CHAPTER V

SOLUTIONS OF CLASS 2

In this chapter, we shall determine all the solutions of (*) on S of class 2. The main result of this chapter is Theorem 5.10.

Theorem 5.1. (f, g) is a class 2 negative-type solution of (*) if and only if (f, g) is the trivial solution.

Proof. It is clear that the trivial solution is a class 2 negative-type solution of (*)

Conversely, assume that (f, g) is a class 2 negative-type solution of (*), i.e. f,g satisfying the conditions:

$$
\begin{equation*}
g\left(x y^{-1}\right)=g(x) g(y)+f(x) f(y) \tag{*}
\end{equation*}
$$

for all x, y in S
$f(x)$

 We claim that $f(x)=f\left(x^{-1}\right)$ for all x in S. To prove this, let x in S. If $f\left(x x^{-1}\right)=0$ then, by (5.1.2) and (3.4.1), we have $g\left(x x^{-1}\right)=0$. Therefore, by (3.4.4) and using (3.4.3), we have that $f(x)=0=f\left(x^{-1}\right)$. In the case $f\left(x x^{-1}\right) \neq 0$, it follows from (3.3.3) that

$$
\begin{array}{ll}
f(x) f\left(x x^{-1}\right) & =g(x)\left[1-g\left(x x^{-1}\right)\right] \\
f\left(x^{-1}\right) f\left(x^{-1} x\right) & =g\left(x^{-1}\right)\left[1-g\left(x^{-1} x\right)\right]
\end{array}
$$

Thus, by (3.3.2) we have that

$$
f(x) f\left(x x^{-1}\right) \quad=f\left(x^{-1}\right) f\left(x^{-1} x\right)=f\left(x^{-1}\right) f\left(x x^{-1}\right)
$$

It follows from $f\left(x x^{-1}\right) \neq 0$ that

$$
f(x)
$$

Hence we have our claim. From this and (5.1.1) we have that $f(x)=0$ for all x in S. Therefore for each x in $S, f\left(x x^{-1}\right)=0$ so, by (3.4.1) and (5.1.2), $g\left(x x^{-1}\right)=0$. Thus, by $(3.4 .4)$, we have that $g(x)=0=$ $f(x)$. Hence f and g are identically zero, ie. (f, g) is the trivial solution.

Lemma 5.2. Let (f, g) be any solution of (*) on S. Then the followings hold for all x in S :

$$
\begin{equation*}
\text { if } g(x)=g\left(x x^{-1}\right) \text { then } f(x)=f\left(x x^{-1}\right) \text {, } \tag{5.2.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } g(x)=-g\left(x x^{-1}\right) \text { then } f(x)=-f\left(x x^{-1}\right) \tag{5.2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left[1-g\left(x x^{-1}\right)\right]\left[g(x)^{2}-g\left(x x^{-1}\right)^{2}\right] \tag{5.2.3}
\end{equation*}
$$

\qquad

Proof. Let $x \| \varepsilon$. To show (5.2.1) we assume that $g(x)=g\left(x x^{-1}\right)$.

$f(x) f\left(x x^{-1}\right)=g(x)-g(x) g\left(x x^{-1}\right)$
$=g\left(x x^{-1}\right)-g\left(x x^{-1}\right)^{2}$
$=g\left(x x^{-1} x x^{-1}\right)-g\left(x x^{-1}\right)^{2}$
$=f\left(x x^{-1}\right)^{2}$.

Hence

$$
f\left(x x^{-1}\right)\left[f(x)-f\left(x x^{-1}\right)\right]=0
$$

Case 1. As sume that $f\left(x x^{-1}\right) \neq 0$. It follows that $f(x)=f\left(x x^{-1}\right)$.
Case 2. Assume that $f\left(x x^{-1}\right)=0$. By (3.3.1) we have that
$f(x)^{2}=g\left(x x^{-1}\right)-g(x)^{2}$
$=g\left(x x^{-1}\right)-g\left(x x^{-1}\right)^{2}$
$g\left(x x^{-1} x x^{-1}\right)-g\left(x x^{-1}\right)^{2}$
$f\left(x x^{-1}\right)^{2}$

Hence $f(x)=0=f\left(x x^{-1}\right)$.
To show (5.2.2), we assune that $x \in S$ is such that $g(x)=-g\left(x x^{-1}\right)$. Thus by (3.3.3) and (3.3.1), we have that

Hence

จุหวคงทณูมณ์มหาวิทยาลัย

If $f\left(x x^{-1}\right) \neq 0$, then $f(x)=-f\left(x x^{-1}\right)$. On the other hand, if $f\left(x x^{-1}\right)=0$, it can be verified in the same way as in case 2 that $f(x)^{2}=0$ because $g\left(x x^{-1}\right)^{2}=\left(-g\left(x x^{-1}\right)\right)^{2}$. Thus $f(x)=0=-f\left(x x^{-1}\right)$. Therefore (5.2.2) holds.

