In studying the theory of matter at low
temperature, it passes to an extraordinary state which
is characterized by the frictionless motion of
electrons and helium atod espectively. The two-fluid
model is useful in descrfégggfphenomena that occurs
between the absolute zefo and tfan51tlon temperature.

=
In this modelﬂﬁjfﬁ

olut temperature one has a perfect
frictionless

" whi ‘flows frictionlessly with

-
-

potential flowl é'heat it, the heat energy will

These&ekc1tatlons can make their

&l

ﬁto-andchér place collide with each

excite the 11i

ways from one pla

other until they glv% someégﬂppqrtles of the so-called
s

normal fluid compﬁnentjﬂThat is there are two
b f_" s el T

1nterpenetqat1ng flulds, each pﬁ;sesing its own

"!--d

velocity: and‘there is ne or very &{ttle exchange of
momentum between them. One of“the flpidss  the
superfluid, bears frictionless motion and.disappears at
transition temperature.The‘other:fluid the normal
fluid, behaves as, a- normal electron gas /or. normal liquid

and disappears as temperature decreases(4)

4.1 TWO-FLUID MODEL OF SUPERCONDUCTIVITY(SL

Frem the interpretation of the two-fluid model.

of liquid helium by Landau(6), it can be extended to

Serve as a basis for a two-fluid model of
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superconductiyity. But first let us consider London

equations where the current density 38 can be written
—J - -

as = —ef;v /m  where Ps 1s the density of the

superfluid componentand Vs is the velocity of the

superfluid component. At absolute zero f% = nm and at

some finite temperature

Lo = NSNS S (4.1)
P P
where A is the Lond"ﬁ parameter which in a free
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temperature.
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If V is the Lagrange multiplier for 3;, then
1 =p.ATIFLE (4.3)
n
In the paper of BCS (29, minimizing F withirespect to f (p)

subje¢t tol 'the (condition.(4.2); equation (4.3) becomes

-

E(B) + 1 1n £(p) -v.p =0
: P 1=2 (9]

£(p) = 1/{ exp (E(P) —V.})P% + 1 (4.4)

For small'z, Jn is proportional to Vv and the coefficient

of proportionality is defined as the normal density Pn.

Thus from Eq.(4.4), expanding to the first order of'v,
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The first term is 2ero since cos © averages to =zero

over a sphere. The second term is
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This we will Iarﬁato that derlves
from (4.1)

In mom tem moves with the velocity
3; and the mo ormal fluid depends on the
difference of the Thus the total
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andU1ntroduc1ng'P P f’ we have thquef1n1tlon of
theﬁ‘“ﬁﬂﬂ‘«?ﬂ SELINN Y ER ¢
We can see that by following Landau's derivation of
the two-fluid model we can show that the current of
supercondugt1v1ty is that of a mixture of two fluids,
one of density Ps moving at velocity:V; and the other

densityf; moving at velocity'vg.
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4.2 GALILEAN TRANSFORMATION FOR OPERATORS (8) (9).

i

Consider the state of thermodynamic equilibriunm,
which is characterized by the usual parameters: the particle
number density/% temperature T and velocity V. The

dependence on the velocity Vv is trivial, by using the

v\«&\ ,s,(/ (.7

then we can w e&peetuc!-u values in the states
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locity is at rest,

where H is the Hamiltonian of the system and is given -by
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H= hé | w3, v (x)dx+l§ VE-Y) ¥ YT @YY (R) aFaR (4.1c
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When we take Galilean transformation of Hamiltonian, by

choosing the coordinate moving with velocity Vs and



then taking all averages only over states w
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N Vo 0, v' = ;és' then Eq (4.10) becomes,
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Consider the expression

where u . Where M = 2n.
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whgre We use Eq. (4.12) and introducing the definition
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Pn =f’-2fs we get the expression of the total ‘c_urrent
density
~ — -
. J = 2}°svs. +/°nvn (4.13)

From consideration in this section we see that ..,

we get a different expression for J, this difference
the condersate coupled pair

r ﬁtead of introducing two

functions we e'é by considering the
—

condensate co{ Che € inates of center of

mass. The t

comes from the fact th

have two spgce vari

mass )1 that are

defined by But since the

coupled pair h he s ame) : . we have M = 2m and ).l = m/2.

These will play t 4 - he next chapter.
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