CHAPTER M

McMillan (Mc i retical model of the proximity effect

between superposed noffiz And superc nduciing (S) metal films. He imagined a

(a) The tunn: be the penetration of electron
through the barrier. Thi probability of the barrier to be
much less than one.

(b) Both g and“%" compared with the characteristic
superconducting leng f each film are uniform across its
thickness.

(c) Tunneling matrix elements Viy,is taken to be of equal magnitude between
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tunnehng model ( MIM ) of the superconducting proximity effect by treating the
tunneling Hamiitonian to all order of scif-comsistent perturbation theory. They
considered the normal metal in MTM as weak superconductor and treated their system

as superconductor-superconductor sandwiches. In this review, we will consider the
model of Mohabir and Nagi for S-S, sandwiches.
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The Hamiltonian for the sandwich is the sum of the Hamiltonians for S; and
S, slabs and the tunneling Hamiltonain.

(3.1)
where Hg,(Hg,) is the uperconducting metal and Hr is
the tunneling Hamﬂtony

Hg, = (32.1)
Hs, = 2.8 o @A hc. (3.2.2)
Hy = 2.[Vig spouife * el (3.2.3)
7y —d|
where a;c (d:o) is the tion operator for €lcciron @the S1(8y) side, G is the spin

index, and Vi is the tunfieling matrix element, we take V:j; to be independent of k and

K €4, (E1) m%uimgﬂ/lfﬂﬂn Lok iihe $1(S,) side measured
ARSI

In order to calculate A, we introduce the finite-temperature Green's function.

Gl ®p = -<Tr YD W) > (3.3)
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where WI =1 a;T ay| ) for S; side and Tq is the time ordering operator for the

imaginary time T =it .

We find a single particle Gr: function for pure S; superconductor

Gl(k, (I)n) as
Gk @) (3.4)
where T; (i=1,2,3) ar
Treating the éle phoron fittera tionland the tunneling Hamiltonian in
second order self-consisten ation,’ d for the Nambu matrix-self-energy of
the S; side as
Z(iny L= (3.5)
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interchanging the labels 1 and
We make the ansatz

GOy = [i0,- 6Ty + ATy (3.6.1)
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here G (k, ®,) is the renormalized Green's function which includes the proximity effect.

(T)n and Z are renormalized frequency and renormalized order parameter, respectively.

We find the usual form for matrix Green's function
A ’

GOy = -idqa by g2« A2] (3.6.2)

Using the is related to the Green's

functions,we have

Zy(ioy) X))
Substitution of Eq.(3.6/Z) te d performing the sum over states,
we find
) . vi
Loy = m (3.8)

miere A off] S A B o o s o

volume) of the second superconducter.
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By comparing Eq.(3.7) and (3.8), we obtain the following equations.

D1y = o, + [0y [\‘652n7"F Zz T (3.9.1)
Zl Al + rlgz [\]&l)znz‘i' 522 ]'1 : (3.9.2)
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In these equations 1'; = V2Ad,N,(0)Tt .

Similarly for the second supercond , We can also obtain the equations for
@, and A, by changing the iabels 1 and 2 e I, = V2AdN,O)T

The solution of terdy can be solved by defining a new parameter.

Up (3.10)
Then, Egs.(3.9.1
Up = WAL @+ Ly(8 | @I

o = waww%?wmm aun.
www AR )

®p, /27T
A, = 2T D A [\B, 2+ A2 1 (3.12)
n>0

where 7»1 = g; AN;y(0)d; .
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Substitution of Eq.(3.10) into (3.12) and taking the limit that near T, A; and

A, are small and U;,U, >> 1, we get

Op,/27T

Further, Egs.(3.
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By = Mo A f1 éagéf 2 AAN K(P)
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where

1
J ®p,/2TT

ﬂfuﬂ’m%w%’wmnﬁ
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amd | OKp) = T Y (@ @yt Ty
n>0

— W12+ p2) - We12)- in(1- T gy )

(3.13)

(3.14)

(3.15.1)

(3.15.2)

(3.15.3)
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where I’ = I'y+ I's, ¥ = 1.781, p = I/RT and Y is the digamma function
(Davis, 1965).

The equation for A, and U, are obtained from the above equations by

Daiio; ‘ Az, Eliminating A; / A, from

interchanging the labels 1 and 2.

From Eq.(3.15.1

these two equations, w!

MA(T) - (D) { Ki(p) ~ Y2KoP) 1 }

AR

\~~ 1+ YK (P) = 0 (3.16)
where Y = ln((Dm/(DDl), g

For a super iI-“iu we can make the assumption

that A= 0 . Eq.(3.16) gi l:fsthetx:m:n’antemperal:ureo an S-N sandwich as

Juinemanng,, ..,
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where T ‘is the transition temperature of the single S slab.

Eq.(3.17) is the McMillan's transition temperature of S-N sandwich
(McMillan, 1968). '
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Fig. 3.1 Critical temperature T, of S-N sandwich vs. F,; (F=TtAdNNN(0)T ) for various values of V/T¢.
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The parameter is I'y=0.2( Mohabir and Nagi, 1979 ).

Ig



32

In Fig. 3.1, we have introduced dimensionless parameter F
(F s~TLAdNNN(0)T,,) . When F =0, the ratio of T /T is equal 1 for various values of
V/Tgs . For fixed values of , the ratio of T/T¢s decreases when V/T increases.

m(T;m/ AY-E ;""4“*{-' (3.18)

where

H(pcl)

G(Pe

._y,,:—:—.ﬂ
Eq.(3.18) i ans perature of Lar S$1-S, sandwich as shown by

M°"”“““§Wﬂ’ﬁ‘ﬁ 0
| ﬁﬁm EWI % ngﬁ éfﬁ of the) transition
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Fig. 3.2 Critical temperature T of S-S, sandwich vs. I} for various values of  V/T). The parameters

used are \;=0.2447, A,=0.1669 T, =3.72 K ( Mohabir and Nagi, 1979 )
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Fig. 3.3 Critical temperature T, of an S-S, sandwich vs. I'; for various values of I";/ ", .The parameters

used are A; =0.246, A, =0.171 0, = 16.78 meV , ®p, = 32.21 meV ( Mohabir and Nagi, 1979).
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In Fig. (3.2), we have introduced dimensionless parameter I';
(I';=mtAd;N,(0)T¢;) . When I’ ;= 0, the ratio of T/T; is equal to 1 . We found that for
fixed value of I'jand V/T; , ratio Ty/Tg; of an S;-S, sandwich decreases more slowly

&the critical temperature of an S-S,

il /Iy ) . For fixed values of 1,

than the ratio T/Tgs of S-N sandwi :

In Fig. (3.3), we shoWe
sandwich as a function of

the values of T decre
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