CHAPTER 1I

MATHEMATICAL AND PHYSICAL BASIS OF MATRIX MECHANICS

2.1 Historical Review
can be placed between

the years of 1923 and 1927. Twd €giiyalent formulation were
proposed almost simulvaneou: ‘_ : Q&cs and Matrix Mechanics.
These two theories wepe“inftiated by de Broglie in 1923 and by
Heisenberg in 1925, " ydof roglie was greatly improved

and extended by Sch
Schroedinger won quigk f¢ .q their fundamental postulates
are reasonable and begau uﬂgr They were developed
independently, and segm have little in common,
but physicists proved thep~'_

mathematical form u

t ; they are different

relations.

.

2.2 The Fundamen&s of tr‘i Mechanics LT]

*‘ﬁ‘ﬂ“&i RO TG o

principles of|quantum theory wluch represents a cunslderahle advance
o TR TN TN B
avoids 'a mechanical kinematic visualization of the motion of
electrons in the 1=.1:a‘i:.it:ln:au':;r states of an atom. Apart from time
averages of classical kinematic quantities, only harmonic partial
vibrations are introduced, which are associated with each transition
between two stationary states and which are directly related to the

spontaneous transition probabilities of the system.




If

g - R ew [ml]

is the partial vibration of the Cartesian coordinate x of a given

electron in an atom, associated with the transition from a state n

can not be combined inf0. definite  Morb the atomic electrons,

since they are assigned/tg panSition proce , and not to stationary
States.
Heisenberg's foim 2':: £ the quantum theory is further
' S &)\ \
extended to a consisgent ma €al system, in which all relations

taken from classical m ed by analogously constructed

qumtm-theomtigl imes averages xﬁ and the
partial \r1hrat1 % he -coordinates of each of the atomic

o
particles. In orﬂ- to - @ns, it proves

convenient to assign a matrix to each classical kinematic quantity

x.. e atofbtal efrhs bil ol ¥ pasrlad b bige averages !

belonging toqgne individual stationary ssates, and thes (n,m) and

@, | fpet5| ol v o] ‘e o Beflorum,

respectwely) are complex conjugates vibrations. i.e.,
RO, ' .0 . . m
x:; = aj exp [21T1>"m t] and )4’\’ a, exp [2:1\.!“ t] (2.1)

with a: (equal to aﬂ) positive and real, and
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Uy = 4 (2.2)
The harmonic vibration ﬂ: belongs to the transition from m to n
and the harmeonic vibration x: to the reverse transition from n to

m, so that one of these transitions shows an emission, and the other

an absorption. T

To the time deriva a.b ign the matrix whose individual
elements are time deriva of.'rhe:mndmg elements of the
matrix x, i.e. 7 y

3 ' A (2.3)
In particul IRl = {w 1.8., the diagonal terms
A rwvedey v d
of X vanish. Si =+, it also follows that x" and
72 Y o

xﬁ are conjugate comp ZEEE;;ni. 3 are Hermitian in character).
To the energy E we have to #s: Y;E£u~i  gonal matrix. The energy
value of the qua % ""=:'=~""="="-’-\‘ dex n is given

B - B ¥
W ﬂumwmwmm (2.4
- “’Wﬁﬂ?ﬁ?ﬂ?ﬂﬁqm 3 REM -

The es t1a1 point lies in the fact that the multiplication of two

cm:undi tion,

matrices x and y has now acquired a proper meaning, in view of
the frequency condition. The product of the two matrices x and ;
is defined by

(xy)p - = ¥y (2.5)




n

From (2.4) follows the combination rule

2« = Yo (2.6)

and therefore the quantity (xy}g represents a harmonic vibration

1
m

of frequency l)“ if x" and y_  are harmonic vibrations having

frequencies vn and 1«’1 respecti

All the normad.caleulati 'é@l}r to the multiplicaiton

ommutation law : in

M:.

general Xy diffefs fwbu/4xi Thus, e.g e difference Ex -

A - 4 J - . .
where E denotes cfdidgonal - enc \ rix and prooducts are to be
formed according £6 the general prescrij m\l 2.5), can be simply
related to the ma f the time derivative of X :

(2.7)

using (2.3) This relation holds

for and arbitra "r S

If we denme the Cartesian courﬂmatﬂ and the respective

i, A mm;"wm@;m
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Here the symbol 1 denotes the unit matrix,

momenta of

(2.8)

]
Q
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The physical significance of the above condition is that it
is impossible to specify precisely and simultaneously the values of
those two quantities ; the uncertainty principle. Finally, one has

the energy conservation law

A A
H(p, q) = E (diagonal matrix) (2.9)

