CHAPTER II.

Introduction

Many structures and &t . :f;‘_ whose response cannot
be adequately described | . \ o being encountered in
significant structug -naineer: -~ t.ims The nonlinear

interaction of pile an example of such

problems. For the purpafe Of strictural s , and economy in design,

it is important to have analysis methods that take

into account nonlinear beh Lhe. st.ructures. Although nonlinear

theories in continuim t—ﬂnnﬂ for many years,

= - LY .
practical applications of avebeen limited by the
complexity of the init.ial andhomdnry ralie problems. For most
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mly with the 8id of numerical net.hnda. a.:.. finite alanmt. analysis.
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soil mechanics were found to produce accurate solutions (17,18,19).
Therefore, in order to make a comprehensive study of the problem of
nonlinear behaviour of sway piles under hnrizont-al soil movements, a
nonlinear elastic static finite element program should be employed for

analyses.

In this chapter, the development of a nonlinear finite element



program will be briefly reviwed and discussed. Then, the computation

of pile curvatures will be described.

Finite Element Formulation for Large Deformation Elastic Static Analysis

An incremental fini formulation for nonlinear

elastic static analyses. larga. displacements and

large strains can be des g the concept of the incremental

linear analyses w changes in geometry.
The nunerical solutiéh of o oA m meghanics is carried out using

isoparametric fini
very effective in mas

hich has proved to be

deformation responsg _can dﬂW usm-; the concept of the
erennta RpSHE I AR VRS AEHG or virtomd worc
Kinematic wﬂahlea are derived from the basic theopies in continuum
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appearing in references (20,21,22).

Conceptually, the formulation of the incremental nonlinear
equations of motion requires that the path of deformation of a body be
divided into a number of equilibrium states °a, *n,..., "o, ~*'a,...,
‘a where °n and ‘n are the initial and final states of the

deformation, respectively, while "0 is an arbitrary intermediate



state. It is assumed that all the state variables such as stresses,
strains and displacements, together with the loading history, are
known up to the "0 state and the state variables in the ™ ' state are
required next. Then the equation of incremental virtual work Dbetween
the state ™2 and "’ is established to express the equilibrium of the

body in the state ™ Q. : 2/ conf iguration at ™' is unknown,
and therefore all the state v Sl

previously calculatadw - mmniple, any one of the
already calculated geuf LiBriiy Wibe. used. Basically, the
' itial °n state or the
' and Lhe 7 formulations are
called Legraigian ol Fulenia W moving - co-ordinate: or
' irésses and strains in the
first formulation are '_ ‘.i_” yla=Kirchhoff stress and the
Green-Lagrange strain, ul s dnkhe second formulation are the
Cauchy stress aud ' _The incrementel process for the next
required equilbrium- is 7 .,-ﬁj applied repetitively
until the final state, n. haaheenreanhed_ ‘

ﬂﬂﬂ?ﬂﬂ'ﬂ‘iwmﬂ‘i

mthmtimnfthar Figure 2.1.

e s b URIDABARE oo o o

htmt., i.e.,
(a) the undeformed configuration C,,
(b) the current deformed configuration C,, and
(c) a second deformed configuration C,

taken as a neighboring configuration to the current deformed
configuration C,.



o C, and C, are defined

el
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as follows:

ALE

where 8, , E,;» U, t and f are stresses, strains, displacements,
surface tractions and body forces, respectively; a left superscript.
indicates the configuration of the body in which the quantity occurs.

The incremental decomposition of the state variables are
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given by
g g v e o (2.1a)
*8,, ='B,, +E,, (2.1b)
'U, = (2.1c)
where 8, , E, , and U7 are“intre: _ | stress, incremental strain and

incremental displaceme

x.'rz.,- ibing the state of

i t.:i [] IaI}uE“tﬂ - I]E’E St-ﬂt-ﬂ'

variables are related byfthe foliowing nabural relations:

deformation that aré s

ir Strain-Displacement. Relations

(c) Can R A

tal strain E

Wﬂi 1, LE ns of disp ACemant.s intﬂ a li.nEﬂr
¢ o /s
TR RIENANGIA!
B ™ @.,%W, (2.2)
in which
1
2e,, = U, ,+U, +U, ‘v  +'U,, Ue,s (2.3)

