CHAPTER IV

SOLUTIONS OF CLASS 1

In this chapter we shall determine all solutions of (*) of class 1. The main result of this chapter is Theorem 4.9.

Lemma 4.1. Let (f, g) be any solution of (*). For each x, y in S, if $f(x)=0=f(y)$, then $f\left(x y^{-1}\right)=0$

Proof. Let $x, y \in S$ be such that $f(x)=0=f(y)$. Therefore

$$
\begin{aligned}
& f\left(x y^{-1}\right)^{2}=g\left(x y^{-1}\left(x y^{-1}\right)^{-1}\right)-g\left(x y^{-1}\right)^{2} \\
& =g\left(x y y^{-1} x^{-1}\right)-g\left(x y^{-1}\right)^{2} \\
& =\left[g\left(x y y^{-1}\right) g(x)+f\left(x y y^{-1}\right) f(x)\right]-[g(x) g(y)+f(x) f(y)]^{2} \\
& \left.=g\left(x y y^{-1}\right) g(x) \lg (x) g(y)\right]^{2} \\
& =[g(x y) g(y)+f(x y) f(y)] g(x)-g(x)^{2} g(y)^{2} \\
& =g(x y) g(y) g(x)-g(x)^{2} g(y)^{2} \\
& =\left[g(x) g\left(y^{-1}\right)+f(x) f\left(y^{-1}\right)\right] g(y) g(x)-g(x)^{2} g(y)^{2} \\
& =g(x) g\left(y^{-1}\right) g(y) g(x)-g(x)^{2} g(y)^{2} \\
& =\rho g(x)^{2} g(y)^{2}-\rho g(x)^{2} g(y)^{2} q N G \cap T \widetilde{N} \\
& =\% \text {. } \\
& \text { จุหาลงกรณ์มหาวิทยาลั่ย }
\end{aligned}
$$

The first equality follows from (3.3.1); the third and fifth and seventh equalities follow from (*); the fourth and sixth and eighth equalities follow from hypothesis; the ninth equality follows from (3.3.2). \#

Lemma 4.2. Let (f, g) be any solution of (*). If e is any element in $E(S)$ such that $g(e)=1$, then

$$
f(x)=f(x e) \text { and } g(x)=g(x e)
$$

for all x in S.

Proof. Let e $\varepsilon E(S)$ be such that $g(e)=1$. Therefore, by (3.4.2) we have that $f(e)=0$. Thus
for all x in S 。

Next we shall show that $f(x)=f(x e)$. First, consider the case $f(x)=0$. Since $f(x)=0$, hence, by Lemma 4.1, we have that $f\left(x e^{-1}\right)=0$. Therefore $f(x)=f\left(x e^{-1}\right)=f(x e)$. In the case $f(x) \neq 0$, it follows from $g(x)=g(x e)$ for all x in S that

Thus
 $f(x) f(x e)=g\left(x x^{-1}\right)-g(x)^{2}$. Consequenctly, using $(3.3 .1)$, we have 9% ?

$$
f(x) f(x e)=f(x)^{2}
$$

From $f(x) \neq 0$ we have that $f(x e)=f(x)$

Now we shall make use of the concept of the minimum group congruence mentioned in Theorem 2.2. We recall that the minimum group congruence on an inverse semigroup S is given by

$$
\sigma=\{(x, y) \varepsilon S \times S / x e=\text { ye for some } e \text { in } E(S)\}
$$

Lemma 4.3. Let (f, g) be any solution of (*) of class 1. Then f, g are constant on each σ-class, where σ is the minimum group congruence on S.

Proof. Let x be an arbitrary element in S. Let $y \varepsilon x \sigma$. Then there exists e in $E(S)$ such that $x e=y e$. Therefore

$$
f(x e)=f(y e) \cdot \text { and } g(x e)=g(y e)
$$

Thus, by Lemma 4.2, we have that

$$
f(x)=f(x e)=f(y e)=f(y)
$$

and

$$
g(x)=g(x e)=g(y e)=g(y)
$$

Hence f, g are constant on each o-class.

