CHAPTER 111
THEORY

The success of any simulation study depends on the appropriateness of its

mathematic model. This chapte_rr presents a brief discussion of the basic theory of

simplified model. . :

3.1 Basic theory ofa/

Kuwabara (1939) vé .“ Navier Stokes equations for viscous flow.

Figure 3.1 shows the fl s in‘a 3. fil . consisting of parallel fibers, spaced
randomly and transverse X ' - The‘mea  flow is directed from left to right with
a velocity equal to U. The voriie id be negative on the upper side of a cylinder

and positive on thﬂ EGEa-cylinder Aflidea! cel for the mathematical model
' ach cylinder of radius Rf is

enclosed by an imagipary cy Rﬂf there are n parallel fibers per

unit volume of filter, tbe volume fraction or packing density o is

AHBANYNINYINT oY

and Rc is adjtisted so that
QW’Tﬂﬁﬂim N‘H’nﬂiﬂﬂﬂ s
Thus J‘ (3.3)

The boundary conditions used by Kuwabara were that velocity is zero on the
surface of fiber and on the surface of the cell. The stream function, y, and the velocity
component, U,,U, and U,, expressed in dimensionless form are

1
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Figure 3.1a  Vorticity around cylinder

_(the broken lines are zero vorticity)
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Figure 3.2  Cross section of Kuwabara's cell
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SO0 o S e T
U, = 3y Uy—aX,UZ—O 3.5
I a? 3 X y z
where K——21na+a— 44 and X= f’Y_R_f’Z=R_f

3.1.2 Single fiber; representation of a fibrous filter

A fibrous filter consists of a mass of fibers which are placed perpendicular to

the direction of flow and o ' ” nlyV#The single fiber may be used to explain
ter’iS.thought of as a pad of thickness h at

——

gth of every fiber in unit thickness of

‘5 ‘ . b ] =
Jensity, ov.or " me fraction of the fibers is the
3 RN

the performance of a fibre
right angles to the ai
unit cross flow area i
ratio of the total vol
of the fiber, then

me of the filter. If R, is the radius

a=nR/L (3.6)
If the filter consists of fi ﬁ&@h '_ vandradi 1S Rg, and so on

o=nRs’L; (3.7
The definition of the dust collee: {ifn cfriote ‘ f a single fibers, 1, is the ratio of the
distance between two j flow approaching the fiber to the
fiber radius (cf. Figifedam——r 7

Y
n_._

m | 4]] G. 3)
The change IH W%W%ﬂﬁm of thickness dx is

given by

aﬁ'fﬁnim YRIINYIRY @

where n is the number concentration of aerosol particles
From equation (3.6) and (3.9);

dn 2na

_—Ezmdx (310)

Integrating across the thickness, h, of the filter gives

(3.11)
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Figure 3.3 reantlines n inder fiber lying transverse to flow,

e fiber efficiency
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So, the total efficiency E of the filter composed of many fibers in the mat can be

related to the single fiber efficiency n as follows

n
x m(i-oR,] e

The values of the single fiber efficiency which are calculated from an accurate theory

of depostion of aerosol particles on a single fiber, are higher than their experimental

results because the dispersion tr a real filter is non-uniform, some fibers
might clump together, some's

}nd not all of them lie transverse to

airflow.

3.1.3 Filtration mec
The filtrati Fil s -air filter n several mechanisms. The

important mechanis 1S 2 1C e de 0Si n, ar terception, diffusion, inertial

[ il NN ;
the sum of the individual eff dfblfqy sed iffasion, Mp, interception, Tg,inertial
"A.-{-:.‘l

he par@le radius, the particle may be
collected on the surface by, the interceptiensmechanism. The particle would adhere to

itdue to Vol ot ¥ rhd o o iherk o shown in P 3.4

This mecham;ym is directly related to the cLelative size of  the particle. The

sl B | B 3 %l i€ Jhe imersepion

parameter R defined as the ratio of the particle diameter to the fiber diameter.

o]
de

the particle to a cap@ing s

R= (3.13)

where d,, is the particle diameter and d; is the fiber diameter.
If the Kuwabara flow field is used, the single fiber efficiency caused by interception

can be expressed by
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R =12K [2In(1+R) - l+oc+( ) (1—-—)——(1+R) ] (3.14)

Diffusi
When a particle is very small, such as the submicron order size, the main
deposition mechanism is Brownian diffusion. Generally, the particle does not follow

its streamline but continuously diffuses away from it. Thus the particle may be

captured even on the rear surface. stion by diffusion is shown in Figure 3.4b
The diffusional depostio particles intréasts.when the particle size and air velocity
decrease. From th ve «diffusion—equation describing this process, a

dimensionless parameter ‘ et number, Pe, can be expressed by

pe = 31U= (3.15)
e = .
Dgm __

where U, is the velocity 2 1d Dy is the diffusion coefficient of the
particle. The single d on ! flow field, can be expressed
by (Stechkina and Fuc

np =29K 3Pe ¥ + (524 _é, E2 (3.16)

Nor = 1.24,&_'_5:?@'5 R ol . (3.17)

: : I.|

Inertial Impaction

article with ﬁ'mlte m il#not follow ﬁ amlines exactly due to
their 1nert1aﬁir 1cle mass is high, the

particle will g'clawate from the str€amlines to gellide with the eapturing surface. The
ceposiod by |t [ubodeit hsbovm] ) e S dafbitke he cimsin
mechaﬂlsm, the inertial impaction mechanism increases with an increase in particle
size and/or air velocity. The effect of inertia on the particle can be described by the

dimensionless number Stokes number, St, defined as

AR
_—m"pPp e
St oud, (3.18)
The single fiber efficiency is calculated by Stechkina et al. (1969), using the