The matrix function | A ,# racterizes a given mechanical

system; and the mns

function to culﬂtld!'!ﬂ'-- "

) make is to expect this

function when

potential energy, / on 5 and the other

only on 3. Acco e (2.5), only those

matrix functions a irst instance which can be
written in form of a powe s b and a (with positive and
P e
—e-:;',#";‘.l e
negative pmuers):l In this case asic laws€2.4), (2.8) and
L , ya

) fufw-ly analogous to

the equations of iakinn'1n;

ﬁygﬂﬂﬂﬂ§W81%Eﬂ
QMAMNIAUUNINGIRY

Not1ng that the sequence in which the stationary states of

’ichaniig. They can be written

(2.10)

the system under consideration are arranged with in the matrices is
immaterial and that in the theory the concept of quantum number
does not enter into the basic laws.

In the next section, we will show how this basic theroy can
be applied to solve a fundamentally quantum-mechanical system, an

harmonic oscillator problem. In classical mechanics, a harmonic
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oscillator is a particle constrained to move along an axis and subject
to a restoring force proportional to a point located on that axis.

The solution of this problem is well-known.

2.3 The Harmonic Oscillator
Historically, Heisenberg was the first to solve the harmonic

H (2.11)
The Hamiltonian = -kq
Lo (2?,
Then
q+( A (2.12)
Letting q = ':veaifrnm (2.12) and (2.11),

-l HM] &msw g1 213
mdQlﬁqﬁmmﬁd ﬂ%@mﬂ &lﬂza a,] (2.14)

respectively, noting that,
pp = m (2M)q] (2.15)

The quantum condition (2.8), write down in term of the matrix form,

yeilds,
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Equations (2.13), (2.15) and (2.16) contain the solution of the
problem

To obtain the required solution, consider (2.13) we have,
when Jo £ 0,

Vo (2.17)
and rewrite down e f.eq. (2.2),
n . S ” '.‘ 7 Y h
% Y19 r< W _ (2.18)
If we assumie the val 7 ‘g to be constant, and let m

be variable, we will ge in order that q; not be
equal to zero, |
| LV
n &7 i (2.19)

Tl

J J
s TN ===
{IFNTRANINAE

(2.20)

Hence, equation (2.18) becomes

n n _n-1 n n _n+l h
Vosi -1 *Vne190419 ) a 8Tm
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or, with the help of Eq. (2.17),

w gl gl ﬁm_‘) ' (2.21)

o

Considering Eq. (2.21), if one substitutes the values of
=0T, 2, 3

... in this equation,

one finds that

n n-1
-1 9
or (2:22)
n+1
o:-ﬂ qn

character of the
energy matrix, if we “}r;+ "; f will have,

(2.23)

Iy )
Substituting Eq. (2 23) and (2. 22) into Eq. (2.14), we finally

o FUHININTNEING
%1“mmﬂiniwwﬂﬂmd

or

Hi=E = (n+ Dhy

(2.24)
which_is the well-known result

009659




16

In the Hydrogen atom problem, which will be discussed in the
next chapter, is not simple as the above problem since the potential
term of the Hamiltonian function of the hydrogen atom is inversely
proportional to r, the distance between the nucleus and the electron
of the atom. If we attempt to solve this problem in the same manner

we would find ourselves in

2o

as that of the harmonic oscills
difficulty since the 1i k .‘ T

nstitutes a system having
rogen atom has more. In
fact, the difficul F_Lhem: J ethod anereases with the number
of degrees of freedc A ifg to the basic theory, the matrix
computations in 45 ¢ e relatively simple
as long as the | this is not the case,

We seek, therefore,

to find as many diago: apricesia ible. In this search we are
guided by the fact that Sbich : analogous to constants in
—
=l -

ordinary alg«ezl:.~ra:l Thereforn that any dynamical

quantity which 1s/conservec h as momentu energy, will be
represented by a gag_ona “matrix. Now in Lﬂ case of the hydrogen
atom as treated by 6rdinary mechanics we know that angular momentum

is constand i d<lebobibhed o1 S ook e s ore

also l:unsta.nt so that we ex t the matrix of an ’le momentum to

be d@{ﬂ&’l ANNIUUATINETR

To conquer this difficulty, Pauli found that a second vector
discovered by W. Lenz is also constant in magnitude and direction in
this problem. This is called the "Lenz Vector" (5). We can obtain
a system of matrix equations contributed by this vector that comprise
only the time-independent matrices. The solutions of these matrix

equations then leads to the energy spectrum of the hydrogen atom.
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