CHAPTER III

REDUCTION THEOREMS

${ }^{\circ}$

Let S be a commutative inverse semigroup and F a field. We are interested in finding functions f, g from S to F such that

$$
\begin{equation*}
g\left(x y^{-1}\right)=g(x) g(y)+f(x) f(y) \tag{*}
\end{equation*}
$$

for all x in S . The purpose of this chapter is to provide theorems which reduce this problem into simpler problems.

Definition 3.1. Let A be any subset of a commutative inverse semigroup S, F a field and f, g functions from A into F. We say that (f, g) is a solution of (*) on A if f, g satisfy (*) for all x, y in A such that $x y^{-1}$ is also in A. If f, g are functions on S into F such that (f, g) is a solution of (*) on S ye simply say that (f, g) is a solution of (*).

Remark 3.2. Note that in Definition 3.1 , we allow A to be empty. In such a case (ϕ, ϕ) is the solution of (*) on A. In case $A \neq \phi$, the pair (f, g), where

for all x in A, is always a solution of (*) on A. Such a solution is said to be trivial. Any solution of (*) on A which is hot trivial is said to be non-trivial. d60 おM dMc 6

Lemma 3.3. Let A be an inverse subsemigroup of S and (f, g) a solution of (*) on A. Then for any x in A we have

$$
\begin{align*}
f(x)^{2}+g(x)^{2} & =g\left(x x^{-1}\right) \tag{3.3.1}\\
g(x) & =g\left(x^{-1}\right) \tag{3.3.2}
\end{align*}
$$

$$
\begin{align*}
& f(x) f\left(x x^{-1}\right)=g(x)-g(x) g\left(x x^{-1}\right), \tag{3.3.3}\\
& f(x)=f\left(x^{-1}\right) \text { or } f(x)=-f\left(x^{-1}\right) .
\end{align*}
$$

Proof. By hypothesis, we have
(*)

$$
\mathrm{g}\left(x y^{-1}\right)
$$

$$
=g(x) g(y)+f(x) f(y)
$$

for all x, y in A such that $x y^{-1}$ is also in A.

Let x be any element in A. Hence it follows from (*) that

$$
f(x)^{2}+g(x)^{2}=g\left(x x^{-1}\right)
$$

Thus we have (3.3.1).

By using elementary properties of commutative inverse semigroups togther with (*), we see that the following hold:
(3.3.5) $g(x)=g\left(x x^{-1} x\right)=g\left(x\left(x x^{-1}\right)^{-1}\right)=g(x) g\left(x x^{-1}\right)+f(x) f\left(x x^{-1}\right)$,
(3.3.6) $g\left(x^{-1}\right)=g\left(x^{-1} x x^{-1}\right)=g\left(x x^{-1}\right) g(x)+f\left(x x^{-1}\right) f(x)$.

It follows that

$$
g(x)=g\left(x^{-1}\right)
$$

Thus (3.3.2) holds for alixina. 9 NE ?

Hence, we have (3.3.3).
By using (3.3.1) we have

$$
\begin{array}{ll}
f(x)^{2} & =g\left(x x^{-1}\right)-g(x)^{2} \\
f\left(x^{-1}\right)^{2} & =g\left(x^{-1} x\right)-g\left(x^{-1}\right)^{2}
\end{array}
$$

It follows from (3.3.2) that

$$
f(x)^{2} \quad=f\left(x^{-1}\right)^{2}
$$

Therefore,

$$
f(x)=f\left(x^{-1}\right) \text { or } f(x)=f\left(x^{-1}\right) .
$$

Thus (3.3.4) holds for all \bar{x} in \dot{A}.

Lemma 3.4. Let A be an inverse subsemigroup of S and (f, g) a solution of (*) on A. Then the following hold:
(3.4.1) For any x in $A, f\left(x x^{-1}\right)=0$ iff $g\left(x x^{-1}\right)=0$ or $g\left(x x^{-1}\right)=1$,
(3.4.2) For any e in $E(A), f(e)=0$ jiff $g(e)=0$ or $g(e)=1$,
(3.4.3) For any x in $A, f(x)=0$ iff $f\left(x^{-1}\right)=0$,
(3.4.4) For any x in A, if $g\left(x x^{-1}\right)=0$ then $g(x)=0=f(x)$.

