CHAPTER 1V

RELATIVISTIC TWO DIMENSIONAL HYDROGEN ATOM

In this chapter the Dirac relativistic quantum mechanical

restrict ourselves tg o 50 i,“‘-,'~$ fware simultanecus
eigenfunctions of the mmuting constants of

the motion. The rg mpared with the results

already obtained for dimensional hydrogen
atom (Chapter III), and the three dimensional

hydrogen atom (Chapter

4.1 DERIVATION OF THE & EQUAL R, THE TWO DIMENSIONAL
HYDROGEN ATOM[e—— — 3

The Dirac eéiltinn for a spin—ﬁ part 2le of rest mass m and

electrical chaﬁeﬂ 8 qﬁqrﬂﬂ?ﬁmq agnatic field

described by th@) scalar putantial e vectnr potential

QW AINIUUMINYNS F_l

H U{" t) = [cq.(p-ﬂij + Pmc® + qA oJUE,t) = it T(F,e), (4.1)

Dirac

where A and A are evaluated at the position of the partiele. Here

P stands for -ih¥ . This equation can be separated with respect to

T and t provided that the scalar and vector potentials are independent

of time. By writing

U(#,t) = U(?) exp(-iEt/m) , (4.2)
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we obtain

@) = [ea(B - D) + pme® +aa JUE) = BUGE) , (4.3)

HDirac

which is refered to as the time-independent Dirac equation for a
spin-}% particle in an electromagnetic field described by the time-
independent scalar and vector potentials,ﬁn{f) and A(F). The quantity

he energy eigenvalue.

E in the above equation is called

For the case of GliE ‘nal hydrogen atom , which is

noves around the nucleus
in the xy-plane under active Coulomb potential,

by substituting into J

P = %p
q = -e
" (4.4)
H.nd I = "’: .:
we obtain the tim&—.§:EFEra v f8tiop| for the two dimensional
atom
R {ﬁ ca P, ? EJZ flﬂ? = EU(3) .(4.5)

e v« RWAANA SNUEAINY YUY s e

the ralatiuns
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i j %4 ESij (1,3 = x,¥),

|
o
-

;B + Boy (4,6)

B =1 .

where aij is the Kronecker symbol, which is defined as being 1 for j=i
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and O for i # j ;
1 for i = J

13 0 for i # j

The smallest dimension of the three matrices which satisfy Egs.(4.6)

is N =2, i.e., the Pauli matrices Ei, ﬁi, and ﬁz.

However, since we known a) in the nonrelativistic

situation (Chapter III) th 1:?5 T h_of the electron, which is

&reapnnding to the two

possible orientations” b) the effect of the

‘\a

relativistic generalizaj number of components

of the wave function, and B to be L-by-4

matrices.

In the usual re @li representation, these

matrices are

’ (4.7)

where GP and ﬁP are ul;'a spin matrices

“u mﬂ;l% %m'a'
and I is t -ﬁy@mﬂjtgi. ' axplicjzlftlux':]c:-@m (4.5)is, in

this representation,

5 S =
2 Ze 1
E-mc T o 0 -cfpx—ipy} U (o)
0 E-mcZ+Ze *c(px+ip ) 0 v2(0)
o = 0. (‘h‘-g)
0 -c(p -ip_) E‘ﬂncz-pggE 0 U}(u)
Py~ Py o
> 762 b
L*ﬁ(px+ipy) 0 0 E+mc +—§— j _U (n{
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k.2 SPIN AND CONSTANTS OF THE MOTION.

From the form of the Schroedinger wave equation,

HU(T,t) =

T EE ) (%.10)

it follows that for any operator £ not involving the time explicitly
(41) ;

commuting operators if ute with H. In connection

with the angular momen we, £irst calculate the

commutator of the orb yith the Hamiltonian H.

.

Since , in our problem 4 oWfined to move only in the

iy—rlana, its orbital ag 8t be parallel to the

z-axis, i.e.,

= i -
S~ E-' (4.12)
L = T‘ . 3ﬁ:_ ) .

b’

et ) | ﬁ’ﬁ‘ﬂﬁ%‘mﬁ i v
%rm Bedhd ?.JPNWF’A #El’] ﬁ 8 s

the cnmmutator of the orbital angular momentum with the Hamiltonian

is
[L‘BDirac] 8 [Lz.’Hl}ir'ac] =2 c{ux [Lz':px] i uy[Lz'P?]J

2 i!‘iv:.:*‘:u:::t}:\:IIr = aypx} ¥ i (4.14)

]

where we have taken into account the facts that ;



64

(a) L, commutes with any symmetric function , this can be
seen by noting that in the plane polar coordinates (p,#)
o
Lzltakes the form -in EB s
(b) ﬁmcz, nux, and cuy are constant matrices and so commute
with L_,
z

and (¢) the commutator of the R component of the orbital

angular momentum. 1 fhe 4 component of the linear

(k.15)

It follows then that t b pail S 3] ementum is not a constant

of the motion.

However, we e ground, i.e., rotational

invariance of the system, that the z-component of
the total angular momentumJ ) #ant of the motion. This means
‘Soscalled spin angular
momentum S, such thazi - ) j?f with the orbital

W

angular momentum can -5 interpreted aa the to al angular momentum

e “ﬁ%ﬁ‘}ﬁﬁﬂﬁ"wmﬂﬁcn.
mmantmﬁmha 3?_] %\t tf -cnﬁ;aa t of t he tal angular

JE = !' &+ 5 (h-qﬁ}
is a constant of the motion implies the following conditions for S_ ;

[sz"“x] = :umL1le . {sz,ay] = ifa , [Ez,ﬂ.] =0 . (4eo17)

Applying these conditions , we get
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[ a 0 0 0 |
o] b 4] 0
5. &= ’ (4.18)
% 0O O b+ O
| O o o a-n |
where a and b are any constants.

