CHAPTER III

FORMULATION OF INERTIAL TRANSFORMATION

In this chapter it is shown that the continuity equation is covariant under the new transformation called inerial transformation not under the classicai Galilean transformation and ihe aflyfof universal constant velocity will be arised automatically, we arenotrecessarestulate it at the outset.

The continuity acyfid is emterged directly as a consequence of the conservation law of nat/re songed afitit teture, may be denoted by Q , is conserved globally, this Fhas Me () was \& dependent on any coordhese sytainaishas, ol nust be conserved in all frames of reference. The global conservisantifginmes airectly that it should be conserved locally as well (Fevnman, forfy her fieans at any point in spacetime the continuity equation

ศูนย์วิทยที่ทรัพ $=0$

 velocity of Q at the considered point (\mathbf{x}, t) (Sokolnikoff and Redheffer, 1987).

The continuity equation Eq.(3.1) implies conservation of Q within a volume of space that can be made arbitrary small, which means that Q is locally conserved; processes that destroy Q at one point and create it at another are
forbidden, even though they may conserve the total of Q . This is because global conservation of Q would require the propagation of instantaneous signals between distant points, which is inconsistent with the principle of relativity. This concept of a local conservation law will play a central role in the material to follow.

To preserve the global conservation of Q , there requires that it must be conserved in all frames of releretcfyy as a result, Eq.(3.1) should be covariant or have the samerome in allente frames. Following this idea, we suggest that the continumyenerifon $=\mathrm{q}(3,1)$ should be written in form of tensor equation,
where we take the legtimate a jur (righ thet ov is the covariant partial derivative vector and J^{v} is the gon bermanimedant-censity yector. The scalar product of these two vectors is ensered the ranalent fornof the continuity equation. Note that the convention that repeargacicisisingiges are summed from 0 to 3 is used.
 vector part,

then they are exhibited as vectors, or first-rank tensors in four-dimension of

From the definitions in Eq.(3.3), if we set $\partial_{0} \equiv \partial / \partial \mathrm{t}$ and $\jmath^{0} \equiv \rho$, we find that Eq.(3.2) apparently becomes the continuity equation Eq.(3.1) but there still contains some logical inconsistencies in these definitions. This because we have convinced that all components of a four-vector must be equivalent so they
must have the same unit. Therefore our definitions for ∂_{0} and J^{0} above are improper because they have different units from the others in the vector part. For the sake of consistency, we have to introduce the constant, denoted by k, which has unit of velocity, into the definitions of ∂_{0} and J0 by the way as follows:

$$
\begin{equation*}
\partial_{0} \equiv c, C(k t) \quad ; \quad \jmath^{0} \equiv \mathrm{k} \rho . \tag{3.4}
\end{equation*}
$$

The continuity equation stim saisties W. confusion of the inconsisteney is thon disappeared. The constant k , whose dimensions are velocity. must/ingepteo in- al rererence frames, according with the transformation of the top/ffors कo enc io thus it must be universal, we then call it the universef cprgandre/acito wo cuch velocity is allowed in the
 continuity equation is foo quarianisiader cal'eah transformation. The proper

In this section -je will determine the approprisde transformation under which the continuity equation Ea(3.2) holds goyariantly, We begin by considering the transformation of the derivotivelfour-Nector $\partial_{v}=\left(\partial_{0},(\nabla)\right.$) wetween the two frames S and S^{\prime} by using the rules of impficit differentation,

$$
\begin{equation*}
\partial_{v^{\prime}} \equiv \frac{\partial}{\partial x^{\prime}}=\frac{\partial x^{\prime}}{} \frac{\partial}{\partial x^{\prime}} \frac{\partial}{\partial x^{v}}=a^{v} v^{\prime} \partial_{v} \tag{3.5}
\end{equation*}
$$

where $X^{v} \equiv\left(X^{0}, X^{1}, X^{2}, X^{3}\right) \equiv\left(X^{0}, \mathbf{x}\right)=(k t, x)$ is the coordinate vector in spacetime, and, for convenience, we will write

$$
\begin{equation*}
\frac{\partial x^{v}}{\partial x^{v^{\prime}}}=a^{v} v^{\prime}, \frac{\partial x^{v^{\prime}}}{\partial x^{v}}=a_{v}^{v^{\prime}} \tag{3.6}
\end{equation*}
$$

and use a similar notation for other such derivatives. It is difficult to formulate the transformation laws directly from Eq.(3.5). We find that it is more suitable to cbtain transformation laws from thetransformation of differentials of coordinates $d X^{v}$, where

It is evident from Eqs. 8.5 afa
 Actually, we have afrea sonk (2)mbine 22) that the differentials of the coordinates, dX^{v} is the sinplesitaviata of a contravariant vector in four-space. (It is for this reason that we fecrints.)

that spacetime must be homogeneous, in thatit has "everywhere and every fine" the same properties. The homogeneity assumption implies that the transformation equations which furnish
 Gorini, 1969). Whder linear transiformation,
 coordinate differentials $\mathrm{dX}^{\boldsymbol{v}}$ and thus constitute a qualified four-vector called displacement four-vector. Because of this, the displacement four-vector can then serve to represent any contravariant four-vector. As a result, the coordinate vector
$\mathrm{x}^{v} \equiv(\mathrm{kt}, \mathrm{x})$ itself behaves as a four-vector only under linear homogeneous transformation $\left(B^{v^{\prime}}=0\right)$ in order to conserve the common origin, if $\mathrm{X}^{v} \equiv(0,0)$ then $X^{\nu^{\prime}} \equiv(0,0)$, too.