Proof. Let x be any element of A. Replacing x in (3.3.1) by $x x^{-1}$, we have

$$
f\left(x x^{-1}\right)^{2}+g\left(x x^{-1}\right)^{2} \cap \mid g\left(x x^{-1}\left(x x^{-1}\right)^{-1}\right) \nmid \eta g^{g\left(x x^{-1} x x^{-1}\right)=g\left(x x^{-1}\right) . . .}
$$

Therefore,

Hence

$$
f\left(x x^{-1}\right)=0 \text { iff } g\left(x x^{-1}\right)=0 \text { or } g\left(x x^{-1}\right)=1
$$

Thus we have (3.4.1). By specializing $x=e$ in (3.4.1) we have (3.4.2). From (3.3.4) we have that $f(x)=f\left(x^{-1}\right)$ or $f(x)=-f\left(x^{-1}\right)$. Hence for all x in A,

$$
f(x)=0 \text { iff } f\left(x^{-1}\right)=0
$$

Hence (3.4.3) holds for all x in A . To show (3.4.4), we assume that $g\left(x x^{-1}\right)=0$. From (3.4.1) we have $f\left(x x^{-1}\right)=0$. Therefore, by (3.3.3), we have

$$
g(x) \quad=g(x) g\left(x x^{-1}\right)+f(x) f\left(x x^{-1}\right)=0
$$

But, by using (3.3.1), we have

Therefore,

$$
f(x)^{2}=g\left(x x^{-1}\right)-g(x)^{2}=0 .
$$

$$
f(x) \quad=0
$$

Thus (3.4.4) holds for all x in A.

Notation For any solution of $\left(^{*}\right)$ on/S we associate a pair of disjoint subsets of S as follows. Let
and

$$
S_{2}(f, g) \quad=\left\{x \varepsilon S / g\left(x x^{-1}\right) \neq 1\right\}
$$

It is clear that $S_{1}(f, g), S_{2}(f, g)$ are disjoint and $S_{1}(f, g)$ U $_{2}(f, g)$
$=S$.

จหาลงกรณ์มหาวิทยาลัย

Lemma 3.5. Let (f, g) be any solution of (*). Then
(3.5.1) If $S_{1}(f, g) \neq \phi$, then $S_{1}(f, g)$ is a filter of S, and hence it is an inverse subsemigroup of S.
(3.5.2) If $S_{2}(f, g) \neq \varnothing$, then $S_{2}(f, g)$ is a completely prime ideal of S, and hence it is an inverse subsemigroup of S.

Proof. To show. (3.5.1), we assume that $S_{1}(f, g) \neq \varnothing$. Let $x, y \in$ $S_{1}(f, g)$. Then $g\left(x x^{-1}\right)=1$ and $g\left(y y^{-1}\right)=1$. Hence it follows from (3.4.1) that $f\left(x x^{-1}\right)=0$ and $f\left(y y^{-1}\right)=0$. Therefore

$$
\begin{aligned}
g\left(x y(x y)^{-1}\right) & =g\left(x x^{-1}\left(y y^{-1}\right)^{-1}\right) \\
& =g\left(x x^{-1}\right) g\left(y y^{-1}\right)+f\left(x x^{-1}\right) f\left(y y^{-1}\right) \\
& =1
\end{aligned}
$$

Thus xy $\varepsilon S_{1}(f, g)$, so $S_{1}(f, g)$ is a subsemigroup of S. Now suppose that x, y are elements in S such that $x y \in S_{1}(f, g)$ we shall show that $x, y \varepsilon S_{1}(f, g)$. Since $x y \varepsilon S_{1}(f / g)$, so $g\left(x y(x y)^{-1}\right)=1$. Therefore it follows from (3.4.1) that $f\left(x y(x y)^{-1}\right)=0$. Observe that