The values of a and ermined by recalling that
in the case of nonrelat nics the eigenvalues of
the component of the ang

k, k-1, k-20 - (4.19)
where k is the magni f fthe-agzulan domeatum (43). If we assume

that the foregoing stafen , the relativistic case

then it follows that th ants a and b must be ¥h

and -¥H, respectively.

(4.20)

where ﬁ is the Pauli Eatrix

ﬂuﬂ'}ﬂﬂ‘rﬁ‘iﬂfl’mi Sin
muie e QU AIIEULAI N AR e e

dimansinnal relativistic motion of a spin-¥% particle of rest mass m,

electric charge g = -e under the influence of an attractive Coulomb

potential.
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Apart from the z-component of the total angular momentum J,
there exists another operator which is also a constant of the motion

and also commutes with Jz‘

Let us consider first the spin-orbit coupling operator

—

= D,
5L = Esz B ﬁHﬁﬂL

(4.22)

the commutator of this o ﬂmiltomaﬂ is
d
[Br, = 2Ly ap ] |
2[.D -1
62z,.p7"]

Y]

(4.24)

¥ z
¢ o o/ .
AWBIMENINEINT
have been used. Thus, it is nof a constamé of the mdbhon. However,

ee 10 sl FEH AIMANRINENAL, . ..

operator related to BQL which does commute with HDir ‘ and with J .

This is the operator

S -
K=-2 (6L +mn) . (4.25)
Obviously K commutes with B and with any symmetric function .

Therefore, for the commutator with EDirac » consider
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[F' %Py N cmypy] i _% [[Bﬁng‘ uxpi] E -[EGELz'ujP]]J

- }56 _[[ﬁtﬁxPx] [Bsﬁ F ]

- - ¢ [[oBraen e [po2es 4,]]

- cf Ba_p, + B“?PI ) . (4.26)

o .

(4.27)
and, similarly,
[ﬁﬁsz L (4.28)
T? get
[x = (4.29)

that is , K cnmmutes n}th Epirac ° Eince. hx Eq.(4.24), B commutes

with 60 , it cﬂﬂﬁ%ﬁﬂﬁ“ H«f’rﬂ:? commutes with J_

Lﬁiﬁ']é lﬂ ;}%ﬁﬂlﬂz] 2[5.c?]

=0 | (4.30)
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In the case of the relativistic two dimensional hydrogen atom

we thus have the commuting constants of the motion

- D - :
I =L, * ¥%ne and K=-3 (6L, +7%n (4.31)

so that in solving the eigenvalue equation (4.9) we may restrict

that are simultaneously

ourselves to those eigenfunctions of gnirac

eigenfunctions of Jz and ‘K.

4,3 THE SIMULTANEOUS EIGE

Written out /

polar coordinates (g

s CONSTANTS OF MOTION.

tor Jz is, in the plane

¢}
0
IS % 3 (4.32)
)

* o8

If we denote the e ‘f““”ﬁfff”' _ '”"{5  he corresponding

eigenfunctions are
“u
U (Pi!‘] = y (4.33)

AR ol ﬁﬁﬂﬂﬁﬁ'_

where the constant factor ?%;- is introduced for the further
convenience. The possible values of j are determined from the
condition of single-valueness, which requires that the wave functions

Uj(p,ﬁ} satisfy the equation

U (pgr2n) = Usloug) . (4.34)
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This condition implies that
exp(i(2nj)) = -1,

that is, we must restrict j to the values

J (4.35)
In the plane polar 'iﬁ‘ e taE explicit form of the
operator K in the repres :
8]
o
K = » (4.36)
0
i 27 + %
By writing
o]
2
1 (o, )
H?(p,ﬁ] = 2 ‘ v Cha37)
\ d‘ Eﬁiﬁ}
0
SR ﬂﬂﬂ?ﬂ%ﬁﬁﬂﬂﬂﬁ s T
KUh(p ﬁ} = =3

KLAE nﬁﬁwumfmmaa &b

o T Ug{p,ﬁ} and Egﬂp,ﬁl are the eigenfunctions of K belonging to

the eigenvalues k=-j and k=j, respectively. Thus,the eigenvalues of

K are

ko= ¥l 43 +§:i2

1
By 25,3 y Swrt | (4.39)

This result can also be obtained by squaring Eqg.(4.36)
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k2 = (-2 (601 + ¥m) =y

Since the eigenvalues of Jz are jn , the eigenvalues of KE are thus

k2=32 or k=+j-

Hence, there are two sets of functionms which are the

simultaneous eigenfunctions oi W] K, one with k=-j and the other

with k=j ;
U'gk{p, D = (4.40)
and
5. (g = (4, 41)
jk L | : ]

where f‘(pﬂ ﬁ exﬁi{ﬁg”‘i ﬂ‘j‘ (h.42)

qmamwumfmmaﬂ o

The factor (-i) is introduced to make the radial equations explicitly

real.
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Having computed the simultaneous eigenfunctions of Jz and K,

we now proceed to consider the simultaneous eigenfunctions of Jz‘ K,

and H . In terms of the plane polar coordinates (p,#) , the

Dirac

Dirac equation for the two dimensional hydrogen atom (4.9) takes the

form
i 2 ZEE 'i,ﬂ{ E ‘1(-&)
E-mc +T i.'!p Fﬂ'ﬂf U '(p
0 0 U4 ()
0 Yie )= eme \_kr‘ o] U3fﬁ}
L \ E
iﬁ 2.2e b
|_ (iﬁ___‘a-ﬁ E+mec +— ' LU (T”_
(L.46)
thie is because
P * ip -. -
and (4.47)
: ip
ke FUBINEN iy
radial equatiod
; w’@\ammwmmmﬂ %
(4.48)
(E + mc® +-—}R (p) - n::[%;—; (j -}5}]11 {p) = ©
or, since in this case k = -J,
2
(E - me® + %%—}Hﬁ(p} + Tel %E - % %E R {p) = 0 .
> (4.49)
(E + mc2 + E%H)R“(p} - ncl %E + %-+ %E}R1{p] = 0 =