The linearity of the proper transformation has an important physical consequence called inertial motions ly yniform motion with a constant velocity. From the requirement of line ar homblef lansformation, we can suggest that the relation between the pairworment of winate four-vectors $\mathrm{xv}^{\prime} \equiv\left(\mathrm{kt}^{\prime}, \mathrm{x}^{\prime}\right)$

 other spatial componer a/e uimistanced doulo be written as

where $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and g are the constant functions of unspecified parameter v and the minus sigr ess been introduced for further fonvenience. It is obviously $^{\text {a }}$ seen from Eq.(3.9) thig an object has an inertal nigtion, with velocity v, in some reference frame S if it is at rest in another equivalent frame S^{\prime}. Inertial motions then are characietided bydtree samen paranelet as? the transformation of the coordinate four-vector. Their general equation of motion, accerding to (3.9a), is
จุตาลงกรดูมูตาวตยาดดย
therefore the inertial velocity v equals B / A. Thus we can say that the inertial motions are obtained from rest by the proper transformation which will be referred to later as inertial transformation because it represents for the transformation of
any inertial frame of reference. With an adequate change of notation, our inertial transformation equations Eq.(3.9) may be written

$$
\begin{align*}
& x^{\prime}=E(v)(x-v t) \tag{3.11a}\\
& t^{\prime}=E(v)[F(v) t-G(v) x] \tag{3.11b}
\end{align*}
$$

depending on three unknown tunctiont:

 for two inertial frames, erfofce mevirs wh relative velocity v along xx^{\prime} axis. At this point we will deferfrife fonigh/app poriate three constants E, F, and G. From the previous studicsif thes transformation laws in Eq. $3.1 \frac{1}{1}$. $1 / \mathrm{F}$)
I. The condican of inertial motion. If the pantig is at rest in frame S^{\prime} then it will hav \& elocity v in frame S,
II. The conditid of universai velocity. If the darticle has the velocity $k(-k)$ in frame S^{\prime} ther ret will also have yelogity k $(-k)$ in frame S.

We find that Eq. (3.11) can givebrise directlyethe additionallaw for velocities of

$$
\begin{equation*}
u_{x}^{\prime}=\left(u_{x}-v\right) /\left(F-u_{x} G\right) \tag{3.12}
\end{equation*}
$$

Then we make use of the second condition to obtain the following two equations:

$$
\begin{align*}
& k(F-k G)=(k-v) \tag{3.13a}\\
& k(F+k G)=(k+v) . \tag{3.13b}
\end{align*}
$$

From these equations we can readily prove that the parameters $F(v)$ and $G(v)$ should be defined by

$$
\begin{equation*}
F(v)=1, G(v)=v / k^{2} \tag{3.14}
\end{equation*}
$$

Then Eq.(3.11) becomes

Indeed, it is more fundamentan by deriving first the afditional law for velocities, Eq.(3)6) directly from the above two postulates, I are 3 , but the inertial transformatgermust be also proposed as an initial condition. \&uter having the adarional lad, we can easily obtain the transformation laws for eoordinates in foer-space by the integration process. The complete treatrient of this defalis Shpundn Appendix íl. $\boldsymbol{\delta}$

ข
 postulate of the transformation, the postulate of symmetry:
III. The inertial transformation is symmetric with respect to the inertial frames S and S^{\prime}.

This assumption is arisen from the particular fact that if we put $u_{x}=0$ in Eq.(3.16), we find that $u_{x}^{\prime}=-v$, in other words, S travels with constant velocity $-v$ relative to S^{\prime}. Then the transformation equations Eq.(3.15) can be written as

$$
\begin{align*}
& x=E(-v)\left(x^{\prime}+v t^{\prime}\right) \tag{3.17a}\\
& \tag{3.17b}
\end{align*}
$$

