CHAPTER III

REDUCED DENSITY MATRICES AND

OFF-DIAGONAL LONG-RANGE ORDER

In studying quaptum systems of identical
particles, We generally require only the expectaion
value of one and two- erators. This leads to the
definition of oug ody reduced density
matrices, and_gaaarab!y eu#.nis to higher order

We‘u;%&gstudy its properties
t’at thby will exhibit off-

reduced den31

and consider

. o W ¥ ! “1‘
diagonal 1long ‘ der i :ghe coordinate space
representation. 5 fv s ilg lead to a new

thermodynami that characterize

superfluid He But first let us

3.1

Gl For qm%ntﬁﬁwéiétgms the bhagl space coordinates
of part ﬁ i rather than
introduce ﬁ ?b?l]lﬂ,w W’IEIFT?L phase space of
the s tem A ﬁ “t?.l ﬁ a more
i ﬁ \3 ai ﬂrﬁ)1’31 151 )ﬂh operator .

/ﬂt). Given a density operator for a system, the
expectation value of any observable O at time t in any
desired representation is defined by -

A A
<0> = Tr ,o(t)o (3.1)
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where the dénsity operator is normalized so that
CoTrople) = 1 - g3lay
Since the density operator is a positive
definite Hermitian operator, it can be diagonalized and
it will have positive real eigenvalues. If Fhe set |7i>
denotes the eigenstates of the density operator and Py
its‘eigenvalues, then theﬂﬁ@gsity operator can be

—_

written in the form

J
AV TS PL T (EY > £ ) | (3.3}
where P is ::::pfbfablltty of finding the system in
state lﬂ1> an L1 X ‘
‘E r (3.4)
The expectation value of an¥ operator becomes
O(t)> = T y: t)o.; ‘g‘f;g_.i”i(t)'omi(tb (3.5)

In Eq. (3.5), <W;ﬁtkt9£71(ﬁ§§gks the expectation value
of O in the state 1¢{T£)> éﬁ&tpi is the probability of
- Y
Ll .
finding the”fﬁf%ﬁﬂ—iﬂ—%ha%—stateT———“:J

it weahave_an arbitrary complete orthonormal
set of states. ID> .which afé not ; eigenstate of}P(t)
Then the probability P (t) that the system is in the
state .ln)>. at time .t s, given by~ the expectation value
of the density operator 1in that state
CP_(t) = <jpt) I = HPy<nlT  (£)>¢m (t) tn>  (3.5)
The expectation value of an arbitrary operator O may be
evaluated with respect to any represéntation. Thus, in

the representation [n>, we have

O(t)y = Tr)o(t)o =2 loIn>A'A(t) In>  (3.7)
nn
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» The quantity <n'|P(t)[In> is called the density matrix.

Since Schrodinger equation is difficult to
solve. It would be quite hopeless to attemp a solution
of the problem bhecause of the enormous number of

degrees of freedom (proportional to the total number

of particles). So S8 pportune tLo introduce the

statisfical openg;;‘ ‘ capable of yielding

pertinent on

this purpose?((rv.

article system with

density operator/O , the

(3.8)

In the coordl—ate“reF ta : wglcan write

- (t))’é‘ o) lx% €113 > anas (3.9)
where (X" | qfum hé‘lm élti]iﬂjreduced density
matrix and is defined

awmg.a;mwmmmaa

where ar (x") and ﬁ’(x ) are field operators.

For two-body operator, we get the similar expression,

thét is
g A
<02(t)) = Trp(t) o,
L Sy v =t P nwo on - e I8
dx"ldx" ax’ d"’ , (3.11)

2
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where <x"1,x"2lf3(t)lx'1,x'é> 1s the two-particile
reduced density matrix and is defined by
- - - -
<X"1,X" 'Pz(t) lx'llX'2>
-
= pvidl j ' (3.12)
Ttﬂ(trT (x )ﬁ’(x )11(X 2)it/(x 1)
Equatlon (3.10) and (3. 12) are the expressions for the
one and two -body reduced deﬁeity matrices. They can be

-
generally extended to the n- body Yeduced density matrix

Next we will examine  the Properties of these
reduced densitfﬁ tr1cesh(3) We will first consider
the diagonal ﬂgiyf; elements ofﬁ1 Wwith respect to any
given state tifgjgt glvessthe average number of that

f od EQM(3 10)
Nk

state, that is

jn(x,tfﬁ' (3.13)

where n(x t)Wis the average numberjgf particles at

Y

position % atJtlme t. The one-particile reduced density

matrix is narmalized to the total number of
particles,. that i&
. J<§|fll§>d§ =J(n(§,t)> ax
‘ =_.N ; (3.14)

where N is 'the total number of particles.

The two-particile reduced density matrix is
normalized to N (N-1) | o

”<§1,§2tﬁ2|§1,§2>d§1d§2 = N(N-1) (3.15)

Ifﬁh is the largest eigenvalue of‘Pn. From Eqs. (3.14) ang
(3.15) , we see that,KléN and A, & N(N-1) etc.

