rey Tib1de 'sion is commonly somewhat

greater than prmlicted by eqmtinn 2.3 . This is due‘to the effect

R i AU L —

dispersion 1,! . Edward ‘.nd R:chardzon (6 ) evea&ully suggested
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2/ See appendix A for the derivation of this relationmship ( 23 )



term on the right - hand side of equation 2.3 , and it becomes ( 2 )

E,/(utdy) = YDy/(utdy) + 1/{2%[1 + YDy/(utdp)]}

or
1/Pe = YE/(Re*Sc) + 1/{2%#[1 + BT/(Re*Sc)l} 2.4

The previous on &ﬁ . section provides a global
outlook of caus affe tn,_ xis, dispersion to arise . Now

persion will be cited and

followed by twodfles ﬂ““.'KQ:i

Carberry ( 23 1 dispersion of a fluid flowing

through a vessel , pipé  OF packed bed as " a phenomenon which

results in & =dists ---L—E'_-?:T-"'T:’—F ' mes for a differential

element of flw : " . This infers that all

species of fluid ‘enterins the de ice together must leave together if

e )8 S W) Y e o

diapersion , termed axial dupernia&and chnractvsed by an axial

WRERAB NI INERY

2.2 Models for axial dispersion in packed beds
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2 2.1 The idesl plug flow model and the perfect mixing model

From the definitions given in the previous section , two
extremes will be envisaged here ( 24,25 ) . At one extreme , & plug -
flow or piston flow pattern shown in figure 2.2 is encountered with
no longitudinal mixing but, WL complete redial mixing . This is

and residence time of all
resctofe., For example , the flow

small ratios of the tube

pattern in a fixe&d
and particle diame g ength can & X losely spproximated by a
plug - flow mode "

% , is a complete mixing
U
flow characteruud a well - defmad residence - time distribution

ot onnefild] E‘Q Vi 104 P Fygeseon of e it

stream and t.he fluid mtym the renntar The behavior of many
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The other extr



14

In the case of packed beds , neit.her of the two mentioned
extremes describes the flow behavior within it properly ( 22 ) ;
nevertheless the actual pattern deviates from these limiting
cunditi.unn .  Such deviations may arise from the velocity

fluctuations due to lulecul or turbulent diffusion ( 2 ),

channeling of fluid ( orl veloc:.ty profiles caused by

nonuniformity of Iexitf of these phenomena

leads to the odel as discussed in the

next section .

2.2.2 The Axia

Various mode Jbgen \ previous investigators to

describe the compl i:l' : vior in packed beds ( 22 ).

However one of the wdels in the dispersion model

in which 5"‘" s superimpose :; g - flow and , thus ,
it is mletileB pﬁseﬂ plug flow model or

dispersion model .sThe general expres sion for this model is ( 27 )

ﬂ‘lJEJf’J‘VlEJVﬁWEﬂﬂ‘E

'acfat + u¥yc €= (Drc)s, + S + 2.5
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For iuotheml non - reactive compressible gas systems , a usual

assumption is indicated as follows :



1>

- Radial dispersion is negligible .

- Velocity profiles are uniform .

- Axial dispersion coefficients remasin constant .
- No variations for all properties of the gas

With the above restrictions widl gmission of the source term ( s),

equation ( 2.5 ) may l / ultimate model as :-

dc/Bt  + ; _ 0 2.8

HOLD UP
i \\ \
e 2 ¢
i’_;‘:;i;ﬂ
In the : of all mechanisms which
contribute to *i;--,_-— N are  Inmpert géther into a single

effective axial {’I"‘u

20 ol UHAR BT AT == =

cntpartmm in series mdel

Q‘iméNﬂ‘iﬂJ UAINYIA Y

the next section the derivation of the boundary conditions
will be given . These matters relate to the dispersion model by some
mathematical representation in the form of a compartments-in-series
model. First , let us consider N equal sized , completely mixed

016732
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compartments arranged in series with back - flow characteristics as

ghown in figure 2.4

[ 1+f [ﬂ

The material b OmpS rtment can be expressed as

(V/N)*ac, /ot - +6-1) + Qlcy-1 - ) 2.7
1f we letaz -____ z and thé above equation eventually
\ Y )
becomes ' ﬂ

“"“ﬂﬁﬂ'ﬂ‘ﬂﬁ‘ﬂﬁw ﬂﬁTﬂ‘ﬁ”*“’“ il
ﬁ Iagans aﬂﬂﬁfﬂwﬁ] ’JW del represented

hr equation - 2.6 can be approximated by the following difference

equation
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scpfet = Ep/(a2)%8(cpyq = 2¢q + €p-1)=(u/az) (e = Cp-1) 2.9

Comparing equation ‘2,8 and 2.9 , an approximation of these two

models is

fu/az = E/(az)?