Theorem 4.4. The solutions of $(*)$ of class 1 are those and only those (f, g) of the forms:

$$
f(x)=f_{0}(x \sigma) \text { and } g(x)=g_{0}\left(x_{\sigma}\right)
$$

for all x in S; where ois the minimum group congruence on S and (f_{0}, g_{0}) is a class 1 solution of $(*)$ on $\mathrm{S} / \sigma . \mathrm{F}$

Proof. Assume that (f, g) is a class 1 solution of (*). Define f_{0}, g_{0} : $S / \sigma \rightarrow F$ by

$$
f_{0}(x \sigma)=f(x) \text { and } g_{0}(x \sigma)=g(x)
$$

for all x in S. By Lemma $4.3, f_{0}, g_{0}$ are well-defined. Since (f, g) satisfies $(*)$ on S, so $\left(f_{0}, g_{0}\right)$ satisfies $(*)$ on S / σ. Since $E(S)$ is contained in the $\sigma-c l a s s$ respersenting the identity of the group S / σ and (f, g) is of class 1 on S, then $\left(f_{0}, g_{0}\right)$ is of class 1 on S / σ.

Conversely, assume (f_{0}, g_{0}) is a class 1 solution of (*) on S / σ. Define $f, g: S \rightarrow F$ by

$$
f(x)=f_{0}(x \sigma) \quad \text { and } g(x)=g_{0}(x \sigma)
$$

Since ($\mathrm{f}_{0}, \mathrm{~g}_{0}$) satisfies (*) on S/ σ, (f, g) satisfies (*) on S. Because for e $\varepsilon E(S)$, e σ is the identity of S / σ, we have $g(e)=g_{c}(e \sigma)=$ 1 for all e $\varepsilon E(S)$.

Remark 4.5. From Theorem 4.4, we see that if (f, g) is a class 1 negative-type solution, then $\left(f_{0}, g_{0}\right)$ is also a class 1 negative-type solution; and if (f, g) is a class 1 positive-type solution, then (f_{0}, g_{c}) is also a class 1 positive-type solution. Hence to determine all solutions (f, g) of $(*)$ of class 1 , we need to determine all solutions (\mathbf{f}_{0}, g_{0}) of (*) on the abeliangroup S / σ such that (f_{0}, g_{0}) is of class 1. This problem is solved in 41$]$ (see Theorem 3.20 and Theorem 3.29). We state these results of [1] in our terminologies in the following theorems:

Theorem 4.6. ([1]) (f, g) is a class 1 negative-type solution of (*) on an abelian group G if and only if f, g are of the forms:
where his/a homoporphism from Ginto m(F) 9 . 9 ? 6

Theorem 4.7. ([1]) (f,g) is a class 1 positive-type solution of (*) on an abelian group G if and only if f, g are of the forms:

(4.7.1) $f(x)=\left\{\begin{array}{ll}0, & x \in H \\ d, & x \notin H\end{array} \quad, g(x)= \begin{cases}1 & , x \in H \\ c & , x \notin H\end{cases}\right.$
where H is a subgroup of index 1 or 2 in G and $c, d \in F$ are such that $c \neq \pm 1, c^{2}+d^{2}=1$; or
(4.7.2) $f(x)=\left\{\begin{array}{cc}0, x \in H \text { or } x_{1} H \\ d, x \in x_{2} H \\ -d, x \in x_{5}^{H}\end{array} \quad, \quad g(x)=\left\{\begin{array}{cc}1, & x \varepsilon H \\ -1, & x \varepsilon x_{1} H \\ c, & x \varepsilon x_{2} H \\ -c, & x \varepsilon x_{3} H\end{array}\right.\right.$
where H is a subgroup of index 4 in G such that $G / H=\left\{H, x_{1} H, x_{2} H\right.$, $\left.x_{3} H\right\}$ is the Klein four group and $c, d \in F$ are such that $c \neq \pm 1$, $c^{2}+d^{2}=1$.

Theorem 4.8. (f, g) is a class 1 positive-type solution of (*) on an abelian group G if and only if f, g are of the forms:

where H is a subgroup of index 1 or 2 in G and h is a homomorphism from Ginto \{1, -T\} and c, d \&F are such that $C \neq \pm 1, \mathcal{C}^{2} f d^{2}=1$.

Proof. By straight forward verification it can be shown that if f, g : $G \rightarrow F$ are of the form (4.8.1), then (f, g) is a class 1 positive-type solution of (*) on G.