By (3.3.3) we have that

$$
\begin{aligned}
f(x) f\left(x x^{-1}\right) & =g(x)-g(x) g\left(x x^{-1}\right) \\
& =g(x)\left[1-g\left(x x^{-1}\right)\right] .
\end{aligned}
$$

Therefore

$$
f(x)^{2} f\left(x x^{-1}\right)^{2}=g(x)^{2}\left[1-g\left(x x^{-1}\right)\right]^{2}
$$

Hence it follows from ($3.3,1$) that

$$
\begin{aligned}
= & g(x)^{2}\left[1-g\left(x x^{-1}\right)\right]^{2}-f(x)^{2} f\left(x x^{-1}\right)^{2} \\
= & g(x)^{2}\left[1-g\left(x x^{-1}\right)\right]^{2}-\left[g\left(x x^{-1}\right)-g(x)^{2}\right] \\
& {\left[g\left(x x^{-1} x x^{-1}\right)-g\left(x x^{-1}\right)^{2}\right] } \\
= & \frac{g(x)^{2}\left[1-g\left(x x^{-1}\right)\right]^{2}-\left[g\left(x x^{-1}\right)-g(x)^{2}\right]}{} \quad\left[g\left(x x^{-1}\right)-g\left(x x^{-1}\right)^{2}\right] \\
= & g(x)^{2}\left[1-g\left(x x^{-1}\right)\right]^{2}-\left[g\left(x x^{-1}\right)-g(x)^{2}\right] \\
= & g\left(x x^{-1}\right)\left[1-g\left(x x^{-1}\right)\right] \\
= & {\left[1-g\left(x x^{-1}\right)\right]\left[g(x)^{2}-g(x)^{2} g\left(x x^{-1}\right)-\right.} \\
& \left.g\left(x x^{-1}\right)^{2}+g(x)^{2} g\left(x x^{-1}\right)\right] \\
= & {\left.\left[1-g\left(x x^{-1}\right)\right]\left[g(x)^{2}\right]-g\left(x x^{-1}\right)^{2}\right] . }
\end{aligned}
$$

This proves (5.2.3)
Lemma 5.3. Let (f, g) be any solution of $(*)$ of class 2. For e,e'

$$
g(e)=g\left(e e^{\prime}\right)=g\left(e^{\prime}\right) \text { and } f(e)=f\left(e e^{\prime}\right)=f\left(e^{\prime}\right)
$$

Proof. Assume that (f, g) is a solution of (*) of class 2, i.e, g satisfies

$$
(5.3 .1) \quad g(e) \neq 1
$$

for any e in $E(S)$. Let $e, e^{\prime} \varepsilon E(S)$. Replacing x, y in (*) by e,ee',
respectively, we find that

$$
g\left(e\left(e e^{\prime}\right)^{-1}\right)=g(e) g\left(e e^{\prime}\right)+f(e) f\left(e e^{\prime}\right)
$$

But

$$
g\left(e\left(e e^{\prime}\right)^{-1}\right)=g\left(e e e^{\prime}\right)=g\left(e e^{\prime}\right)
$$

Therefore

Thus
$g\left(e e^{\prime}\right)[1-g(e)]=f(e) f\left(e e^{\prime}\right)$
$g\left(e e^{\prime}\right)^{2}[1-g(e)]^{2}=f(e)^{2} f\left(e e^{\prime}\right)^{2}$.

Consequently, using (3.3.1), we obtain

Therefore

$$
g\left(e e^{\prime}\right)^{2}[1-g(e)]^{2}=\left[g\left(e e^{-1}\right)-g(e)^{2}\right]\left[g\left(e e^{\prime}\left(e e^{\prime}\right)^{-1}\right)--\right.
$$

$$
=g\left(e e^{\prime}\right)\left[g(e)+g(e) g\left(e e^{\prime}\right)-g(e)^{2}-g\left(e e^{\prime}\right)\right]
$$

Suppose $g\left(e e^{\prime}\right) \neq 0$. Then

$$
\begin{aligned}
0 & =g(e)+g(e) g\left(e e^{\prime}\right)-g(e)^{2}-g\left(e e^{\prime}\right) \\
& =g(e)-g(e)^{2}+g(e) g\left(e e^{\prime}\right)-g\left(e e^{\prime}\right) \\
& =g(e)[1-g(e)]-g\left(e e^{\prime}\right)[1-g(e)] \\
& =[1-g(e)] \quad\left[g(e)-g\left(e e^{\prime}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& g\left(e e^{\prime}\right)^{2}-2 g\left(e e^{\prime}\right)^{2} g(e)+g\left(e e^{\prime}\right)^{2} g(e)^{2}=\left[g(e)-g(e)^{2}\right]\left[g\left(e e^{\prime}\right)-g\left(e e^{\prime}\right)^{2}\right]
\end{aligned}
$$

Thus, by (5.3.1) we have that

$$
g(e) \quad=g\left(e e^{\prime}\right)
$$

Subsitute $g(e)$ by $g\left(e e^{\prime}\right)$ in (5.3 .2) we have that

$$
g\left(e e^{\prime}\right) \quad=g\left(e e^{\prime}\right)^{2}+f(e) f\left(e e^{\prime}\right)
$$

But, from (*) we have that

$$
\begin{array}{ll}
g\left(e e^{\prime}\right) & g\left(e e^{\prime}\left(e e^{\prime}\right)^{-1}\right) \\
& =g\left(e e^{\prime}\right)^{2}+f\left(e e^{\prime}\right)^{2} .
\end{array}
$$

