CHAPTER IV

THE HYDROGEN SPECTRUM

In this chapter we will derive the energy spectrum of the
‘ .

hydrogen atom by salving-.én-f:;AZLJ’i trix equations (3.15a) to
i chiapt * | this, the values of the

- | ——— X
matrix elements of the.eific-indépenderit vector matrix U in these

equations are to L Honl-Kronig formula
for the intensitie®

First, con$idg A.¥c3.;-i :.I ; and. L° are diagonal
matrices for this g yis removed by superim-
posing and additiona
the z-direction. For'a gi
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of L, be

a weak magnetic field in
, let the possible values
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o+ AHIINENTNGIN
PRRINIUNRINGINY

‘Further, let the partial vibrations of T, which belong to
a change in m by % 1, be left - and right-circular in the (x, y)
- plane :
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It then follows from (3.15a) that
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Next we set for the ]
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in accordance 'Hith : umthe intensities of the

Zeeman components (9} These inten{}ies are characteristic of the
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direction, t z-axis, is giyen, their tms shnuld# identical
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element of U,

When m is replaced by m-1 or m+l1, it further follows

that
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X141 ,m=1 Y 1+1, mtl
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= gcl o (1tme1)(12me2) (4.4a)
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2 - " [(1+1}2-m2] (4.5)

Cy (4.6)
A
A further f U relative to those
A
of L : if Lx ‘ as ; itive and real, then U,
Wy prrdaAgy Y .
hastubetakeuas H0S vﬁ’e&: ative real) depending on
whether one is deal ‘ t correspond to changes of
1 and m 1,m and U )

‘1+1,m-1 J“1 1,m+1

G 1,m ). When the

or in the same A e ;
1-1,m-1

calculations are ca;r1ed through, 1t is evident that this approach

satisfies eﬂaw ’(} ‘ﬁ.ﬂ %@‘Wﬁﬂ ’1 ﬂ jmemus chapter-.

Moreover, 1€‘kbllows conversely that 1f L and L assumed to

AR B Y b ) 1

a nece sary consequence of (3.15a) and (3.15b).

In order to determine the normalization of m and 1 and the

function C{+1 , we make use of equation (3.15c) from the preceding

chapter. It suffices, however, to use just the z-component,
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[Ux‘ U}J = im s EL, (4.7)
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Namely, if we form the expression
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and use (3.15a) and (3.15b), we obtain an equation which agrees
with the x-component of (3.15c). Similarly, the y-component of
(3.15c) also follows from the z-component of this vector equation

and equations (3.15a) and (34158
If we form the ¢ It © “ (4.7) which occupies the

(1, m) position in the.diagonaldseries, wesfirst obtain, for the
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Noting that E has a negatwe sign. From equation (4.7) and (4.8)
together with the value of Lz given by (4.1) yield the condition
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Let us consider the smallest possible value of 1 for a given
[l Obviously the contribution from the transition 1#1-1 on the
left-hand side vanishes for this value of 1, and the coeff1c1ent

of m on the left-hand side therefore not be positive,

whereas the coefficient of right-hand side is positive.
Hence equation (4.9)"¢ s 19@'
only if m =

value of 1 must yamis ce \\ ise 'm could assume other,

the minimum value of 1

this means that the minimum

scessarily integer, and

e ‘

non-zero, value:

1 (4.10)
the integer n* i J ! st value of 1 that can be
attained for a\g

(21- 1Z'IC1 Elﬁ)ﬂl = ﬂfé g ] Iﬂ for 1 = 1;.iws & (4.11a)
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since obviously the contribution from the transition 1+71-=1
(second term) disappears for 1= n. Beginning with 1 = n
and reducing 1 stepwise, we can successively calculate the values

of




from (4.11a), i.e. for 1 = n equation (4.11a) becomes
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The results can be expressed by the formula
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A+t _ h% B[ | n'(n's2) - 10142
1 b R R 63 T3 ) [ I T
o
_ h* B -D(n +142) (4.128)
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Replacing 1 by 1-1, we also obtain

(4.12b)

with the help of

relations (4.11a) afd
In order to de

the last equation (3.15d)" e determine the value of

”2 at the (1, m) position of t 1al series.

Because ’5
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24 Ol (Lams1)(14me2) + 2-3 €], (1-m+1) (1-n+2)

X [(1+1 )z—mz] + 2.7 Cl_,(1+m-1)(1+n)

* 20] Q-1 -m) + cb (1%02)
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LD - aensic],, + 12-1c]

and on substituting from (4.12a) and (4.12b),
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now have to be ':I hstltuted in (3. 15d). iteilds
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Finally,
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