Similarly, for U?k{p,ﬁl , we obtain the radial equations

2
(8 - me? + Z)R%(p) + mel 5 - 2+ TIR() = 0
2
2, 2650300 - me( &+ B, LyR2() =
(E + me“ + 5 JR7(p) - ne( T A R EP}H (p) 0

which are identical with Eqgs.(4.49) . Obviously, we can write

- a%p) = BO(B) . (4.51)

and it suffices to con®¥8

3%

4.5 SOLUTION OF RADIAJ 'm#?ﬁTEE (0 <E <me

N

By substitut Eqs.(4.49) the

expressions
') = p R E % alp) (4.52)
we obtain®*the well-known :;_'_ ;' first-order differential
equations i
{E%?—E}+ F(p) + :f: = Q@
& i "ﬂi o (4.53)
Cphld 8 AN BRI HEANTo -
where il ¢ o o
QRINNIUNRINGIAY
c

is the Sommerfeld fine structure constant.

To solve these two equations, we first examine the nature of

the equations for the limits of small and large p, i.e., their

*since (g + 3= % 7% Bp) = p7%( -3-5.: % )P(p), where P(p) is

any differentiable function of p.
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asymptotic behaviors , and derive the conditions that the radial
functions must satisfy in order that the probability density does not
diverge any where with in the range o = 0 and p = © . Then, the radial
functions for all p are obtained by expanding the acceptable forms for

them in power series.

h.5.1‘nsImptntic Behaviors : Fes 3 ( Ehﬂmc }4@: ,the couple

e N
do »
(4.55)
d k
(% *p
From these equations af i‘"[z" «:-i\wz‘v: ate second- order
., . s . ‘ ‘-\I '
differential equatiocn ] '"3 il | '“\\ ‘R; resulting equations
are
dE
dp
Assuming 'J
j (4.57)
T “"“ﬁ‘ﬂm NYNINYINT
(4.58)

ARdeAdal i Inenge

However, tie negative root of 7 must be excluded, since it would
make the functions F(p) and G(p) singular at the origin, and therefore

make the probability densities diverge at p = 0 . We thus get

‘J’(kz - (20)?) ' (4.59)

where the subscript k is added to denote the dependence of < on k.
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Substituting Egs.(4.57) into Eqs.(4.52) yields

= ¥%

R(p) p § (4.60)

o=0
Y\~

that is, the radial wave functions behave like p near the origin.

Since R{(p) is supposed to be finite at p = O (for the probability

densities to be finite at the origin), we expect thatﬁh is greater

than or equal to % ;

(4.61)

However, we shall a less than %, which

correspond tolkl= that the value of

(1& - %) is close

—% and the k terms

ymptotic forms

For large valuesgyjtf

in Eqs.(4.53), which then/

Blpl) =

3

p
(4.62)

TR
5 S(P) NS

Two features of the asympt totic furms f the radial functions may be

thesﬂeuayaq RIS P Fruescone ser e

combined to ohta separate seqpnﬂ—order‘gﬁuationa f F(p) and Glp);

ammmg& MINETAE

(&5 . (4.63)
where A is defined by
A o= “‘“"E;:'Ea}ﬁ = ;22 (1 - 2% (b.64)
with -
E’ o _1:_2_ . (4.65)
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Thus, the asymptotic forms (for large p) of the radial functions can

be written as *

\ .
rmi = i ( Cr . (4.66)
G(p) B

where A and B are constants. Second, if we substitute Egs.(4.66) into

Eq-{lhﬁ'?) indicﬂ-teﬁ t
where Ee mca, F(p) is

referred to as "laTgellf afidfiiemal. ramponents, respectively.

4.5.2 Solutions for izsbove considerations of

the asymptotic behaviors, suggest that for all values

of p we can write
;§Dr?—-"
F(p) = -Gl

i :
6e) = (1 g V2 aenli) n o) (4.69)

with the rastr%uﬂ gim ﬂfﬂiﬂﬂ’] ﬂ.§) , that when one
RO 5 i/ i 0

The equations in which H'(o) and H°(p) must satisfy can be

(4.68)

obtained by substituting BEgs.(4.68) and (4.69) into Egs.(4.53), the

* For the bound states, O <E -r:mcE y to which we shall devote cur
attention, we must choose the minus sign in the exponent in order to

make the wave functions finite at infinity.
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resulting equations are

( %: s X' (R) + (e Ez“hc YES(F) = 0 , (4.70)
- mc5(1 + €)
( §%~- % - %) BB + (% - Ez“hc EE) = o , (4.71)
P mcp(1 - €)
where p is a dimensionless variable defined by
P (4.72)
Instead of aoupled first-order
differential equationgg# ; f, Hy--'s** 1(5} and HE(E]
gimultaneously, we wildl™ taf _ fion separately. The
interrelationship bety x 18%is then obtained by
substituting them bac 71). This method has
been applied to the relgti T, Lhrée dd u-:innal hydrogen atom by

Auvil and Brown (45), y, WA f”%_ , (W6) .

4.5.% The Large Compg gh involves only H1{E]

can be found by fimgh i5(f) in terms of 31(51

and then substituti ‘jthe resl sy “q.{h.::}. After taking into

R B iy ns
T TheniuP A

where w isla new dimensionless parameter de

(4.73)

e relation

2
S (789

we get the equation for H'(3) in the form

2 2 2 2
(£ .l 18 4 _pd % x (e
do dp p dp dp dp p P I o
- - —1— + (2a)%w° - T 1y g (p) = © (4.75)
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This second order differential equation can be solved by using the
power series method. Since the lowest power of p in the power series

expansion of H1{E] must be ¥ » we write
! o
B = I 5577 . (4.76)

By (a) introducing the expressiop (4.76) into Eq.(4.75),
(v) collecting the ot \Ehe/ e power of o ,

and (c) taking into accous

w(za)® - - (4.77)
we obtain
oo -
2 e{2y =+ s)b_p + ws" + ws(2v -1)
s =0
= e T _B+¥
- wly+ 0 - | Il BAZG v BTy v = 0.(h78)

=1
The coefficient of p is.