Thus

$$
f(e) f\left(e e^{1}\right)=f\left(e e^{1}\right)^{2}
$$

If $f\left(e e^{\prime}\right)=0$ then, by $(3.4 .2)$, we have that $g\left(e e^{\prime}\right)=0$ or $g\left(e e^{\prime}\right)=1$ which is a contradiction. Thus $f\left(e^{1}\right) \neq 0$, so

Hence

$$
g\left(e e^{\prime}\right)=g(e) \quad \text { and } \quad f\left(e e^{\prime}\right)=f(e) \text {. }
$$

Now, replacing x, of en *) the same way as above that

Thus

$$
g(e)=g\left(e e^{\prime}\right)=g\left(e^{\prime}\right) \text { and } f(e)=f\left(e e^{\prime}\right)=f\left(e^{\prime}\right)
$$

Definition 5.4. Let A be any subset of S and (f, g) be a solution of
(*) on A. We say that (f, g) is one-to-one if

$$
(f(x), g(x)) \neq(f(y), g(y))
$$

for all x, y in A such that $x \neq y$.

Lemma 5.5. Let S be a Kronecker semigroup of order greater than 1 and (f, g) be any one-to-one solution of (*) of class 2. Then we have
$g(0)=0=f(0)$,
$g(x) \neq 0$
for any x in S such that $x \neq 0$
$(5.5 .3) \quad g(x)+g(y)=1$ and $f(x)+f(y)=0$
for all x, y in $S,\{0\}$ such that $x \neq y$.

Proof. Since S is a Kronecker(semigroup, then $x y=0$ for all x, y such that $x \neq y$. Furthermore $E(S)=S$, so $x=x^{-1}$ and $x x^{-1}=x x=x$. To show (5.5.1), suppose that $g(0) \neq 0 . \Delta$ Let $x \in S \backslash\{0\}$. Then $x 0=0$, so $\dot{g}(x 0)=g(0) \neq 0$. Therefore, it follows from Lemma 5.3 that $g(x)=$ $g(x 0)=g(0)$ and $f(x)=f(x 0)=f(0)$. This is contrary to the assumption that (f, g) is one-to-one. Thus $g(0)=0$. It follows from (3.4.2) that $f(0)=0$. Therefore $(5.5 .1)$ holds.
 $g(x)=0$. Then, by (3.4.2), we have $f(x)=0$. Therefore, from (5.5.1) we have that $g(0)=00=g(x)$ and $f(0)=0=f(x)$, whichis a contradiction. Thus $g(x) \neq 0$ for any x in $S \backslash\{0\}$.

To show (5.5.3), assume that $x, y \in S\{0\}$ are such that $x \neq y$. Thus we have that

$$
\begin{align*}
& g(x)^{2}+f(x)^{2}=g\left(x x^{-1}\right)=g(x), \tag{5,5.4}\\
& g(y)^{2}+f(y)^{2}=g\left(y y^{-1}\right)=g(y) . \tag{5.5.5}
\end{align*}
$$

From (5.5.1) we have that
(5.5.6) $0=g(0)=g(x y)=g\left(x y^{-1}\right)=g(x) g(y)+f(x) f(y)$.

Therefore

$$
\begin{array}{ll}
g(x) g(y) & =-f(x) f(y) \\
g(x)^{2} g(y)^{2} & =f(x)^{2} f(y)^{2}
\end{array}
$$

By using (5.5.4), (5.5.5) we have

$$
\begin{aligned}
g(x)^{2} g(y)^{2} & =\left[g(x)-g(x)^{2}\right]\left[g(y)-g(y)^{2}\right] \\
= & g(x) g(y)-g(x) g(y)^{2}-g(x)^{2} g(y)+ \\
& g(x)^{2} g(y)^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
0 & =g(x) g(y)-g(x) g(y)^{2}-g(x)^{2} g(y) \\
& =g(x) g(y)[1-g(y)-g(x)] .
\end{aligned}
$$

Since $x, y \in S \backslash\{0\}$ and $(5.5 .2)$ holds, $\operatorname{sog} g(x) \neq \theta$ and $g(y) \neq 0$. Therefore

0

$$
=1-g(y)-g(x) .
$$

(5.5.7) $g(x)=1-g(y) \quad \sigma$ and $g(y)=1-g(x)$.

From $(5.5 .4),(5.5 .5),(5.5 .7)$ we have d 4.2

$$
\begin{aligned}
f(x)^{2} & =g(x)-g(x)^{2}=g(x)[1-g(x)]=g(x) g(y) \\
& =[1-g(y)] g(y)=g(y)-g(y)^{2}=f(y)^{2}
\end{aligned}
$$

Thus $(f(x)-f(y))(f(x)+f(y))=0$. Suppose that $f(x)-f(y)=0$. Then $f(x)=f(y)$. Therefore by (5.5.6), (5.5.7) we have

$$
\begin{aligned}
0 & =g(x) g(y)+f(x) f(y) \\
& =g(x)[1-g(x)]+f(x)^{2} \\
& =g(x)-g(x)^{2}+f(x)^{2}
\end{aligned}
$$

Thus

$$
g(x)^{2}=g(x)+f(x)^{2}
$$

But from (5.5.4) we have that

$$
g(x)^{2} \quad=g(x)-f(x)^{2}
$$

Thus $f(x)=0$ since the characteristic of F is different from 2.
It follows from (3.4.2) and the assumption that $g(e) \neq 1$ for any e in $E(S)=S$ that $g(x)=0$. This is contrary to (5.5.2). Hence $f(x)+$ $f(y)=0$. Therefore $(5,5,3)$ holds.