For our purpose we will consider in the case of
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fermions. For fermions the expectation value Hjﬁh T(;)
for any states is less than 1 (Pauli exclusion

principle). Therefore Al L1,

3.3 OFF-DIAGONAL LONG-RANGE ORDER (ODLRO)

Consider a systemspf N fermions or bosons in a
periodic box of.volume ﬁ&in,thermal equilibrium.
) -

f commutes with“the total moméfitum, thus in the momentum

representation“7§rfis di%gonal
,;ffi’ |
<p ,p") r ,55'86'3" (3-16)
where ng ., is :%ge,bﬁcupation number of the single
particle at f. In Soordinate representation
T ' -' -Ia"f 3 5 - ==,
<X"l B =‘ ;{&:Ij:pn>< p" |/°1|p'>< p lx>
v :‘ pl:pl
’“Jl. zi‘.jif:, -y - F7S - 6
(L e pRip" . X" ) exp (-ip' . X' )n=, 02,2,
—— 4R P'P'P
Fooe) LL20sexp ib' . (X"-x')
v N
a = gixr-%x1) ”ij 13.47)
For fermioﬂEﬁor bosons at high tempé?ature, n are finite then
lin W [P.l%X'D=0 = @ 2 154G
" 3! ! 1 1 ik
il

But for bosons below.the (Bosé-Einstéin transition
temperature, n, = KN where « 18 finite frdaction, then Eq
(3718) bedomes

_ lim <5’<"|/°11?<'> = XN (3.19)
x1><x"1 ' ‘ v

Thus the Bose-Einstein condensation is characterized by
the nonvanishing behavior of (§"|f1l§"> 5 A system
that yields according to Eq. (3.19) is said to exhibit

off-diagonal long-range order in the one-reduced
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density matrix. For fermions system because of Pauli
exclusion principle, i.e. Alél,.,they cannot exhibit
ODLRO in one-body reduced density matrix. But for
bosons system they can exhibit ODLRO in <§"|ﬁ1| WY
That is what happens when gauge symmetry is broken in
bosons system that they b!ecome superfluid.

Next we consider tég/c se of N particles with
any boundary condition a5d laﬁ%t*{en density matrixﬁ.
By taking the twial f_pnct!ion l?{)- =1 Eq (3.19)

=va
\V4

implies that s a larkfe eigenvalue of order XN for

H.-!'}Jas ‘a. large eigenvalue AN with an
y .

y{ehl-ca—' take

=oNpe @) Bl W ol (3.20)

. # A AhAd 4

where/o'l is a

ositive’ opé‘?ﬁtor. An eigenfunction }é(x)

has a normalization factor _1_” Equation (3.20)
\ s o Y
implies tha'&é 2 , o g-”
‘ $ '..j " P 5 ‘-:...JI
_ lim 1Py 12> = 2 {3.23)

X' r X

Fd” -

Equation (3.21) can.take as the definition of the
existencé' of ODLRQO in /01. Its existence is equivalent

to that of the existence of a large eigenvalue for /01 of

theporder |of N. .

If ODLRO exists in 0, then <?<"1|f1]?<'1>

remains nonvanishing for all values of §1 and Xy For

<?<"1,4x"2|/°2I§'1,—§'27 + a large contribution .of Pa
= -.' -J" -" - .
comes from <x"1|)°11x 1}( X 2l/°1|x 2) ., then /02 remains

nonvanishing for all values of ?{'1,—}?'2,‘;{"1 and'—ﬁ"z.

016428
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As in Eq (3.17), two-body reduced density
matrix in coordinate representation
'.)" _;ll —)l _J|
CXM X"l Pplx g %" 57
S g(.;:nl_';{vl)g(;nz_?{lz)+g(xu1__;<|2)g(';(uz_';{n1) (3.22)

If it exhibits ODLRO in Pl,then Py #. .0 for-all

~ - -
” ” ] 1] 1. f 3 .
x 1,x 2,x 1,x 9t but if 1 does not exhibi ODIRO 1n/z

then fb = O except in theffglghbourhood of x 1 =x" 1
—_ -
1] — ” L} ”n -ll
XR'g = X 9 X =% aqg x* =x
; From .=Eq, (3.19) , we 'see that the largest
- =~ '
eigenvalue ot’fﬁ 19 of t&e order of Nz. But we want to '

find it in order of N, it can be thus said that it

exhibits ODLRO in

fb th1§ ;s not the case of free bosons

in equilibri t/may obtaln in other systemns.

R
-"d

Slmllary;to-ﬁq (3?59&, wWe may separate 4P2 as

2 g »
o ..

<X"1,X" JelEx 1.x >7°(N¢> (i;’;." <3 )?(?c'l,?c' I+ £y 131 23)

whereﬁ 2 is) pos1t1ve operator. Th{ e1genfunct10n ¢

'N....a'

(§'1,x ) 1§’zero for large separag}on of X' 1 and x! 5 but

has a normalization factor lvhfor the neighbourhood of
Sl \Y/
X'y and-x'y; (This ds diffierent| from <\ equation (3.22)

for it exhibits ODLRO inﬁé but not in f& andf2 = O except

: ! 2 —AI -‘" —‘t =dn -_‘l - ”
in~they neightbourhood | of) x {1=% 1 X 2] FIX'L, X 1 X",
il —_— - -— Y Y 2

x:2=x 1 and the last x 1.2 Blai a8 X 5 This

indicates thatfa has an eigenvalue of the order N.

For a system of fermions, since 7\14;1 . then
ODLRO does not occur in Pl . But equation (3.23)
indicates that P2 may have eigenvalues in the order of

N, thus for fermions they can ‘exhibit ODLRO in/pz.
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For a free fermions system in equilibrium, all
eigenvalues of Fb are finite but do not in the order of
N , then ODLRO does not occur in Pl and‘pz. But for a
system of a pair occupation, that is a hypothesis of

Bardeen, Cooper and Schrieffer, Pz has = an eigenvalue

&rconducting state is

characterized by i i ODLRO in <e"1,e"2|

fble'l,e'2> nd e', represent

electron stat

of the order N.

mal equilibrium.

We con 't ';T' fe | ~system there is
a superconducti te i \ ccurs in two-body

reduced density ma i‘feiff' lx'valently, by the

AU INENINYINg
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