(2v + "I}h1 ‘*:" o, ' (4.79)
which givees the racur:eon relation batween h anc‘l 'h 5
_AUEINENS! MJ"Iﬂ'E
1 U—'—af'é'-ﬁj}__"‘_ (4.80)
The generg m:lﬁ Q‘ﬂ imunrlfa n&zj A'eﬁ ﬂng the
coefficient of pE+'Y to zero,

(s + 2)(2v+ s + E]'t:-ﬁ_'_2 - [E -y = (8+1) + wis + 1]2

+ w(s+1)(2v =1) - wly - ¥) - % J byq * W(B —y= &)b_ = 0,

8+

8 =04 1, 285 35 by oo 1 (4.81)
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which is the three-term recursion 4 in contrast to the two-

L Iy
term relations normally encountered when dealing with the special

functions of physics. For s = 0, we obtain

2027 + 2}'&:2 + O =Y=1+w+w2v-1) - wlv + k) —‘}ﬁb,I

(4.82)

help of Egs.(4.77) and (L4.59),

Pb or h
o

%
‘ (4.83)
(v -8 +1 N EP). ﬁ o '
‘ .ﬂh.i
For & = 1, Eq.(4.81) begbmdede/ )

(2v + 3:}’::3 + (8 - v '1) - wlv + k) --'_l*.'s}bz
(BA=~w = Wb, = ONNSEE { (4.84)
7 —7

which gives, by uain&iEq:.r r;ndfk#.??),

q. L - —
In general, we can determine ‘bafbnis >1) and b_ fb (s 20) either by

successive use of Egs.(4.80) and (4.81) or by inspection of Egs.(4.83)

and (4.85). The results are

b_. . [Ew- 5 -r)] Iehf -‘ 8) + s[1 + 2w(v + k)]]

9 z[;ftizq:+ sl] s!

s 851, (4.86)

and
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g+1 _ (v + 6 + s)(2(v - 8) + (s + 1)(1 + 2wlv + k))) .
hs “Ts + 1)(27v + 5 + 1)(2(¥ - B)+8(1 + 2wlv + K))) is20, (4.87)

where
n
JLow(x) = W(1)-W(2):W(Z):.. W(n) . (4.88)
Eqs.(4.80) and (4.86) show that M (@) in Eq.(L4.76) can be written as
a sum of the two confluent ! -; Lejilpr functions multiplied by p ;.
B'(R) =5 (b
- g k)] - x
) [1 ot P F, (V=b+1527 +2;55))|,
(4.89)
where
" Walk 1)(a + 2) X .
1F1(E,ﬂ,x) = 1 + P clle + 1 e & O 3! +--.“I-.9G)
is the confluent hypergeofetfic By using the recurrence
relation
x1F1{a + 1:c:§%j :iEJ.F1(a;c;xﬂ . (B.97)
] il
which implies that ™ -

e ﬁi,um;m gpmau RS ol

(k.92)
= 8"J”'ﬂ}"ﬂ”l a\‘m‘a‘mum?mnaﬂ
15 = [1*3*{’“1‘}} -’[‘F (v=53 + 1;2v+ 13 p)
. [%:Ef: L83] v sy R (4.93)

Thus, the large component of the radial wave function is , in terms

of p = 2Mo,

R'(3) = ( 2 #FE) = -(140KR) exp(p) BB . (4.9k)
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4.5,4 Quantum Conditions : Let us examine the asymptotic behavior

of H1{E). From Eg.(4.87), it follows that the coefficients of very

high powers (s—w) satisfy

: s5+1 oy 1
lsimm Ts- i s + 1 (4.95)

which is the same as that of the series of exp(p). Thus, for large

value p, H'(p) behaves like

like qu-ﬁaxp{ﬁ-ﬁj, i.e

4 therefore K (p) behaves

as p—oo « The acceptable

radial wave functions, secontribution to the

probability density 'ﬁﬂhEn be obtained only

by interupting the s ‘., reducing them to

_polynomials.

By the defini efit hypergeometric

\ “w

function will reduce t ' ool a: : legree n when a =-n, where

n is any nonnegative intege flence, the function 31{5} will

reduce to a polynomigl

?v; a A

4 =9 = P O (k.96)

e E;a;’uﬁ“ﬁ%ﬁﬁ%’ﬁ g
raatmqa\aﬂ@ ﬂi %Jf%ﬂf%-’) Hi#)d aw ~8+1;2741:5)

does not ta minate and hance tend to infinity as p—w @

) =y m =0 o o

2

[

+ 127 1) (5v22) + ees o« (h.97)

Thus, in order to get an acceptable radial functions for the cases

n = 0, we must add the condition
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1+2w(~r+k}=2w(++w+k)=n. (4.98)

Since, for n = 0,

1 1
E+y=?‘;—+6 = ik] 1 {h'gg)

Eq.(4.98) becomes

2wl k| + k) (4.100)

This means that the acgs dons for n = 0 all belong

to the class for whic _ tive, k = - |k|, where

as, for n # 0, both a¥gaj ;r*', \ #eés of k are possible.

4.5.5 Energy Eigenvaly Yes of the energy of the

electron, in the unit of ¥ \\ an be obtained from the

quantum condition (4.96 -)\ xpression for 8, Eq.(4.77),

and solving for ¢ ; the resul

(4.101)

where the aubscripts I and k are added to € t- denote its dependence

o ne warton GEASI 19| SRS

AR “Ef\an%mumﬂmaa

q = n + iji- ﬁ = 1. 2 §, . {h’o102}

(since n = 0, 1, 2, ... , and k| = %’ g‘l 'g! -++ ) and using Eq.(4.59)
Eg. (4.101) becomes .