Theorem 5.6. (f, g) is a classc2 positive-type solution of (*) on S if and only if there exists a To-congruence μ on S and a one-to-one class 2 positive-type solution (f_{0}, g_{0}) on S / μ and a function h from S into $\{1,-1\}$ whose restriction to any congruence class $a \mu$ is a
homomorphism such that

$$
f(x)=f_{0}(x \mu) h(x) \quad \text { and } \quad g(x)=g_{0}(x \mu) h(x)
$$

$$
\mu=\left\{(x, y) \in S \times S / g\left(x x^{-1}\right)=g\left(y y^{-1}\right) \text { and } f\left(x x^{-1}\right)=f\left(y y^{-1}\right)\right\}
$$

It is clear that μ is an equivalence relation. To verify that it is a congruence, let $(x, y),(u, v) \varepsilon \mu$. Then $g\left(x x^{-1}\right)=g\left(y y^{-1}\right), g\left(u u^{-1}\right)=$ $g\left(v v^{-1}\right), f\left(x x^{-1}\right)=f\left(y y^{-1}\right), f\left(u u^{-1}\right)=f\left(v v^{-1}\right)$. Therefore

$$
\begin{aligned}
g\left(x u(x u)^{-1}\right) & =g\left(x x^{-1}\left(u u^{-1}\right)^{-1}\right) \\
& \left.=g(x x)^{-1}\right) g\left(u u^{-1}\right)+f\left(x x^{-1}\right) f\left(u u^{-1}\right) \\
& =g\left(y y^{-1}\right) g\left(v v^{-1}\right)+f\left(y y^{-1}\right) f\left(v v^{-1}\right) \\
& =g\left(y y^{-1}\left(v v^{-1}\right)^{-1}\right) \\
& =g\left(y v(y v)^{-1}\right) .
\end{aligned}
$$

If $g\left(x u(x u)^{-1}\right)=0$. Then $g\left(x u(x u)^{-1}\right)=0=g\left(y v(y v)^{-1}\right)$. Therefore it follows from (3.4.1) that $\left.f(x u(x y))^{-1}\right)=0=f\left(y v(y v)^{-1}\right)$. In the case $g\left(x u(x u)^{-1}\right) \neq 0$, we have $g\left(y v(y v)^{-1}\right)=g\left(x u(x u)^{-1}\right) \neq 0$, so $g\left(y y^{-1} v^{-1}\right)$ $=g\left(x x^{-1} u u^{-1}\right) \neq 0$. Thus it follows from Lemma 5.3 that $f\left(y y^{-1}\right)=$ $f\left(y y^{-1} v v^{-1}\right)=f\left(v v^{-1}\right)$ and $f\left(x x^{-1}\right)=f\left(x x^{-1} u u^{-1}\right)=f\left(u u^{-1}\right)$. Since $f\left(x x^{-1}\right)=f\left(y y^{-1}\right)$, so $f\left(y y^{-1} v v^{-1}\right)=f\left(x x^{-1} u u^{-1}\right)$. Thus (xu,yv) \& . . Hence μ is a congruence on S. Note that $x x(x x)^{-1}=x x^{-1} x_{x} x^{-1}=x x^{-1}$. Hence $g\left(x x(x x)^{-1}\right)=g\left(x x^{-1}\right)$ and $f\left(x x(x x)^{-1}\right)=f\left(x x^{-1}\right)$. Therefore

Case 1. $g(e) \neq 0$ for any e in $E(S)$. Let $x, y \in S$. Then $x x^{-1} y y^{-1} E(S)$. Therefore $g\left(x x^{-1} y y^{-1}\right) \neq 0$. Thus it follows from Lemma 5.3 that

$$
g\left(x x^{-1}\right)=g\left(x x^{-1} y y^{-1}\right)=g\left(y y^{-1}\right) \text { and } f\left(x x^{-1}\right)=f\left(x x^{-1} y y^{-1}\right)=f\left(y y^{-1}\right)
$$

Hence $(x, y) \varepsilon \mu$ for all x, y in S ，i．e．$|S / \mu|=1$ ，so S / μ is a Kronecker semigroup ．

Case 2．$g(e)=0$ for some e in $E(S)$ ．Let e be fixed element of $E(S)$ such that $g(e)=0$ ．Therefore，by $(3.4 .2)$ we have that $f(e)=0$ ． Claim that if $(x, y) \notin \mu, \quad$ then $g\left(x y(x y)^{-1}\right)=0$ ．To show this， let $x, y \varepsilon S$ are such that $g(x y(x y))^{-1} \neq 0$ ．It follows from Lemma 5.3 that

$$
g\left(x x^{-1}\right)=g\left(x x^{-1} y y^{-1}\right)=g\left(y y^{-1}\right) \text { and } f\left(x x^{-1}\right)=f\left(x x^{-1} y y^{-1}\right)=f\left(y y^{-1}\right)
$$