My = Upin Unys (2.4)
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where a vertical bar indicates the covariant derivative in the
undeformed configuration C,. |

1.2 Equilibrium Equations: An incremental nonlinear
equations of motion describing the deformation of the body between the

V’a c, will be derived from the
%

—

two neighboring configurat

principle of virtual

n . its.. deformed  equilibrium

ternal forces in moving

through an infinitgSindlfvirtual displacement. 8U, from the current

3 S

(2.5

V_—
in which A is the "‘\ = r: which has prescribed

JJJ
the body in C,. da and dv

w ﬂ’}ﬁ% c,, respectively.
0 Wﬁﬁﬂﬂn‘i?&ﬂ%’l% 18] Gepphl o

surface t.ructima, ?Jd 'V is t.he valune of
are the dif

conf i innc in an arbitrary virtual displacement &U, can be
expressed as
s'W,. = ['s,, e, av (2.6)
o

G A
in which °V is the volume of the body in C, and dV is the differential
volume of the body in C,.
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The equation of virtual work in configuration C, can be

obtained by equating equation (2.8) with equation (2.5, i.e.,

['s,,8e,,av = [ou "t ,da+ [ou *f av (2.7)

o 1 1
v

In order to develop Lhe emental virtual work equation
between configuratios \ ’fﬁﬂl work equation in the

deformed equilibrium cg / / ‘\\}‘\\\\

pbe established. This can

be done by follc ilar to those for the

deformed configuratig

8%, = (2.8)
A
in which “A is fhe the body in €, which

has prescribed strf: me of the body in C_,

and da and dv are H d.:l.ffermt.ialaraa.and blume of the body in C_,

R INENNeNg
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mfiﬂat..lon C, in an arbitrary virtual displacement &U, can
expressed as

.. = [%s,,E,,av (2.9

o

A

Therefore, equation of virtual work in configuration C, is



13

obtained by equating equation (2.9) with equation (2.8), i.e.,

[*s,, 88, av = [ou "t aa+ [ou, 7r, a9 (2.10)

(2.1a)
(2.1c)

(2.2)

(2.11)

CETIECITITE TR S —

cmhcm&mwmwmw tz'hf (2.1, i.e.,

’QW]MﬂiWﬁJWl’mﬁl']ﬁﬂ

I EEHHG” +6n,,) + S” én, 3 av

°y

= fsu*t,da+ fou'fdav-c [ou’tda+ [oufav3 (2.12)
v A 'y

Equation (2.12) can be interpreted to mean that the
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incremental virtual work of the body forces and surface tractions in
the deformed equilibrium configuration C, and C, must equal the

incremental virtual work of the state of stress in these configurations.

1.3 Constitutive Relation: The incremental equations of

motion (2.12) are valid for dny type of material irrespective of its

constitutions. However, these equations to physical
nonlinear problems y fMowledge of the material
characterization, spged? « the relatiensh p between incremental

stress and incremen

For rﬂl sbial sate " 5 B .-‘_," emental stress Sl J? is
linearly related to t} NGrétie ‘_ 1 -'__ AR That is

S,y (2.13)
in which C,,,,, @ -d-the ¢ , tutive matrix.

Equilibrium iim-eat.im: The solution of the equations of motion
(2. 12@%@ Mﬁ@mwﬂw m a-ﬂnmliuanr in

t. increments. Therefore, it needs to be linearized for
practical applications. However, the process of linearization must
take account of three effects as follows:

(a) It is sufficient to assume the linear stress-strain
relationship in the general form of equation (2.13).

(b) If the relationship (2.13) is substituted into
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equation (2.12) it would result in terms such as

cl.ﬂ‘ﬂ lte:Hl'l 81.’I-l + Tll'ﬂ EEIJ}
ﬂﬂd clqﬂ"ll “lﬂ' s“l.‘r
which are nonlinear %ﬂn displacements. The
linearization be omitted.
(c) _ ions are deformation
dependent, the exterg T YRS A nte; als in configuration C, can

zation and computational
inaccuracies, the cu nfiguration C, may not be in

complete equil w , th _ 7? work. That is,

)
faﬂEda+j'su fdv f@&a av (2.14)
ﬂUE]'JﬂEWﬁWUqﬂi
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a, the corrective term (Equation 2.14) should be added to
the right hand side of equation (2.12). Thus we have

Jus, jte, pom, pa's, om, 3av = [su,%t a8+ [su,% a7 - [*s, se, av

ﬂv EA ﬂv 'Dv

(2.15)
The incremental nonlinear equation (2.15) will be solved

014376
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using the linearized form and applying the load in small steps
together with an iterative process for equilibrium correction.
Furthermore, it will be assumed that the components of the surface
tractions are always known in the reference system and are defined per

unit undeformed area and volume. Therefore, the integral expressions

can be approximated by the follc V/mmsinn.