-¥e
Zu 2
€ = {14+ = €. .(4.103)
i [ n-[k|-% + V(k —{Zu}g] E e ’
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The parameters ) and w are, by the definitions (L.64) and (L4.74),
depend on the energy eigenvalue € and therefore on the guantum
numbers n and k. To indicate their dependence on n and k, we may

write

T ('L}-‘IGI}}

g (4.105)

However, it is convenies put the subscripts.

As in the casg hydrogen atom (22),

e ¥ W)
it is useful to introgiiCefs antity WA "GeTdned by the relation
(4.106)
so that

{?ﬁ

:Eh =
iy "‘“ﬁ“ﬂ'ﬁlﬁ flew‘f’ﬁ‘m‘r ¥
'»T'mé AslTaNYidy

Letius return to the radial function H (n}. Since

} (4.107)

= Zohe _  2ghch(1 - €)
A meS(1 + €) nc2(1 - e?)

an - n s 41 (4-109)
then, after taking into account the relation

2 2 e & '
N, - k% = (8)° + 2nv , (4.110)

it follows that
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1
2wl(v + k) - 1 ="”+k‘ﬁ. 2¥+k - N +n
2wl + k) + 1 ek 3 3 k+an__n
. 2w
2% + n
(N k)[["nk“k E ]
= N.+k
“[[nk‘n ]""]
N -k
nk
= s ) . (4.111)

With this relation and )N S _grite Eq.(4.93) as
5 () = ¢ p
i )
+ 1;5}} (4.112)
where ' "z
1 } ‘ :
l:nk = F > Ell‘1115}
iz
is a constant multiplyin; % ;- etérmined from the
normalization condition of . A on. The large component of
the radial wave fu
A EE = ] Yt
R.,(p)=- 2h € -3 UGB

FAAUE TN N TUEARG - 5} o
ARIANTANNINGINY
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4.5.6 The Small Component : In a similar manner, the corresponding

expressions for HE{E) can be obtained by, first,deriving from Egs.(4.70)
and (4.71) the equation which involves HE(E} only, then solving for
H2(p) by means of the power series method. By

(a) solving Eq.(4.71) for H1EE) in terms of HE{E),

(b) substituting the pds into Eq.(4.70),

(e) intruducin~;:ﬂr inef e ofless parameter w and a new

W (4.115)
k (4.116)
and (d) taking

~ (4.117)

and
— (4.118)

+ wp)
we obtain the equatiui fo ; defitical in form with that

JJ'

for H' (p) , Eq.(4.75), ‘gxaept that - and k are now replaced by w and

3 r«spemvmwmwﬂmwmm
ﬂﬁ?ﬁémﬁmﬁﬁﬂﬁ‘ﬁ =

it -—_"-' +(Za}22

bwp 2p E]
In the case of the large component, the results of solving Eqg.(4.75)
by the series method, i.e., Eas.(4.86), (4.87) and (4.93), are

obtained by using the algebraic relation (4.77). Since

mcEZuE 3

Wza)® - L - HZeE . (4.120)
Lw
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that is, w obeys the same algebraic relation as w, we can conclude

that by substituting into Eq.(4.119) the expression

BG) = I B, porY (4.121)
s =0

we get (a) the recursion relations :@

(1 + 20y +E)))

B ANEN/
£ L= 1 J o831, {(k.122)
z _
o
Oy W) )]
= ﬁfrf , 820 (4.123)
E ;
s
and (b) the expression
B2(p) = - § +132v + 1;p)

Bld ic then

The small componen® o;

r(p) = [zm.- eu* (7) 7% gxp(-% p} 52(5) . (4.125)

Similarqlbo tﬂ case cﬂ miw ﬂ;lﬂi the requirement
that thawn'ﬂqﬂw Hmn to the
probabili#ly density leads to the general guan tion'

1 E = ﬂi 11 Eil35 I T | {4-95)
and the additional condition for n=20

142y +E) = 2w(——+v-k) = 0. (4.126)
2w



86

Zafich Zahch{1 +€) _ =
p—— o S 2} (Nnk+n+‘1’), (4.127)

2 mcE('t -€) me (1 - E

Eq.(4.126) reduces to, with the help of Eq.(4.107),

= 0 (L.128)

that is, for n = O the acgepLable

By using the Huap#fof gicition (#496)"end the relation

(k.129)

the expressions for H ¥W124) and (4.125), become
B, (p)

-p)] : (L.130)

and

% %llj -n+1 5 17.‘[%1‘?@8_’1-0{ z,z‘ka,pL (4.131)
o Qﬁ'lﬁﬂﬂ‘imﬂﬁﬂﬂmaﬂ

1 % aw
cnk = E s (k.132)

ie a constant multiplying factor to be determined from the

normalization condition.
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2
4.5.7 Relation Between clk and ¢, From the forms of H;k{p) and

Hik(E'} it can be seen that the relation between them is now reduced
to the relation between c:k and cik . To find the relation between
these two constant multiplying factors, we first substitute into

Egqs.(4.70) and (4.71) the expansions

L & ' 2 o _s+Y
H(p) = JY_. B end | BF G o B.p , (4.133)
g8 =-0Q a -i. ] = D
then equate the coeffic —=mtomsero. The results are,
with the help of Eqs.(h N2
':5+k+":f}BB - % =0, (L.134)
—{an+n+f)35 + 5 B Uil Bl B =0 , (4.135)

where B ., =B _, =

-1 -1 and(4.135) reduce to

(VOB + (N A8 (4.136)

-(an+n+>~

P35, s — (4.137)

respectively. Adding ”he last two aquatiana, Wwe get

-@Hﬂﬂ i Eﬂ(ﬁﬁlﬁﬂﬂﬁ (. 138
+ o AFARID TN UBATHB & Bhssetns

Eq. (4.133) leads to the relations

— 1- L2 = 2 e : -
B, Eims (n - Hoo k) and B, = ¢, (n Ny k) .« (4.139)

Substituting these two relations into Eq.(4.138), we obtain

(n - N
that is,

o8 % = o
o * K)(k - N . -n)e . + (n + N, - k)(ﬁnk -n - kKlep, =0,

nk nk nk . (L.150)
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4,6 NORMALIZATION OF THE WAVE FUNCTIONS.