Thus $(x, y) \varepsilon \mu$ ．Hence we prove that

$$
\begin{equation*}
g\left(x y(x y)^{-1}\right) \tag{5.6.4}
\end{equation*}
$$

for all $(x, y) \notin \mu$ 。

Let $x, y \in S$ ．If $x \mu=y \mu$, then $(x, y) \varepsilon \mu$ ，so $(x y, y y) \varepsilon$ ．μ 。 From （5．6．3），we have that $(y y, y) \varepsilon \hat{\mu}_{\text {．}}$ Therefore $(x y / y) \varepsilon \mu$ ，so $x y \mu=y \mu$ 。 In the case $x \mu \neq y /$ ，by $(5.6 .4)$ ，we have $g\left(x y(x y)^{-1}\right)=0$ ，so，by $(3.4 .1)$ ，we have that $f\left(x y(x y)^{-1}\right)=0$ 。 Thus $(x y, e) \varepsilon \mu_{0}$ ．Therefore

Hence S / μ is a Kronecker semigroup having $e \mu(e \varepsilon E(S))$ as the zero element．

Let us define $f_{0}, g_{c}: S / \mu \rightarrow F$ by

$$
f_{0}(x \mu)=f\left(x x^{-1}\right) \text { and } \quad g_{0}(x \mu)=g\left(x x^{-1}\right)
$$

for all x in S．Since $(x, y) \varepsilon \mu$ iff $g\left(x x^{-1}\right)=g\left(y y^{-1}\right)$ and $f\left(x x^{-1}\right)=f\left(y y^{-1}\right)$ ，
we have that f_{c} and g_{c} are well-defined and (f_{c}, g_{0}) is one-to-one. From (5.6.1), $g_{0}\left(x^{\mu}\right)=g\left(x x^{-1}\right) \neq 1$ for all $x \varepsilon S$. For $x \varepsilon S, x \mu=$ $(x \mu)^{-1}$ thus $f_{0}(x \mu)=f_{c}\left((x \mu)^{-1}\right)$. Hence $\left(f_{0}, g_{0}\right)$ is a one-to-one class 2 positive-type solution of (*) on the Kronecker semigroup S / μ.

From (5.2.3) and (5.6.1) we have that $g(x)^{2}=g\left(x x^{-1}\right)^{2}$ for all x in S. Thus $g(x)=g\left(x x^{-1}\right)$ on $g(x)=-g\left(x x^{-1}\right)$. Since F is a field of characteristic different from 2, we have that for $x \varepsilon S$, $g\left(x x^{-1}\right) \neq-g\left(x x^{-1}\right)$ if $g\left(x x^{-1} \neq 0\right.$, so we can conclude that if $g\left(x x^{-1}\right)$ $\neq 0$ then either $g(x)=g\left(x x^{-1}\right)$ or $g(x)=-g\left(x x^{-1}\right)$. Thus

$$
g(x)=g\left(x x^{-1}\right) h(x)=g_{0}(x \mu) h(x)
$$

for all x in S, where

$$
h(x)=\left\{\begin{array}{cl}
1 & \text { if } g(x)=g\left(x x^{-1}\right) \neq 0 \text { or } g\left(x x^{-1}\right)=0, \\
-1 & \text { if } g(x)=-g\left(x x^{-1}\right) \neq 0 .
\end{array}\right.
$$

By using (5.2.1), $\{5.2 .2),(3.4 .1)$ and $(5.6 .1)$ and the fact that characteristic of F is different from 2 we can conclude that

Thus

$$
\begin{aligned}
& f(x)=f\left(x x^{-1}\right) h(x)=f_{0}(x \mu) h(x)
\end{aligned}
$$

for all x in S. Now, to show that for each a εS, the restriction of h to $a \mu$ is a homomorphism. Let a be a fixed element of S. If $g\left(a^{-1}\right)=0$, then for each $\quad x \in a \mu, g\left(x x^{-1}\right)=g\left(a a^{-1}\right)=0$. Therefore $h(x)=1$ for all $x \varepsilon a \mu$. Thus the restriction of h to a_{μ} is a homomorphism. In
the case $\mathrm{g}\left(\mathrm{aa}^{-1}\right) \neq 0$, assume that $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{a} \mu$. Since S / μ is a Kronecker semigroup, so $x y \varepsilon(a \mu)(a \mu)=a \mu$, and so $g_{0}(x y \mu)=g\left(x y(x y)^{-1}\right)=$ $\mathrm{g}\left(\mathrm{aa}^{-1}\right) \neq 0$. Thus it follows from (3.3.2) and (5.6.2) that

$$
\begin{aligned}
g_{0}(x y \mu) h(x y) & =g(x y) \\
& \left.=g(x) g(y)^{-1}\right)+f(x) f\left(y^{-1}\right) \\
& =g(x) g(y) / f(x) f(y) \\
& =g_{0}(x \mu) h(x) g_{0}(y \mu) h(y)+f_{0}(x \mu) h(x) f_{0}(y \mu) h(y) \\
& \left.=1 g_{0}(x \mu) g_{0}(y \mu)+f_{0}(x \mu) f_{0}(y \mu)\right] h(x) h(y) \\
& =\left[g_{0}(x \mu) g_{0}\left(y^{-1} \mu\right)+f_{0}(x \mu) f_{0}\left(y^{-1} \mu\right)\right] h(x) h(y) \\
& =g_{0}(x y \mu) h(x) h(y)
\end{aligned}
$$

Since $g_{0}\left(x y_{\mu}\right) \neq 0$, so $h(x y)=h(x) h(y)$. Thus a restriction of h to $a \mu$ is a homomorphism for all a in S.