[ou s+ [our

h by 7

[ su,*f,av (2.16)

for use as a basis for

&]"- take the form

(2.17)

Lk mmtﬂ Wlm_ -
—Wmmmwnmﬂaﬂ

2.1 Introduction: An important aspect of the finite

element. concept is that we can consider an individual, typical element
to be completely isolated from the element assemblage and its
behaviour can be studied independently of the behaviour of the other
elements. Moreover, the .ccmnect.ivit.y of the discrete models is

established independently of the linearity or nonlinearity of the
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systen by a simple mapping.

In the section to follow, attention needs only be confined
to a single element. Within the scope of this research, typical
elements to be used for the discrete analysis is a family of the

isoparametric finite element, ts element property matrices will

%Lysh.

_d

be derived in detail for

et on -x quatdons of Motion by Finite
Element Method: element. and introduce

local approximation” of 7ithin the element by

M 0 =

(2.18)

where “U.:{xl m the FEESe the displacement of material

coordinate x, re the interpolation

functions at nnda h G the ¢ i displacement at node
. The index m is ﬂmﬂ 0 all nodes of L@ element.

AU ADINTHINT o o
R T T e T

functions. That is

U, (x)

9 (X q_, (2.19)

M
3 "0 X, (2.20)

Ea)
]
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a=1,2 12.21)

“x = P *g

¥ mi »

where q_, are the components of the incremental displacement at node
m. ;_K and "‘?ﬁ_, are the components of nodal coordinates in the

conf igurations C, and C_, respectively.

Substituting &f o stress/slehifl relation (2.13) into the

a+ [ su “Toay— av (2.22)

Thus, fnllowina dismﬁtizad. aquitions of motion for a

el *‘““ﬂlﬂ‘&l‘?ﬂ‘ﬂ“‘mw Jelip _
m@wmﬂﬁmmﬂmmaa

50.K.-d = [ €\ Ome 80, AV (2.242)
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sq.kpq = | &n,, dv (2.24b)
°v

sa.’r = ['s,, se,, v (2.240)
v

sa.’p = fout (2.24d)
°y

Eq“at ion { FHRSen 7 8ys | I]Dnlinﬂﬂ.l' muﬂtlinns

in the unlnown t.s describing the

Jincremental finite ent. ‘between the current

deformed configuration Cf eformed configuration C,.

In the above arrays, K = he linear stiffness matrix,
including initial displacement kb6 geometric stiffness
matrix, a functios "" *P is the generalized

nodal loads due to l:ndar forces anl:l conserval.ive surface tractions;

'R is the “ﬂ’ﬁm%ﬂ M"W‘mﬂ’ﬁ“ with the state

of stress in igura.'t.iunc .

QW’]ﬂ\ﬂﬂiﬂJ NN Y

2.3 Two Dimensional Isoparametric Finite Element Matrices

2.3.1 Axisymmetric Quadrilateral Ring Element: 1In

this section, the element matrices for a general B-node quadrilateral
isoparametric element for axisymmetric analysis are given in detail.
The plane stress and plane strain formulations can be implemented

directly from this axisymmetric formulation. Geometry and
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transformations (mappings) of coordinates are given in Figure 2.2.