08)t = Ey/(use) = (L/AZ)M 2.10
'

where

— .
' he dispersion model by the

th b flow model when & first order
\s sfsa , if the number of
ty ' ie compartment - in - series

with back - fl ‘ ij'»-r“_ \dispersion model .

n - series vithout back -

Fig. 2.5 Compartments-in-Series without Back-Flow Model
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The material balance around the n - th compartment gives

(V/N)*(acpfot) = -@(c, - cp-1)

or

acn/dt - 2cn + Cp-1) 2.11
Again comparing eq: /47 @ith 2.9 ) of which the third term can
also be written ) N Z)KLE;, '- , thus the equivalence

P i e
ukaz/2 g O 1./ 2E = o] 2e18

. :—-'T;:1 ,H=N-1or N ->

Therefore , for ’_!i’- _—
oz ﬁumwamwmm
Both Shggested modelg lesd to the two limiting cases of idesl

oA RSN IR o mor o

N - o%then E, >0 and the complete mixing model when N -> 1 and

Ez -.‘"nﬂ

2.3.1 General boundary conditions formulation
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Usually , the proper boundary conditions at the entrance region
and / or the exit region must be assigned . Therefore the focus on a
general specification of appropriate boundary conditions will
contribute to satisfy the continuity imposed on the system

concentration field , c(z,t) .

In a tube of ! / he dispersion is presumed to

@he downstream section with

dispersion coefficignt® ~ihs Ay or may not be identical to that in

persist in the u

the tube . The paéicti€al/lengtl :-, “the appended sections depend on

£, II .,-\ ients in these portions ,

virtually vanishipg p \ ersion occurs there . For
m ‘d
the present , let GOTE. l \- ectiuns to be infinitely

long if finite dispe % (886 there . On the other hand , it is

dispersion coéff being assigned to an

infinite leng — "' ro dispersion , that

dispenses wii:.lzuII need for ascribing m definite length to the

ATy ?ﬁWé‘Wﬁnm
,,;"!.WD &Y f’f‘iml T

uniform in the tube , fore section and aft section with symbols given

by B o B B s
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lim E:{tcfazl 2.13
THLH0

Z-s1-0 180 é- N \\ .
..M

lim c = lim & ok lin E,(2c/o2) 2.14

210 TlaD

T— —— % L W W .

equation 2. yﬁ~ ispersion coefficient in

the infinitely long i3 %quation 2.8 holds when the
aft section isg dnfinitelr lqa; with a finite non - zero dispersion

cottifflld B9 FHEIV] Y LA} o e rsreretat

{nﬁﬂﬁ Ei ;;1 ﬁs%-mm , 8 u:idqﬁa ata E]m of voluse V,

S

limc = c. ;  lim (Ej(2c/az)-vc) + vep = V./A(dc/dt) 2.15
Tt I |
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lime = ¢, ;3 lim {—Esiuchz]} = V,/A(dc/dt) 2.16
Z4L-0 2+l .
In the case where either volume , V_ or V, ,at the end of

the tube is allowed to vanish , the foregoing boundary conditions

appear @
2.17
2.18
Upon the \ tion , Parulekar and
Ramkishna ( \ \ of nine possible boundary
conditions o and Aratani ( 28 ) . Table

2.1 lists these v s obtained from equation 2.13 -

2.18 .