To show the converse, assume that (f, g) is a class 1 positivetype solution of (*) on G. Therefore, by Theorem 4.7 we have that f, g
are of the forms:
(4.8.2)

$$
f(x)=\left\{\begin{array}{l}
0, x \in H \\
d, x \notin H
\end{array} \quad, \quad g(x)= \begin{cases}1, x \in H \\
c, x \notin H\end{cases}\right.
$$

where H is a subgroup of index 1 or 2 in G and $c, d \varepsilon F$ are such that $c \neq \pm 1, c^{2}+d^{2}=1$; or

$$
f(x)=\left\{\begin{array}{rl}
0, & x \in H \text { or } x_{1} H \tag{4.8.3}\\
d, & x \in x_{2} H \\
-d, & x \in x_{3} H
\end{array}, g(x)=\left\{\begin{aligned}
1, & x \varepsilon H \\
-1, & x \varepsilon x_{1} H \\
c, & x \in x_{2} H \\
-c, & x \varepsilon x_{3} H
\end{aligned}\right.\right.
$$

where H is a subgroup of index 4 in G such that $G / H=\left\{H, x_{1} H, x_{2} H\right.$ $\left.x_{3} H\right\}$ is the Klein four group and $c, d \in F$ are such that $c \neq \pm 1, c^{2}+d^{2}=$ 1: Observe that f, g in $(4.8 .2)$ can be written as

$$
f(x):\left\{\begin{array}{ll}
0 & x \in H \\
d h(x), x \notin H
\end{array}, \begin{cases}h(x), & x \in H \\
\operatorname{ch}(x), & x \notin H\end{cases}\right.
$$

where h is given by $h(x)=1$ for $a 11 x$ in G.

To see that f, g of the form (4.8.3) can be written in the form (4.8.1), let $K=H \cup X_{1} H$ and define $h: G \rightarrow\{1,-1\}$ by

ศูนยวทยทรพยากร

Since G / H is the Klein four group, it follows that K is a subgroup of index 2 in G and h is a homomorphism. Observe that f, g can be written in terms of K and h as follows:

$$
f(x)=\left\{\begin{array}{ll}
0 \quad, x \in K \\
d h(x), & x \in K
\end{array} \quad, \quad g(x)= \begin{cases}h(x), & x \in K \\
\operatorname{ch}(x), & x \notin K\end{cases}\right.
$$

where $c, d \varepsilon F$ are such that $c \neq \pm 1, c^{2}+d^{2}=1$. Thus f, g are of the form (4.8.1).

Theorem 4.9. The solutions of (*) on S of class 1 are those and only those (f, g) of the forms:

$$
f(x)=\left\{\begin{array}{ll}
0, & x \varepsilon_{\uparrow} \tag{4.9.1}\\
\operatorname{dh}(x), & x \in x_{1}
\end{array}, g(x)= \begin{cases}h(x), & x \varepsilon \overline{1} \\
\operatorname{ch}(x), & x \in x_{1} \eta\end{cases}\right.
$$

where n is a ${ }^{G}{ }_{1,2}$ - congruence on S such that $S / n=\{\overline{1}\}$ or $\left\{\overline{1}, x_{1} n\right\}$, $\overline{1} \neq x_{1} \eta$ and h is a homomorphism from S into $\{1,-1\}$ and $c, d \varepsilon F$ are such that $c \neq \pm 1, \quad c^{2}+d^{2}=1$; or

$$
\begin{equation*}
f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2} \tag{4.9.2}
\end{equation*}
$$

where h is a homomorphism from into $M(F)$.

Proof. By straight forward verification it can be shown that if f, g : $S \rightarrow F$ are of the forms (4.9.1) or (4.9.2) then (f, g) is a class 1 solution of (*).

6ainconconcina~
To shown the converse, we assume that (f, g) is a class 1 solution of (*). Then, by Theorem 4.4 we have that $(4.9 .3) \mathrm{q}_{\mathrm{f}(\mathrm{x})}^{6}=\mathrm{f}_{\mathrm{c}}(\mathrm{x} \mathrm{\sigma}) 66 \mathrm{~g} 9 \mathrm{and}_{\mathrm{g}(\mathrm{x})}=\mathrm{g}_{\mathrm{c}}(\mathrm{x} \sigma)$
where σ is the minimum group congruence on S and (f_{0}, g_{0}) is a class 1 solution of (*) on S / σ. By Theorem 3.9 and hypothesis, we have that (f, g) must be a class 1 negative-type solution or a class 1 positivetype solution.