(a) Components of Stresses and Strains

For the plane stress formulation we have

{2.25)

(2.26)

‘ §

the fnllmmm !

quﬁﬂﬂimuﬁﬂﬂmﬂﬂ

(2.27a)

8w (8, 8,80 (3.27b)

For the axisymmetric formulation there are four strain and

stress components to be cunﬁidered.. namely



E | : i .
AR NE S

(-1.,-1) (1,-1)os

ARAIATI TR T

Local Mapping

FIGURE 2.2 Two dimensional Isoparamatric Finite Element
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El.‘l‘ = (Ell Eﬂ-l EEI.E E!!:l}
sIunl' » [Sll Sﬂt S:I.! S:!:l-j

(b) Interpolation Functions
For an 8-node quad

2.2, the interpolation
of the natural coord

2(s,t) = K(lised 1 A4 KQes.sa-tS

For thd

" A 2
#is,0) = KATH L) L, s =0

AULINININGINS

¥(lis.s )1t ) , b, =0

ARIAINTUNRIINGAY

in whicllm = 5,...,8.

i¥

@ (s,t)

In a matrix form we have

22

(2.28a)

(2.28b)

aral element as shown in Figure

“gorner nodes written in terms
"

(2.29)

(2.30a)

(2.30b)
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 %(1-8) (1-) = ¥(1-5) (1-t%) = %(1-8") (1-t) \
K(14s) (1-t) = %(148) (1-t5) - ¥(1-8) (1-t)

%(148) (140) - %(148) (1-t%) - K(1-s7) (141)

> (2.31)

(¢) “Strain-Di: r Blat. ion

,,,,,, : snentallBtrain into a linear and

e WWWETW i ey
'quaﬁmtuum’iwmaﬂ

E“ e,z Nyo
< > = { >+ < 3 (2.32)

i1z

k EHSJ k aﬂﬂ" i" n‘.'!:!-“
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An explicit relation between the nonlinear strains and
nodal displacements is not needed, as will be evident when the
evaluation of the geometric stiffness is considered in the next
section. The relation between linear strains and nodal displacements

from equation (2.3) can be written in terms of deformation gradients as

e ﬂ‘IJEJ’J‘VIEWﬁWﬁJ"’lﬂ‘iW
al -t 0
wwmn'ﬁmﬂmwmaﬂ
. —@ 0 0 0 1+ %:J
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where the superscript T denotes the transpose of a vector or a matrix.

The displacement gradients U, , and 1II“_,, are related to
the nodal displacements through the local approximations of the

displacement field, equations (2.18 and 2.19). That is

(2.36a)

(2.36b)

A\
2|2

-

|8

ﬂu IANYNT
snm nimum“ﬁﬂmaa

(2.3T)

a'v, ?'v, 2'v, au*, *

U
where U T = ( e | (2.38)
. X
1

ox, o, X, X,




is required to construct the matrix of deformation gradient 'F. Commas
in equation (2.36b) indicate "partial derivative with respect to".

Finally, the linear strain-displacement transformation
matrix B can be obtained from equations (2.33 and 2.36) as follows:

" —!I
e = 1I-'.’_ (2.39)

Illthﬂ 0V W o= = salculate the derivative of the

interpolation to the material

coordinates X, and ¥ ation is needed to relate
derivatives with respge
respect to the

differentiation as +j DY

dinates to those with
lu; a chain rule of

i utinen’ wa N3 0,
ARl i a e




(9 ) [ + (@

— xt..'l- g . -—J

X, & as

Lp - > (2.41)

ﬁ — <

a @

—— =X X —
\ 3x'_J L' E5 8 -_. \ ot /

where det J = X (2.42)
According to equation
T ) =
xl.‘ = i x; = A TR {(2.43a)
T
0 e (2.43b)
Substituting equation (2.43) into equation (2.42) gives
dot § = X M ¥ (2.443)

T Ul
MInndithng o
'ﬂlwffaqﬂ%muﬂﬁmq auﬂ (2.44¢)

vhereP = ¢ _¢  -6,90 _ = -P (anti-symetric) (2.485)
Therefore, ¢  and a"x can be calculated from equation
g g

(2.41) as follows:
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(2.48)

(2.47a)

(2.47b)

(2.4T7c)

(2.48)

i, 2o BB 561 )
ARIGINIUNNNINGIAY e

2.3.2 Evaluation of Element Matrices: The element

matrices required to solve the discrete finite element equations of
motion (2.23) be obtained by evaluating the virtual work integrals

(2.24) using the Gaussian quadrature formulas for numerical
integrations.
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(a) Linear Element Stiffness Matrix