2-352 Bulllldm :;"" l:lmt pcint.

e LB AR B o v o

diffemt q'l:oundary conditigns . Bmd n the two -agela suggested in
secaowr]zaq mmmg Mqﬁ Hamt are first
deriveﬂ , then followed by those at the tracer output point . To
deal with the former case ,let us introduce a tracer with a very

small wvolumetric flow rate , @, be introduced at z = 0 into the
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TABLE 2.1 VARIOUS POSSIBILITIES OF BOUNDARY CONDITIONS

waluse volume Boundary Boundary
Cass L' Bg* of of congiLinn condiLign
fore ssction aft section #t tube outllet st tuba inlst
1 finite mon-gere | finite, Aof-Tero infinite nfiniLe ; Ea. 1.13 Ea. Z2.14
] 1 tinite. non-zere infinite - Eq. 1.13 o.8.c”
3 [} Fini ‘,, infiRile o.8.c. Eg. 2.4
N, ) ‘
. ] \ \“W - o.8.C. 0.8.C.
5 i o infinite Ea. 1.18 Ea. 2.18

Eo. 1.18 D.8.C.

7 D

v
o e a7/ N SN I M

- Jll.iﬁ.ams\

*o.8.C. i Danc

‘ﬁfs ; 1"

iy \
3 o "L | \ :

ko ould possibly be described by both

tube to using/ a flow L&

dispersion model lr-' e COom|

P :

fment - in - series with back - flow

model as showh

- (fl (f1) (f-1a, |l

T O T N P T

e =fll

Fig. 2.7 Tracer Input to the Dispersion Model with an Open
Entrance snd to the Compartment-in-Series with
Back-flow Model
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As AQ¢< Q@ and if no dispersion occurs , tracer concentration cjp

downstream from the injection point can be given as
cin = Q/(@+4Q) = @/

However , the tracer contentration in the main stream , c , should

differ from cj, since the dispéhefonrof the tracer does take place

(V/N)(dcg/d {(:_1 - 2cp + c41) 2.19

By applying th i#allent relation n_equation 2.10 , equation

2.19 becomes

uc,_ 304 - UCg- ‘)ﬂ -ucjy = E;{acfa:],-,u -Egz(oc/az) 550~

ﬂ‘iJEJ’J'VIEJVIﬁWEJ’]ﬂ‘i

with regs to continuity ‘pf mncentration at the trncer input point

Q‘%ﬂﬂﬁﬁﬂﬂ‘im L1946 3 B o e o -

cons rictad or open entrance region of the tube as shown in figure

2.7 , the ultimate boundary condition can be obtained as
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ucij, = Egl ucfa_:. Yg==530" - E,(ec/ez )g==50" B8

Similarly the boundary condition for close - entrance region of the

dispersion model in figure 2.8 may be obtained as follows :

-

(18
fa

the Dispersion Model with
nd to the Compartments-

¢

a material hﬂnce around - - nnlpartient@ern gives

ﬂumwamwmm

VIAN) (deg/dt) = ﬂ[c-l - cni + Qcj, + faQ( ¢+1 - ¢p)

‘ﬂW?E’Nﬂ‘iﬂJ UA1INYTAY

Az(deg/dt) = ulc.y - € + Cjp) + Egllcyy - cp)/az)

as Az -->0 and c.qy'=0



“cin o ucl'-}ﬂ+ g E:t‘chl }:-_}a+

This condition - shows that once the material enters the tube , mone

diffuses out from it .

: ' ﬁJ
Fig. 2.9 Tracer Detection at an Open Exit Point
for the Dispersion Model and the Compartments-

in-Series Model -

R1A
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(V/N)(Bey/dt) =  Q(Cuoq = Cy) + fQ(Cx-y = 2¥Cx + Cyyq)
or

az(dcy/dt) = u(Cy_1-Cx) + Egl {(Cy-1-Cx)/az) - {[CH-FHHHAII ]

2.22

depicted in figure 2.10 , the

material bal - - ant is
*,y" L :
L)

i A

USRS
ARIAINTUNNIINYIAY
(V/N)(dey/dt) =  Q(Chog - Cy) + fQ(Cy-g - Cy)

or

2(dey/dt) = u(Cy_q - Cy) + E;l{(Cyq - Cy)/azl]
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AsAz ==> 0 , Cy-q =--> Cy and Cgyy = Cpop » the final results

can be expressed as

(ec/oz), -t .. , {0 223

”///é,

Once again equat 2 case where no material

diffuses back to hen it leaves the tube .

dispersion model ' cotipl "‘\ ixing tanks at either ends

may be employed ( 28

In orde ., doned cases pictorially ,
Y, o R
table 2.2 preSen  their boundary conditions

corresponding tc those dernadﬁin table 2. ﬂ 29 ) .