Conversely, assume that μ is anc-congruence on S and (f_{0}, g_{0}) is a one-to-one class 2 positive-type solution of (*) on S / μ and h is a function from S into $\{1,-1\}$ whose restriction to any congruence class a_{μ} is a homomorphism. Let
$f(x) \| f\left(f(x) h(x) \nmid \partial^{\text {and }} \| \rho g(x) f=g_{0}(x \mu) h(x)\right.$
for all x in S. Observes that $x, x^{-1}, x^{-1} \varepsilon x \mu$ since $S / \mu \varepsilon \mathbb{K}$. Thus, by ascumption onh, we have that 9 ? 9 ? 2 ?

$$
\begin{align*}
h(x) & =h\left(x x^{-1} x\right)=h\left(x x^{-1}\right) h(x)=h(x) h\left(x^{-1}\right) h(x) \tag{5.6.6}\\
& =h(x)^{2} h\left(x^{-1}\right)=h\left(x^{-1}\right)
\end{align*}
$$

for all x in S, and

$$
\begin{equation*}
h(e)=1 \tag{5.6.7}
\end{equation*}
$$

for all e in $E(S)$.

Now, to show that (f, g) is a solution of (*) on S, let $x, y \varepsilon S$. Therefore

$$
g\left(x y^{-1}\right) \quad=g_{0}\left(x y^{-1} \mu\right) h\left(x y^{-1}\right)
$$

But

$$
\begin{aligned}
g(x) g(y)+f(x) f(y) & =g_{0}(x \mu) h(x) g_{0}(y \mu) h(y)+f_{0}(x \mu) h(x) f_{0}(y \mu) h(y) \\
& =\left[g_{0}(x \mu) g_{0}(y \mu)+f_{0}(x \mu) f_{0}(y \mu)\right] h(x) h(y) \\
& =g_{0}\left(x y^{-1} \mu\right) h(x) h(y) \\
& =g_{0}\left(x y^{-1} p\right) h(x) h\left(y^{-1}\right) .
\end{aligned}
$$

The last equality follows from (5.6.6). If $(x, y) \varepsilon \mu$ then $\left(x, y^{-1}\right) \varepsilon \mu$ since S / μ is a Kronecker semigroup. Therefore $h\left(x y^{-1}\right)=h(x) h\left(y^{-1}\right)$, so

$$
g\left(x y^{-1}\right)=g(x) g(y)+f(x) f(y)
$$

In the case $(x, y) \notin \mu$, we have that $x y^{-1} \mu=x y \mu$ is the zero element. Therefore, it follows from $(5.5 .1)$ that

Thus we have that

$\left.g\left(x y^{-1}\right)^{6}\right)^{\circ} 9=209=\stackrel{\ddots}{g}(x) g(y)+f(x) f(y)$.

Thus (f, g) is a solution of $(*)$ on S Ffom $(5.6 .5),(5.6 .6),(5.6 .7)$ and the assumption on $\left(f_{0}, g_{0}\right)$, we have that

$$
f(x)=f_{0}(x \mu) h(x)=f_{0}\left(x^{-1} \mu\right) h(x)=f_{0}\left(x^{-1} \mu\right) h\left(x^{-1}\right)=f\left(x^{-1}\right)
$$

for all x in S, and

$$
g(e)=g_{0}(e \mu) h(e)=g_{0}(e \mu) \neq 1
$$

for all e in $E(S)$. Thus (f, g) is a class 2 positive-type solution of (*) on S.

Remark 5.7. By Theorem 5.6 we see that to determine all class 2 positive-type solutions of (*) on S, we need to determine all one-toone class 2 positive-type solutions of (*) on a Kronecker semigroup S $/ \mu$ Hence it is sufficient to look for all one-to-one class 2 positivetype solutions of (*) on a Kronecker semigroup S.

Theorem 5.8. Let S be a Kronecker semigroup. Then a one-to-one class 2 positive-type solution of $\left(^{*}\right)$ on S exists iff $|S| \leqslant 3$. In such these case any solution must be of the following forms:

Case 1: If $|S|=1$, say $S=\{0\}$, then
(5.8.1) $f(x)=b \quad g(x)=a$
where $a, b \in F$ are such that $a \neq 1$ and $a=a^{2}+b^{2}$.
Case 2: If $|S|=2$, say $S=\{0$, e $\}$ with 0 as the zero, then

where $a, b \in F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$.

 where $a, b \in F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$.

Proof. By straight forward verification, it can be shown that (f, g) in $(5.8 .1),(5.8 .2)$ and (5.8.3) are one-to-one class 2 positive-type solutions of (*) on S.