Case $1(f, g)$ is a class 1 negative-type solution. Therefore, by (4.9.3), we have that (f_{0}, g_{0}) is also a class 1 negative-type solution. Thus, by Theorem 4.6, we have that

$$
f_{0}(x \sigma)=\frac{h_{0}\left(x^{\sigma}\right)-h_{0}\left(x^{-1} \sigma\right)}{2 i}, g_{0}(x \sigma)=\frac{h_{0}(x \sigma)+h_{0}\left(x^{-1} \sigma\right)}{2}
$$

where h_{0} is a homomorphism from S / σ into $M(F)$.
Define $\mathrm{h}: \mathrm{S} \rightarrow \mathrm{M}(\mathrm{F})$ by

$$
h(x)=\left(h \rho_{0} \sigma^{H}\right)(x)
$$

where $\sigma^{\#}$ is the natural homomorphism from S onto S / σ Therefore h is a homomorphism and $h(x)=h_{0}(x \sigma)$ for all $x \in S$. Thus

$$
f(x)=f_{0}(x \sigma)=\frac{h_{0}(x \sigma)-h_{0}\left(x^{-1} \sigma\right)}{2 i}=\frac{h(x)-h\left(x^{-1}\right)}{2 i}
$$

and

$$
g(x)=\frac{h_{0}(x \sigma)+h_{0}\left(x^{-1} \sigma\right)}{2}=\frac{h(x)+h\left(x^{-1}\right)}{2}
$$

for all x in S. Therefore f, g are of the forms (4.9.2).
case $\overbrace{2}$ (f,g) is a class 1 positive-type solution. Therefore, by $(4.9)^{3}$ we have that $\left(f_{0}, g_{0}\right)$ is and ass 1 positive-type solution of (*) on S $/ \sigma$. Thus, by Theorem 4.8 we have that

$$
f_{0}(x 0)=\left\{\begin{array}{ll}
0 & , x \in H \\
d_{0}(x \sigma) & , x \notin H
\end{array}, g_{0}(x \sigma)= \begin{cases}h_{0}(x \sigma), & x \varepsilon H \\
c h_{0}(x \sigma), & x \notin H\end{cases}\right.
$$

where H_{ρ} is a subgroup of index 1 or 2 in S / σ and h_{\circ} is a homomorphism from S / σ into $\{1,-1\}$ and $c, d \varepsilon F$ are such that $c \neq \pm 1, c^{2}+d^{2}=1$.

Let

$$
\eta=\left\{(x, y) \varepsilon S \times S / x y^{-1} \sigma \varepsilon H_{c}\right\}
$$

and let $\mathrm{h}: \mathrm{S} \rightarrow\{1,-1\}$ be defined by

$$
h(x)=\cdot\left(h_{0} \circ \sigma^{\#}\right)(x)
$$

for all x in S, where $\sigma^{\#}$ is the natural homomorphism from S onto S / σ. Then, it is clear that h is a homomorphism and n is a congruence on S such that $S / \eta \cong(S / \sigma) / H_{0}$. Hence n is a ${ }_{1}, 2$-congruence and

$$
f(x)=\left\{\begin{array}{ll}
0 & , x \varepsilon \overline{1} \\
\text { dh }(x), & x \varepsilon \overline{x_{1} \eta}
\end{array}, g(x)= \begin{cases}h(x), & x \in \overline{1} \\
\operatorname{ch}(x), & x \in x_{1} \eta\end{cases}\right.
$$

where $\left\{\overline{1}, x_{1} \eta.\right\} \cong\left\{H_{c},\left(x_{1} \sigma\right) H_{c}\right\}$. Hence f, g are of the form (4.9.1). \#

Remark 4.10. In the above proof of Theorem 4.9, we see that (f, g) is a class 1 positive-type solution if and only if f, g are of the forms
where η is a ${ }^{6}$, congruence on S such that $S / \eta=\left\{\bar{j}\right.$ on $\left\{\overline{1}, x_{1} \eta\right\}$, $\overline{1} \neq x_{1} \eta$ and h is a homomorphism from S into $\{1,-1\}$ and $c, d \in F$ are such that $c \neq \pm 1, c^{2}+d^{2}=1$.

In the case (f, g) is a class 1 negative-type solution, f and g are of the forms

$$
f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}
$$

where h is a homomorphism from S into $M(F)$.