AUYINYNINYINT

Sincelhssigning a pnrticular hnundary mn&:tion to the system of
R YN AT I T > e
pred t total system flow patterns , thus for measurement of tracer
output signals made outside the boundaries of the packing in the

packed bed , it necessitates the use of a closed-closed system .



Table 2.Q Tranafer Punction snd Boundary Conditions for Axial-Dispersion Modsel

Tpe st Vanssl | Boundary Gonditions Transfar Punction Nese: | Yarlance

s Open - Open

77
E/ }/ 5 d | @p
=0

Cin ! :

s, O 4 -ﬁil - N\ :
?//j? / r ; Z} Iﬁl\i_ l_;_l
A A e TRV Y P
=0 | J i = o

Cin ) g | l at wsl

P TTTIN ,
-\-_ﬁ-&‘; )

o)

1487
chwd — Closed

',

1

g, c=0
=0
“e s aut
CAALSRLIK)
‘l'ctvl.'l‘ = in

o v/

%’ | V[E M 1o| 2
o =0, e= 0 for x<0 1+8) = {1-8) “exp(-2H8) m
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2.4 Trensient equation for the sxis] dispersed plug - flow

model with a delts function input

Referring to egquation 2.6 , if the

closed - closed boundary condition equation

{ac/c

is applied in
clan}(a?cfat, (% ? 1 € (dc/az)

with the fol Jf

AU INENTNYINS
QRININTAUUNINGIA

T — e — S S

following

2.24

2.25

2.26

2,27

3/ The derivation of equations 2.6 and 2.24 - 2.28 is shown

in appendix B
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2.4 Transient equation for the axias]l dispersed plug - f1ow
model with a delts function input

Referring +to equation 2.6 , if the following

closed - closed boundary condition equation

(3c/5z) = A ' ' 2.25

is applied in
€ (Bc/az) 2.26

(1/Pe)(d°c/dz

with the follpw

c{z,t =0) =

ﬂ‘lJEl’J'VIEWIﬁWEI']ﬂ‘i
amaﬂnmum'awmaﬂ

i — S S S e =

3/ The derivation of equations 2.6 and 2.24 - 2.28 is shown

in appendix B
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point 2=0 in the column) is the dirac function defined as follows
(28)

§Ct) = limda(t)
A—D

where  §(t) =

and its Laplace

L [8(t)] im[sp(t) e~Stldt
A=

.:* Lim [(1/As)(1-e7SA)]

Using 1 Hospital” s rula g

ﬂummmw El’lgﬂ‘i

Lin [@as)(1-e758)] = Lin [se 1
ﬂmaﬁmmummmaﬂ

Therefore the ultimate exit concentration in the Laplace domain is

equivalent to equation 2.28 multiplied by one or

B(z=l,s) = H(s) = Pel(M-A)/(MZeTtA2%e™)) 2.28
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point 2=0 in the column) is the dirac function defined as follows
(29)

&(t) = iﬁaﬁ{t)

and its Laplace

LI5()) Jiintspe) e~stiat

52 Lin [(1/8s)(1-e758)]

Using 1° Hosp1ta.1 3 rule 4

i EW,EJ’JJIE’WMJIW 1
RIAATUUMINYIAE

Therefore the ultimate exit concentration in the Laplace domain is
equivalent to equation 2.28 multiplied by one or

S(z=1,8) = H(s) = Pel(N-A)/(NZ% tA2e™)) 2.28
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If equation 2.29 can be transformed into the time domain , the
result obtained is also the effluent concentration at any point of

time .

Since the snalytical inversion of equation 2.28 is not possible
, it requires the transformstianyof this expression from the Laplace

domain to the frequency 1A laci . The ultimate

2.30

In this ;Ip‘:‘ 1s completely inversed

- .5'_- ":|
"I

]
into the tme nmam by using Hatm‘:ad ,a commonly used PC package

e T“]'UEI’J‘VIEW]?WEI']ﬂ‘ﬁ
Qﬁ?ﬁﬂﬂ‘immﬂﬂﬂmﬁﬂ

4/ See Appendix C for the derivation of this complex form

5/ The concept of Fast Fourier Transform is presented in

appendix D
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