To show the converse, assume that (f, g) is a one-to-one class 2 positive-type solution of (*) on S, i.e. f,g satisfying the conditions: (5.8.4) $\quad g(e) \neq 1$
for any e in $E(S)$,

$$
\begin{equation*}
f(x) \quad=f\left(x^{-1}\right) \tag{5.8.5}
\end{equation*}
$$

for all x in S,

$$
\begin{equation*}
(f(x), g(x)) \neq(f(y), g(y)) \tag{5.8.6}
\end{equation*}
$$

for any $x \neq y$ in S. To show that $|S| \leqslant 3$, suppose that $|S|>3$.
Let $e, e^{\prime}, e^{\prime \prime} \varepsilon S$ be distinct and different from zero element of S. Thus, by (5.5.3) we have that
and

$$
g(e)+g\left(e^{\prime}\right)=1 \text { and } f(e)+f\left(e^{\prime}\right)=0
$$

$$
g(e)+g\left(e^{\prime \prime}\right)=1(\mathrm{e}) \text { and } f\left(\mathrm{e}^{\prime \prime}\right)=0 \text {. }
$$

Thus $g\left(e^{\prime}\right)=g\left(e^{\prime \prime}\right)$ and $f(e f) \in f\left(e^{\prime \prime}\right)$, contrary to the assumption that (f, g) is one-to-one. Hence $|S| \leqslant 3$.

Next, we shall show that (f, g) must be of the form (5.8.1) or $(5,8.2)$ or $(5,8,3)$.

Case $1: 9$ Assime that $I S \eta=10 N$ Then $S=40\}$. Let $a=g(0)$ and $b=f(0) \cdot थ$ It follows from $(5,8,4)$ that $a \neq 1$. Since $0=0^{-1}$ and
 Thus f, g are of the form $(5.8 .1)$.

Case 2: Assume that $|S|=2$, say $S=\{0, e\}$ with 0 as the zero. It follows from (5.5.1) and (5.5.2) that $f(0)=0=g(0)$ and $g(e) \neq 0$. Therefore, if we let $b=f(e)$ and $a=g(e)$, then it follows from (5.8.4) and $g(e) \neq 0$ that $a \neq 1,0$. Since $e=e^{-1}$ and $e=e e=e e^{-1}$, therefore $g(e)=g\left(e e^{-1}\right)=g(e) g(e)+f(e) f(e)$, so $a=a^{2}+b^{2}$. Thus f, g are of the form (5.8.2).

Case 3: Assume that $|S|=3$, say $S=\left\{0, e, e^{\prime}\right\}$ with 0 as the zero. We can verify in the same way as case 2 that $f(0)=0=g(0)$ and $f(e)=b, g(e)=a$ where $a, b \varepsilon F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$ 。 From (5.5.3) we have that

$$
g(e)+g\left(e^{\prime}\right)=1 \text { and } f(e)+f\left(e^{\prime}\right)=0
$$

Thus $g\left(e^{\prime}\right)=1-a$ and $f\left(e^{\prime}\right)=-b$. Therefore f, g are of the form (5.8.3)

Theorem 5.9. (f, g) is a class $/ 2$ positive-type solution of (*) on S iff f, g are of the forms:

$$
f(x)= \begin{cases}0 & , x \in A \tag{5.9.1}\\
b h(x) & , x \in A \\
a \neq A(x)=\left\{\begin{array}{ll}
0 & x \notin A
\end{array}, g(x)\right.\end{cases}
$$

where A is a completely prime ideal of S or A is the empty set and h is a homomorphism from S SA into $\{1,-1\}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{F}$ are such that $\mathrm{a} \neq 1,0$, $a=a^{2}+b^{2}$; or where μ is a c_{3}-congruence ons such thatcs/ $\mu=\{\overline{0}$, e μ, e $\mu\}$ with $\overline{0}$ as the zero and $h: S \backslash \bar{O} \rightarrow\{1,-1\}$ is a homomorphism on $e^{\mu}, e^{\prime \mu}$ and $a, b \varepsilon$ F are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$.

Proof. By straight forward verification, it can be shown that ($f, \mathrm{~g}$) in (5.9.1) and (f, g) in (5.9.2) are class 2 positive-type solutions of (*) on S.

To show the converse, assume that (f, g) is a class 2 positivetype solution of (*) on S. It follows from Theorem 5.6 that there exists a N-congruence μ on S and a one-to-one class 2 positive-type solution $\left(f_{0}, g_{0}\right)$ of $(*)$ on S / μ and a function h from S into $\{1,-1\}$ whose restriction to $a \mu$ is a homomorphism for all a εS such that
(5.9.3) $f(x)=f_{0}(x \mu) h(x) \quad g(x)=g_{0}(x \mu) h(x)$
for all x in S. It follows from Theorem 5.8 that $|S / \mu| \leqslant 3$. We shall determine (f, g) according to the order of S / μ.

Case 1: Assume that S/uis trivial. By Theorem 5.8, we have that

$$
f_{0}(x \mu)=b \text { and } \quad g_{0}(x \mu)=a
$$

where $a, b \in F$ are such that $a \neq 1$ and $a=a^{2}+b^{2}$. Thus from (5.9.3) we have that

for $a l l x$ in S. Thus, we see that if $a=0$, then $b=0$ and so f, g are of the form (5.9.1) where $A=S$, and if a $\neq 0$, then f, g are of the form (5.9.1) where $A=\varnothing . / \square \mid$. $\mathrm{A} \| \mathrm{C}$