In the case of the two dimensional hydrogen atom, the electron
can move only in a plane, the normalization condition then takes the

form, in the plane polar coordinates (p.#),

ool
I ;ﬁ [0(e,8)] T U(p,#8)_s¢ = 1 (4.141)
00 ,

From the forms of the wavesiine /ﬂ.iﬂ}, (4.4%1) and (4.51),

it follows that for bed wlie,#) Eq.(4.141) reduces

“\ R
to '\
: 4.
;R0 | (4.142)
¢] \\ \
or, in terms of the d ahl b E}Ekp‘
& 0 A = (4. 143)
Using EqB-{4.11k},.éﬁ_________;___________ {,3) becomes
s -b’j ‘d
(nnk)

_.-2.1_ f [F.’(n} F {=n+13.

ﬁ%ﬁﬂ’&%ﬁﬂ%ﬂﬂﬂﬂﬁ 2RI
ﬂmw%ﬂm’m’ﬁ%ﬂ'f”’

(4. 1k4)
By using the relation, see Appendix A,
F 2Cexp(-2) .F, (~m5c+132) F, (-njc+152)dz
DI z expl-z 11"1 -mijc+152) ,F, i H
2
mn

Mn+c+1)

where m and n are positive integers or zeroj ¢ may be any complex
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number; amn is the Kronecker symbol

and Ms) is the gamma function

A
o
+
e
Tt
n

rs) = f wle V3 sa) (L.146)

[y, +1] 4=
r(a+27,)

o
0_,-' [[F,(-n+152% 4

. (L.147)
ofm1F1{-ﬁ+1;affk+1; ‘_-7 5) &xp(-p) p kdﬁ =0, (4.148)
and s e
0{ BACT ;:;1”?! (4.149)
Eg.(4.1544) ‘hecomes; ‘r h the help of Eq.(4. 115)
ﬂumﬂﬂmwmm
(4.150)
QEWW ﬁ\‘lﬂ‘i?ﬂﬂ‘ﬁﬂ‘ﬂ&ﬂﬁ d
That :Ls,
i 2x_. M(n+2v, +1) Iﬁ
ok I_hnnk(ﬂnkj}[r'(sz:n)]a n! : Fenm
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Hence, the normalized wave functions of the relativistic
two dimensional hydrogen atom which correspond to the energy

eigenvalue Enk‘ Eq.(4.103), are

R (p) ¢;m

0
v A (e, = : (4.152)
njk "
and
U2 (p.) . (4.153)
njk "
where
1 V¥
R.(P) = - = _(2x .p) exp(-A_,P)
nk| S .
(1 +6& " T2 ,19}
—FT -Ejé')TF tgll;z-r mﬁﬁl ﬂ‘j’i (4.154)
Ty FiTed
“ -
(
(1 -Enk}ﬁ {E 1F1(—_n+1;2')5‘+1;2hnkp}
+ (Nnk - k) 1F1(—E;E-fk+1;2}\nkn}( . (4.155)
018 = ooy eRawe . (k.42)
and
03 =y ewGGmws (4.43)
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4,7 NONRELATIVISTIC LIMIT AND GRAPHIC REPRESENTATION

OF THE RELATIVISTIC NORMALIZED RADIAL FUNCTIONS.

In the nonrelativistic limit, (2a)? is neglected compared to

unity, so that 1& = k and Enk is set equal to 1. Then, from

Egqs.(4.154) and (4.155), only the large components survive. For

exp(i(jw ;', : (4.156)

angular momentum are

(4.157)

while for U {p,ﬁ} = the angular factors

exp(i(j _‘KL%-.'# , ' ’ (4.158)
for which |
(4.159)
Thus, in additiom ;Egld k, we may assign

to each U_ (p,ﬁ} thelquantum's T suchfthat

ﬂuﬂ ?mﬁjn?w:mﬂﬁ . (4.160)

s ARSI AU UBI NN o .

concluded that the eigenfunctions belonging to the first set, U dk(n,ﬁ}.
are correspond to the spin-up states, where as those belonging to the

second set, Ungk(p.ﬁ), are correspond to the spin-down states.

Table 4.1 gives the possible values of n, j, k and 1 for

n=‘|1213,h‘¢
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TABLE 4.1 The possible values of n, k, i, 1 and the spectroscopic

notations for the relativistic states withn = 1, 2, 3, k.

n n |x] k i 1 Spectroscopic Notation

%0 1
380, -%

EP;1aﬁ

3P, %

-
A
o

ﬂummmwmm
RN mum'mma&rw

305w
% 2 3D, 4

0 2 2 2 2 3D, 4
"3 =5 D2, -%



TABLE 4.1 (continued)
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n

|| k j 1 Spectroscopic Notation

3

d
2

| 3
2 > 0

ﬂﬂﬂiﬂﬂ%iﬂﬂﬂﬂﬁ

I}Sﬂ.ﬁ

D
“31?5

D'E 1 'ﬁ

ama\m‘mﬂwﬂwmaﬂ; .




ok

Tn order to compare the relativistic states with the non-
relativistic states obtained in Chapter III, it is convenient to

assign to each state the spectroscopic notation nxl,m , where X
5

is & capital letter representing the value of |1| according to the

code

111 0

symbol s

and m_ is egual to -% Bpin state , i.e., =%

for the spin-down statE

easily seen from Table

state . It can be
‘w;:lativistic state

identified by the spec® \,there are two

relativistic correspond -~xnxl BT which arise
;]

from the two possible ogfe clectron spin.