Kuwabara flow field. Their expression gave
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" St ' (3.19)

=——1L
(2K)?
where 1=[(29.6-28a"%)R? -275R>?]

ravitational seitl

When a particle is in a gravitational force field, they will settle with a finite
velocity. If the settling velocit large ticle may deviate from the streamlines
and déposite on the capt . ] fion by gravitational settling is shown
in Figure 3.4d. The gravitational nli%sm is important only for large

gravitational settling 1
Uy,

Ve

(3.20)

where V, is the settling vglog t
The single fiber efficient approximated (Davies 1973) as

3 Gr
Mo = 1+ Gr

(3.21)

T
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3.2 The stochastic dendritic growth model
Stochastic or random processes abound in nature such as the path of a particle
in Brownian diffusional motion, the growth of population of bacteria ,and the mixing
of pigment in plastics. If investigators would like to study these phenomena, they can
easily make use of the theory of stochastic process.
This study extends the previwstochastic model (Kanaoka et al., 1980, 1983)

astic y ulating the convective diffusional and
inertial impactional deposition zréyome Carlo method.

To calculate the ¢ : or fa single fibers, the motion of the
aerosol particle can b 1 v

by Kuwabara’s cell. niform random number is used
to represent the r nofe ath inco: in g particle at the generation plane of
Kuwabara’s cell. Th f h pai it rerned by the Langevin’s equation,
as follows

dv

- (53.22)

U is the velggity of fluid strea
At)isa ﬂucHation force
In the case of convective diffusiosial depositon, the position K of a particle at

ﬁme.tﬁ“*%"uaﬁomlﬂﬁﬁ She bikidh 3.3
WIRIATENMINGIAY o

Here, the fluid velocity U of viscous flow across a random array of parallel fibers
having packing density o is given by using equation (3.5), Pe is Peclet number, and n
represents the uniform random number. On the right side of equation, the second term
represents the convective movement of particle, and the last term represents the
diffusion movement of particle.

In the case of the inertial impactional deposition, the position of a particle at
time t;=t;; + At can be approximated by the following equations (3.24) and (3.25)
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d’X dX :

Staf'+'a" U, =0 (3.24)
d’y dy

St—d?‘+—a—Uy = (3.25)

In short, Equations (3.23),(3.24) and (3.25) can be used to simulate the

movement of a particle in Kuwabara’s cell. To complete the stochastic simulation of

the dendritic growth on a fiber, the following assumptions have been made.

1) Existence of dendrites on the fiber has ect on the flow field around the
S —

fiber.

2) Spatial and time diStribuii

-

3) The next particle v TiE wabara’s ce until the present one in it either
deposits or passes throug : |
4) A particle is always retaige 1
5) There is no re-entra dbﬁ’ hment ¢ V‘ ptured particles or dendrites from
the fiber. S
6) The inlet particle size i

3.3 The determ"_ s

The numbk P Susface depend not only on the
filtration conditionsguch as fluid velocity, particle ﬁmeter, and fiber diameter, but
also on the typical fmorphology of dendrites on a fiber. Recently, a simple

deteﬁninistiﬂnueﬂg %&ms@w %L&ﬁl aanmapanichakoon etal,

1993). Schex?llatically the birth of dendrites of.size 1 and the growth of dendrites of
s 155 B RRRARHARN ) 71216 2
“Birth of dendrites (size 1)
1+8V =3P
Growth of dendrites
I+P, > P,

1+P, > P,

I+Py_ = Py
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Here I is an incoming particle captured either on the vacant fiber surface (SV) or by an
existing dendrite (P;). The birth of dendrites, the collection of an incoming particle on
a fiber surface can be considered to be proportional to the fraction of vacant surface
on the fiber and the collection efficiency of the clean fiber 1, while it will disappear
and become a larger dendrite by the attachment of the next particle on it. Therefore,
the net rate of birth of dendrites of size 1 is expressed by Equation (3.26).

dP, ,/%; Ne'yPy)-2R%,P,]  (3.26)

=n,[(1-S") -
dN e, ol(
aﬁanﬂparncle by dendrite of size 1 and

Here, S1 is the effectiv&e
( r surface area minus the sum of

(1-S°) is the effective
by the dendrites.

the areas directly an

S, =¢,(2R? (3.27)
(1-8)=1- (3.28)
by the depostion of one particle

dPN .
dN,.

gen

Here Sy, and Sy are il e effectlve capture area of an mcommg particle by the dendrite

°fs‘zeN“ﬂ”lJI§J)’J‘V]EIW§WHWﬂ‘§

Sy =&l(2N ‘ (3.30)

NI R L

average size :j dendrite Size, are given respectively by

P, = Nzﬂ Py | (3.31)
N = X NP (3:32)

(3.33)
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Initial conditions: At Ngen=0 , P;=P,=P;=...=P\=0
The collection efficiency of a dust-loaded fiber 7 is theoretically given by

N _1+2R? 3 NP (ex - €'y ) (3.34)
Mo “N=1
According to several previous studies (Yoshioka et al., 1969; Kanaoka et al.

1980,1983), it can also be approximated by

' ’ (3.35)

m (kg/m’ filter) is the dust load.

where A is the collecti

Here 7 ‘
4 ©

m = = ppaR’ 3 B\ \ | (3.36)
In other words, A is clated .\
A =) (3.37)
For simplicity, it will be assurme: he parameters ey and e’y are independent of
time and the dendsite si ‘
o

To complete the deférministic simulation of dendritic rowth on a single fiber, the

e LTI NE NS
oy wosiris e HREE
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