$$
\begin{aligned}
x y(x y)^{-1} & =x x^{-1} \overline{x y}(x y)^{-1} \\
& =\left(x x^{-1}\right)^{-1}\left(x y(x y)^{-1}\right) \\
& =\left(x y(x y)^{-1}\right)\left(x x^{-1}\right)^{-1} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& =g\left(x y(x y)^{-1}\right) \\
& =g\left(\left(x y\left(x y^{-1}\right)\right)\left(x x^{-1}\right)^{-1}\right) \\
& =g\left(x y(x y)^{-1}\right) g\left(x x^{-1}\right)+f\left(x y(x y)^{-1}\right) f\left(x x^{-1}\right) \\
& =\left.g\right|^{1} g\left(x x^{-1}\right)^{2}+0 f\left(x x^{-1}\right) \approx \\
& =g\left(x x^{-1}\right)
\end{aligned}
$$

Therefore $9 \mathrm{x}_{\varepsilon} \mathrm{S}_{1}(\mathrm{f}, \mathrm{g})$. $S_{1}(f, g)$. Thus $x, y \dot{\varepsilon} S_{1}(f, g)$. So $S_{1}(f, g)$ is a filter of S. Therefore (3.5.1) holds. Hence, from Theorem 2.5 , it follows that $S_{2}(f, g)=$ $S \backslash S_{1}(f, g)$ is either a completely prime ideal of S or an empty set. Thus (3.5.2) holds.

Theorem 3.6. Let (f, g) be any solution of (*). Then f, g must be of
the forms

$$
f=f_{1} \cup f_{2} \quad \text { and } \quad g=g_{1} \cup g_{2}
$$

where $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right)$ are solutions of $(*)$ on $S_{1}(f, g), S_{2}(f, g)$ respectively.

Proof. For $i=1,2$, let f_{i}, g_{i} be the restictions of f, g on $S_{i}(f, g)$, respectively. It is clear that, for $i=1,2,\left(f_{i}, g_{i}\right)$ is a solution of (*) on $S_{i}(f, g)$ and

$$
f=f_{1} \cup f_{2} \quad \text { and } \quad g=g_{1} \cup g_{2}
$$

Definition 3.7. Let (f, g) be any solution of $\left(^{*}\right)$ on S.

If $g(e)=1$ for all e $\varepsilon E(S)$ we say that (f, g) is of class 1 .

If $g(e) \neq 1$ for any e $\varepsilon E(S)$ we say that (f, g) is of class 2 .

Remark 3.8. From Theorem 3.6, we see that $\left(f_{1}, g_{1}\right)$ is of class 1 and $\left(f_{2}, g_{2}\right)$ is of class 2. So from this theorem we see that any solution of (*) on S is either of class 1 or class 2 or can be written as a union of a class 1 solution of (*) on a filter and a class 2 solution of (*) on a completely prime ideal of S since both filter and completely prime ideal in a commutative inverse semigroup are themselves a commutative inverse semigroups, so it suffices to consider the following two problems:

Problem 1: Find all solutions of (*) of class 1.

Problem 2: Find all solutions of (*) of class 2.

From now on, we shall assume that F is a field of characteristic different from 2. With this restriction on F, we shall be able to classifly the solutions of (*) into two types. The classification will be
based on the following theorem.

Theorem 3.9. Let (f, g) be a solution of (*). Then f satisfies either
$f(x)=f\left(x^{-1}\right)$
for all x in S, or
(3.9.2)
$f(x)=-f\left(x^{-1}\right)$
for all x in S.

Proof. Suppose that there exist x, y in S such that
and

$$
f(y) \quad \neq-f\left(\overline{y^{-1}}\right)
$$

Hence, by (3.4.3), it follows that $f(x) \neq 0$ and $f(y) \neq 0$. By (3.3.4), it follows from the above supposition that
Therefore

and

The last equality follows from (3.3.2). Hence

$$
\begin{aligned}
g(x) g(y)+f(x) f(y) & =g(x) g(y)-f(x) f(y), \\
& 2 f(x) f(y)=0 .
\end{aligned}
$$

Therefore $f(x)=0$ or $f(y)=0$, which is a contradiction. \#

Definition 3.10. Let (f, g) be a solution of (*) on S. If f satisfies (3.9.1) for all x in S we say that (f, g) is of positive-type. In the case f satisfies $(3.9 .2)$ for all x in S we say that (f, g) is of negative-type.