The radial funct uu@ﬁg, K ativistic states which

correspond to the same n¢ e are identical for 1 =0

and are different ;"ivistiu states with

the same values of n'zad : _ Pradidal function.

iF |

o

oo S T AR ST T

nonrelativisticQlimit the wave function for the relativistic state
must redﬂwqaﬁﬂ ?ﬁﬁmﬁwmﬁ ic state.

Since in t®is limit the angular parts of the re1ativ12i[c and non-
relativistic wave functions are obviously the same, and the radial
function of the small component of the relativistic wave function
is already shown to be vanish, the remaining is to show that in the
nonrelativistic limit the radial function of the large component

reduces to the nonrelativistic radial function. To demonstrate this

we must first notice that,'as can be seen from Table 4.1, for the
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states with negative k, the values of 1 which correspond to spin-up

and spin-down states are

3 Oty BLoBy wewn g
and
1 =0, g, 9% sig
respectively, so that | written in terms of |1] as
k & 4 (4.161a)
|k| : / “megative k . (4.161b)
Where as, for the st
o % - - | ive k , (4.162a)
k1 & 4 2 ive k . (4.162b)
e \
Thus, in the nonrelativilftjg Famit » or/and «—0 ), we have

A negative k
e 4 k] = ) VY v (k.163a)
f, EEitive k

1 ; nega¥tive k

””ﬁ}i}gi mgsngjﬁﬁ“ s
QW" aﬁﬂ‘jwu“r]qwﬂf]aﬂ (4.163d)
N {1-te}}’*=l',;n%:=:§:;



Thus
—-5 BeM(n+11]+1) ‘r (pp) ' exp(~ B2)
b(n-%) (n+ 111) [M(2121+2)] “Mn-111) 2
V2 [{n-lll-—‘l},lF.}{-nHll-i-E;EI1I+E:ﬁp} -
R;k(p)_H : %1I+1;2l1|+E:BP)]; negative k ,

- (n+|l|}h, ,,
N (4.164a)

\'1"'1"\ ;p}] ; positive k.
N\

(4.1640)

By applying to the case positive k the recurrence

relations (47)

(1+a-b) 1F"I {a :1;:_

ll
W

EeE L, (asb-152)  (h.1652)

4

.,rﬂ“nugiﬂ(ﬂm %ﬂ(ﬂﬂ ﬂ;§1 52) (4.165b)
o QR TREA TN Y

for negative k (4.166a)
o—0

C—00

R;k':p}

-R .(p)  for positive k (4.166b)

Rnl{p) = nonrelativistic radial function

which demonstrate the validity of the correspondence principle,since

the negative sign in Eq.(4.166b) has no effect on the values of

the physical observable gquantities.
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The negative sign in Eq.(4.166b) can be removed by imposing
the condition that for the states with positive k, the radial

functions for the large and small components are

R;;{p) = -R:k{p) ; i (4,167a)
and
(4.167b)
respectively. : .
All the relat SLEC R 'Téaﬁi =.% exhibit a weak

divergence of R;k(p} n the case of the

relativistic three di (21), this is typical
of the relativistic wa ‘iiz S M oures 4.1 to 4.6 these
radial functions multip in graphical form for
= 45 together with the nom2 i: i pHnl{p). In order to do

this, it is cnnve-~ﬁ~~—-~ it th n alized elativistic radial

f tio in th er. 'i
unc nes I e B 'l

Ru (P)iﬁuﬂg ﬂﬁ%ﬂﬂ’}ﬁ’jﬂﬂmp (4.168)
NN INEAAY.,

N (N -k)[F(Ewk+1ﬁ n!

{# 169)

i(ﬂnk-kj-ﬁ s for J =0
B o o (4.170)

J

n -
J (J) [i':“nk'k]'{n'-”] ;s for J £ 0O
% ﬂ
I

(2. + I
=i E




0.75 -
(nonrelativistic)
0.50-
‘1
nR1,U,—ﬁ(p) (large component)
2 L ;
(p) = PR, 4 _ﬁﬁpj (small component)
] 1
0.25=
(8] ‘ : i
0 T - i W EBEAE= - - oo o

U 0.0k g 0.06 * 0.08

‘al' ax~ ' D an e
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| FIGURE 4.1 Normalized radial wave functions multiplied by p for

the 1S state (n =1 and |1| =0) and Z=45. The abscissa
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-0.25 - giﬁea o in units of the Bohr radius fan).
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FIGURE 4.3 Same as Fig. 4.1 but for the 2P state (n=2 and |1|=1).
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where the upper and lower signs stand for the large and small

components, respectively ;

J
ITI'_ 1 {z-fk + I) = {z-fk+1}(a-‘_:+a}...{aﬂfk+.:r). (4.171)
and
n -
( ) e i (4.172)
J \ ’
The values of the gamma JHNEL: : &e square roots , with the
i -0 == "!!!!"
accuracies of 10 aBete =y afe ol sede by means of the five-

point Aitken's itera on's method (49),

respectively. The p culate Ank and B is

nk
given in Appendix C,

4,8 ENERGY SPECTRUM Al

The energy eigenvalt ‘tﬁ

elativistic two dimensional

hydrogen atom, W Section 4.5, are

E"ﬁ_ : == RY' )
€k =21 W
- n-%)- k| &

where the quaﬂ%ﬂ?ﬂﬁ%‘?wﬂﬁﬂ?qs-w .39) and

(4.102), namelyll

q mmnwmmmma IO 2

*3, +§. 152, 12

]E % ,(4.103)
1
2 (2a) D)

k = ._.E 'i'i - [#'102}
g eE
Since the Sommerfeld fine structure constant, a = e is small,

the parameter (Za) in Eq.(4.703) will be small compared with unity,
except for very large Z. It is therefore resonable to expand

Eq.(4.103) in ascending powers of (Za) :
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E 2|-%
nk Za
e = —_— = 1 +
nk: P [ %En—}&)— x| +(k2-(2--:1}2)}4 ]

= 1 + ;ﬁ

2 4 6
Za 1 E
(n-%)- k| + k| [ 36 s R - ]

1 2|-%

I
=k
+
—_
J

3
1 PEE'} R

A

M ,..'"a;gb o

ﬂﬁ’f ﬂ%wﬁ‘:
: amm ‘a‘fuu"“ﬁjﬁ“ﬁ‘#ﬁaﬁ At

+

]

n

Elﬂi=m

o’ (e 2]

2 2
me u n- -1 =
- 2 1(...,1?} + 3 ,_:,(n_kﬁ) + ‘3{

= EeE (4.174)

where the abbreviated notations M and N are defined by

{_EEJ N =

Za y , 1 (Za 3 1-3  Za 5
% e ) (=) (=)"+ ... .