The linear element stiffness matrix is given by the

integral (2.24a) as

K = IBTic-rnd‘; (2'50)

m; ' agratile is written in the s and t
system as 7 - 7
s (2.51)
numerical integration

formula yields

kK, = LIVWiBGs, P dot J(s,,t,).X, (s,t)
I
U

qugineningnns
8q.K,.q = 3 [ 's,, on,, av (2.53)

where the nonlinear incremental strain m, , is given by



’ p f au au
", ¥ (—H" 4+ ¢-—“:“:n
ax, X,
3u au
n,, M o —HTa
ax' ax‘

(2.54)

8., (=) (2.55a)
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o 2B.m, = U, 8.0, (2.55b)

(2.56)

(2.5T)

M"”"ﬂ‘tm?ﬂﬂm g i
ﬁ‘ﬁﬂﬂﬁ'ﬂ"ﬁﬂ?ﬁ%’l’mﬁl’laﬂ

Therefore, the geometric stiffness matrix is given in a symmetric form
by

A
K, = j[m'.l:‘sn.nu av (2.59a)

°y



i 3
A
or K, = [ [ow".c'siovadet g.x, ds dt (2.59b)
-1 -1
numerically
T Ty
Ke = LIWMW IN(s,t). Staat,) Nis b, )] det J(s,b,).X (s ,b)
ik N\

(2.80)

" ? \\“\\’“,*
Correct ion / \\\\,\

|5 inmrﬂ-l (2.24c) as

'R_for Equilibriun

ﬂumuamwmm -
ama\iﬂimumqwmaﬂ
o o= O8N e e (2.63)

In the (s,t) system we then have
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‘o= [ [ 8"." detJ.x, dsat (2.64)
-1 -1

or numerically

'Ro= TIww, BTs,t).'s
Jk

det. J(s‘,tkl.xlfsé,tkl (2.85)

2

——

dy onsist.gl

sLont Modal Load Ve :-f “p
.y m &?3\’§ is obtained from the

evaluation of the JBog x\ tractions by the

conventional finite elEman

(2.66)

FaY
in which [N L8, : 7;,_5- which relates
displacements -."V'! ..':}""i displacements; { t)

is thmmmufmim;naistha matrix of

SEAmET
RRTEIN AN AN NG Y

3. Direct Stiffness Assembl Process

The global form of the discrete finite element formulation
of the equations of motion for the entire assemblage of elements are
achieved through the standard finite element direct stiffness
assembling process. That is
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8q.C(K, + K)q1 = 8q.C°P - 'RI (2.67)

where
M
K, = (2.68a)
K, = (2.68b)
* = (2.68¢)
'R = (2.68d)

X
ﬂ“'lJEJ'JVIEWl?W BN

ARAININ NI INYIAY

in whi¢h } is the summation in direct stiffness assembling process

e=1

and M is the number of elements.
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4. Numerical Methods for the Solutions of Nonlinear
Equat.ions

In the actual analysis of nonlinear response of a
structural system it would lead to systems of nonlinear equations in

the unknown nodal displacement. components. However, in a majority of

W orms of the finite element
ziv&nﬁ.im (2.67), are used in

. Each of these solution

nonlinear analyses the
formulation, such
connection with v
techniques seeks & adedeformation path of the
structure by sols by one or a
combination of the

(a)

s e ... . scoccire
' ﬂuaqwaﬂswawni
Yq = PLR F (2.69a)
amé"ﬁnimumqwmaa

where K = the nonlinear (global) stiffness matrix

q = the incremental nodal displacement vector

N
 a = 1M 9 1 4



P = the generalized force vector

In the incremental loading procedure, the load is applied
in increments which are’ sufficiently small so that during each
increment. the response of the body is linear. At the end of each

increment, a new updated stiff) lation is obtained and another
increment of load is applied. B: ‘ this process, the response
._-J

some error will inevif

the accuracy of 5 _Anéreger bal | loadin nethod, Newton-Raphson
iterations with equi

load increment. Deffiile '_ ,r :.--.-.\., oading method and the
Newton-Raphson iterat e fEcha et

Computation of Pile

-—

In the nonHnes lly8is by the present finite

. , i
element computer pgogaa, the i.grenant.al displacements in each

cotirim (A YL BT, w i

coordinates of the nodal poipts, the deformed configuration can then
b bl | b5 Ghuie BhtHRAME A G pite con 1o
calculat.ed using the Lagrange polynomial. The concept of Lagrange
polynomial can be found in many texts concerning finite element and
. numerical analyses (23,24),
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