Case 2: Assme that s/ 6 is a kronecker semigroup of order 2, say $S / \mu=\left\{\overline{0}, e_{\mu}\right\}$ with $\overline{0}$ as the zero. By Theorem 5.8 we have that

$$
f_{0}\left(x_{\mu}\right)=\left\{\begin{array}{ll}
0 & , x \mu=\overline{0} \\
b & , x \mu=e \mu
\end{array} \quad, \quad g_{0}(x \mu)= \begin{cases}0 & , x \mu=\overline{0} \\
a & , x \mu=e \mu\end{cases}\right.
$$

where $a, b \in F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$. Therefore, by (5.9.3) we have

$$
f(x)=\left\{\begin{array}{ll}
0 & , x \varepsilon \overline{0} \\
b h(x) & , \quad x \in e \mu
\end{array} \quad g(x)= \begin{cases}0 \\
a h(x), & x \varepsilon \mathrm{e} \mu .\end{cases}\right.
$$

Let $A=\overline{0}$. Then $e \mu=S \backslash A$. Since $\overline{0} e \mu=e \mu \overline{0}=\overline{0}$ and $e \mu e \mu=e \mu$, A is a completely prime ideal of S. It follows from assumption on h that h is a homomorphism from $e^{\mu}=\operatorname{SiA}$ into $\{1,-1\}$. Thus f, g are of the form (5.9.1)。

Case 3: Assume that δ / μ is a Kronecker semigroup of order 3, say $S / \mu=\left\{\overline{0}, \mathrm{e} \mu, \mathrm{e}^{\prime} \mu\right\}$ with 0 as the zero. By Theorem 5.8 we have that

where $a, b \in F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$. Thus, by (5.9.3) we have that

where h : $s \backslash \hat{o}_{p} \rightarrow\{1,-1\}$ is a homomorphism on $e \mu$ and $e^{\prime} \mu$. Therefore f, g are of the form $(5.9 .2) \sim$ \& $19198 \cap$ \#

Theorem 5.10. The class 2 solutions of (*) on S are those and only those (f,g) of the forms:
(5.10.1) $f(x)=\left\{\begin{array}{ll}0 & , x \in A \\ b h(x) & , x \notin A\end{array} \quad, g(x)= \begin{cases}0 & x \in A \\ \operatorname{ah}(x) & , x \notin A\end{cases}\right.$
where A is a completely prime ideal of S or A is the empty set and h
is a homomorphism from $S \backslash A$ into $\{1,-1\}$ and $a, b \in F$ are such that $a \neq$ $1,0, a=a^{2}+b^{2}$; or
(5.10.2) $f(x)=\left\{\begin{array}{ll}0 & , x \in \overline{0} \\ \operatorname{bh}(x), & x \varepsilon e^{\prime} \mu \\ -b h(x), & x \varepsilon e^{\prime} \mu\end{array}, g(x)= \begin{cases}0 & x \varepsilon \overline{0} \\ \operatorname{ah}(x) \\ (1-a) h(x) & , x \in e^{\prime \mu}\end{cases}\right.$
where μ is a ${ }^{\prime} \mathcal{K}_{3}$-congruence on S such that $S / \mu=\left\{\overline{0}, \mathrm{e} \mu, \mathrm{e}^{\prime} \mu\right\}$ with $\overline{0}$ as the zero and $h: S \times \overline{0} \rightarrow\{1,-1\}$ is a homomorphism on $\mathrm{e} \mu, \mathrm{e}^{\prime} \mu$ and $\mathrm{a}, \mathrm{b} \varepsilon$ F are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$.

Proof. By straight forward verification, it can be shown that (f, g) in (5.10.1) and (f, g) in (5.10 .2) are class 2 solutions of (*).

Conversely, assume that (f, g) is a class 2 solution of (*). By Theorem 3.9, (f, g) must be class 2 solution of negative-type or positive-type.

If (f, g) is a class 2 negative-type solution of (*), then by Theorem 5.1, (f, g) is the trivial solution. Thus f, g are of the form

If (f, g) is a class 2 positive-type solution of (*), then by Theorem 5.9, f, g are of the forms: $98 ?$? 9 ?

$$
f(x)=\left\{\begin{array}{ll}
0 & , x \in A \\
\operatorname{bh}(x) & , x \notin A
\end{array} \quad, \quad g(x)= \begin{cases}0 & , x \in A \\
\operatorname{ah}(x) & , x \notin A\end{cases}\right.
$$

where A is a completely prime ideal or A is the empty set and h is a homomorphism from $S \backslash A$ into $\{1,-1\}$ and $a, b \in F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$; or

$$
f(x)=\left\{\begin{array}{ll}
0 & , x \in \overline{0} \\
\operatorname{bh}(x), & x \in e \mu \\
-b h(x), & x \in e^{\prime \mu}
\end{array} \quad, \quad x \in \overline{0}(x)= \begin{cases}0 & x \varepsilon e^{\mu} \\
\operatorname{ah}(x) & x \in e^{\prime \mu} \\
(1-a) h(x) & , \quad x\end{cases}\right.
$$

where μ is a \mathbf{T}_{3}-congruence on S such that $S / \mu=\left\{\overline{0}, e^{\mu}, \mathrm{e}^{\prime} \mu\right\}$ with $\overline{0}$ as the zero and $h: S \backslash \bar{O} \rightarrow\{1,-1\}$ is a homomorphism on $e \mu, e^{\prime} \mu$ and $a, b \varepsilon F$ are such that $a \neq 1,0$ and $a=a^{2}+b^{2}$.