3
] 2 Tk Y266 K

(4.175)
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1))
E‘H
35 BP iy DB
b 2 il s~
n= 3P1 iEP__.aI EDE ’ _}i
- 3D,,3D_, R 3D_, 4
1,%
-12 ¥
n= 1
Fine Structure
14 | splitting
V 11"'%‘21:’"‘1 13'5
T
<]
a0 e
g | %
BD My
g o
i L T
ﬁ s
/M
=100
n=1 : g
-120 "0,%

P -

w|  AUEINERTNYINS
ARSI

hydrogen atom for n = 1, 2, and 3. The numerical wvalues
refer to the binding energy, Enk - mcE, and are

calculated for the nonrelativistic and relativistic

cases for Z = 45,
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The first term on the right side of Eq.(4.174) is the rest energy of
the electron. Comparing Eq.(4.174) with Eq.(3.31) we see that the
second term gives the energy spectrum of the bound states of an
electron in two-dimensional nonrelativistic hydrogen-like atom. The
terms in (Zu}h are exactly what is obtained in the nonrelativistic

quantum theory (with spin) if a first order perturbation calculation

is used to evaluated the contEibuts f the sum of the following

three terms :

(4.176)

-y

(4.177)

i

(c) the tWo n, see Appendix B

A ,
?%; e = - . (4.178)

- NG
PR et Eﬂﬁgpﬁ%aﬁ

2 L
_ o meNE) 1 !
= B (4 - ] s 1A0 w179
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The second term contributes

mcatza}‘* i el
(n - $)° 311|t11|-m{|1|+m ; J=1+% (spin-up/), ;

(4.180a)
2 m

EIE;.) = 4 ne (Z0) > Elll“lT} +35) ; J=1-% (spin-down), 170,
EP- 2(n - %)

N (4.180b)

l 2§ lete N 1 . (4.180¢)

g (1)

nl
Darwln

i 1 # 0. (4.181)

Adding these Wwe n., in

nil 515 ﬁ}ﬂ;ﬁ,‘jww ﬂﬁﬁﬁm“n )
amaﬁnmﬂmﬁﬁﬁﬁ%

me (Zu [ 1 F21
-
2(n ﬁ}5 YT gjtll|+ﬁ5

"T}_Hn-ﬁ]‘l"“' (4,182)

where the upper and lower signs stand for the spin-up and spin-down

states, respectively. For positive 1, 1> 0, the above equations

reduce to
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2 b
{‘1) (1:‘ ':.'1) = me " (Za) 1 __ (4.18
+ 8 == T %) ‘(_L_ 51 * -183)
F%l E% 2(n - ?5}3[ Jek= hen ﬁ]

Darwin

and for negative 1, 1 <0,

I
g0 4 g1 3 1) me ® (Za) i .3
FE]_ ¥ sp I:larwin i I{n - -}93[( 111= %) L(n - }ﬁ)] . (L.184)

In terms of the guantum nums

, (4.185)
spin-down)

/ \\\ﬁ
1) lady et ;:—.-’ \\\ _ ;‘2] i1 £0, (4.186)

: \ \
n%l I.B% : =28 ,_, ‘\ b
which confirm the validify ii i3 ment mad
i

both Egs.(4.183) an

e above provided that

Eq.(4.186) is extended to cases in which 1 = O.

Fine ~§*~'—-rz--=-- = con bhe-seait/from Table 4.1, for
i 1|.

a given value of th ﬂfker n, there are n

i¥

k} and therafure n different values of the energy

elgenvalues Eﬁ Nﬂ?pﬂtﬂ%&%ﬁ{’aﬂﬂﬁan n in the non-

relativistic che is lifted by relativistic effects 1eading to the

u-caneQ wq Nﬂrﬁ aﬂi&hﬁ '}atﬂ Ha?];ﬁlﬂsla However,

there still remaine a degeneracy of the states with same n and ]kl

possible values of

but differ in either k, j, or 1. For example, the zs ﬁ‘ EE =%

2F1 Y and 2P_, 4 levels are degenerate. The energies of the low-
1 ?

1ying states have been represented on Figure 4.7 for 2 = U5.
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According to Eg.(4.174), the difference in energy between

the states of the same n but of different |k|, |kl and |kl- 1, is

AE 1= By, ki Bn, 1kl -1

e x6 5
(n - %) , mc”(Za) El‘fn_mz | 3_(I1-:.I 1)3
Ikl 24kl 8(n - ¥ et 2 el =1)

',|

3( 1= Chasae -f‘(n—a'—ﬁg] (4.187)
e k| | € 1] = 1361 )

nczfm}h
2(n - ﬁ)q‘

+

AULINYNITNYINS
ARIAINTAUNNIINGIAY



	Chapter IV Relativistic Two Dimensional Hydrogen Atom
	4.1 Derivation of the Dirac Equation for the Two Dimensional Hydrogen Atom
	4.2 Spin and Constants of the Motion
	4.3 The Simultaneous Eigenfunctions of the Constants of Motion
	4.4 The Radial Equations
	4.5 Solution of Radial Equations for Bound States (0 <E <Mc2)
	4.6 Normalization of the Wave Functions
	4.7 Nonrelativistic Limit and Graphic Representation of the Relativistic Normalized Radial Functions
	4.8 Energy Spectrum and Fine Structure


