CHAPTER I

PRELIMINARIES
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Every Boolean algebra is a commutative idempotent semiring with 0,1.
A commutative idempotent semiring (S,+,-) with 0,1 is a Boolean algebra
if atb.c = (a+b):(atc) for all a,b,c €S and for every element a € S,

there exists an element a' € S such that a+a' = 1 and a-a' = 0.
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If S is an additively commutative semiring and n is a positive
integer , let M (S) be the set of all nxn matrices over S, so M _(S) is
a semigroup under the matrix multiplication.

By a matrix semigroup over an additively commutative semiring

S, we shall mean a semigroup of matrices over S under the matrix

multiplication. ' , //
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rﬁgular if and only if S is a regular ring [2].

n a positive in r and n 2 x semigroup M (S) is

Theorem 1.4. Let S be a commutative idempotent semiring with 0,1,
n a positive integer and n > 2, Then the matrix semigroup M (8) is

regular if and only if n = 2 and S is a Boolean algebra [2].



Theorem 1.5. Let N be the set of all positive integers. Then there
exists a binary operation * on Nu{0} such that (NU{0},%,.) is a ring

where . is the usual multiplication [3]
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