If we insert x and t from E0(s.25) into ans.17), we find that

Then, the unknown fachor v) may be hn to be even function of the parameter v, or $E(v)=F-y /$ a ioligranve ess me that space (not spacetime) is isotropic. The isotropy pondistiry spece is nondirectional, so that both orientations of the space xis principle by asserting that min mos S and S^{\prime} are connected by a transformation laws (Gy. 3.15), then the two frames f) and $\mathrm{s}^{\prime *}$ obtained from the preceding ones byelerting the direction of the axis are connected by a transformation of the ame type. Tnereiore

$$
\begin{align*}
& \text { ศูนย์วิทะทรัมมะมฉถูร } \tag{3.19a}
\end{align*}
$$

where v^{*} is the velocity of $S^{\prime *}$ relative to S^{*}. However, if we apply $x^{*}=-x, t^{*}=t$, $\mathrm{x}^{\prime *}=-\mathrm{x}^{\prime}$, and $\mathrm{t}^{\prime} *=\mathrm{t}^{\prime}$ in Eq.(3.19), we will have the equations

$$
\begin{align*}
-x^{\prime} & =E\left(v^{*}\right)\left(-x-v^{*} t\right) \tag{3.20a}\\
t^{\prime} & =E\left(v^{*}\right)\left[t+v^{*} x / k^{2}\right], \tag{3.20b}
\end{align*}
$$

By comparing Eq.(3.20) with Eq.(3.15), we obtain immediately that $E\left(v^{*}\right)=E(v)$ and $v^{*}=-v$, then, as a result, $E\left(v^{*}\right)=E(v)$ as required. Such natural result, expressing the relative velocity of the reversed reference frames as the opposite of the relative velocity of the initial frames, might have been taking for granted.

From these results, we immediately find that, from Eq.(3.18),
and the complate form on plan fignation 34.(3.15) becomes
and its reverse transform a ion

(3.23b)
 spatial componegts are transformed as $y=y$ and $z^{\prime}=z$. By collecting our results,

$$
\begin{array}{rlr}
x^{\prime} & =\beta(x-v t), \quad y^{\prime}=y, \quad z^{\prime}=z \\
t^{\prime} & =\beta\left[t-v x / k^{2}\right], \tag{3.24a}
\end{array}
$$

and its reversed transformations,

$$
\begin{align*}
& x=\beta\left(x^{\prime}+v t^{\prime}\right), \quad y=y^{\prime}, \quad z=z^{\prime} . \\
& t=\beta\left[t^{\prime}+v x^{\prime} / k^{2}\right] \tag{3.24b}
\end{align*}
$$

where $\beta \equiv E(v)$ is a costant function of $v, \beta=1 /\left(1-v^{2} / k^{2}\right)^{1 / 2}$.

It follows from Eq. (3, 8) that 1 . 1 ersal constant k plays the role of a limiting universal speed, whten-tivughuniguen as yet arbitrary, and need not be identified with the speedrom llos hatire or the inertial formulas dictate that no particle may exceed tims loff/ped whoour eading to imaginary value for the transformation coeffigent $=$ breversize, however, that this limiting universal speed was fot ess ree dervis the formulas, but follows as a consequence from the fr. Fre postianty that $N=\infty$, with which Eq.(3.24) becomes the classical Gefe mistaffimatinn
could not be ruled ayron the basis of theory alone, 1 there is an abundance of experimental evidence which points to the ract that is infinite. The existence of signals which travel withea finite invariant velocity leads us to eliminate the Galilean transfoingtibitif the speed df dght cid beif! the universal velocity, as Einstein has postulated, then ourginertial transformations in Fq. (3.24) become
 dependence of mass on velocity follow closely that derived from the Lorentz transformation, and that the limiting velocity k is indistinguishable from the speed of light c to within present experimental limits of accuracy. That the limiting universal velocity k is finite is an experimental facts.

To fulfil: the requirement that the continuity equation must have invariant form, we find that, after taking a long logical process, it is covariant under the linear homogeneous equations called the inertial transformation for inertial frames of which we have established from only three fundamental postulates. This transformation also provides the crucial recognition that space and time are not absolute, a concept which is foreign to Newtonian mechanics.

The transformation may haye a reseheralized form if we omit soma of the three postulates above. Forgam le, Javjathan has developed a fundamental rederivation of special rolarmenfor the a invariance postulate but neglect other sufficient assumptions fef hally, estethished the more generalized form of
 (Sewjathan, 1984). Lee and tywte(s) gave Getived whe Lorentz transformation by invoking the principle of fer roctif fione the round that there must be a universal limiting speed 1 pture shaticagention above (Lee and Kalotas, 1975). The precise explanation of the beskement reciprocal principle was illuminated
 (Berzi and Gorini, 1

Four-vectors

The inertian tansforrfatioh Eq. (3.24a) describes the transformation of the
 and its inverse Eq?(3.24b) Mop heodahsformation of covalart derivative fourvector ∂_{v}. In three-dimensions we call \mathbf{x} a vector and speak of x^{1}, x^{2}, x^{3} as the components of a vector. We designate by the same name any three physical quantities that transform under rotations in the same way as the components of \mathbf{x}. It is natural therefore to anticipate that there are numerous physical quantities that transform under inertial transformation in the same manner as the four-vectors X^{v}
and ∂_{v}. By analogy we call them also being four-vectors. The concept of fourvectors involves closely with coordinate transformations. Each four-vector A can alternately be described by its contravariant or covariant components, $\mathrm{A}^{\boldsymbol{V}}$ or $\mathrm{A}_{\boldsymbol{V}}$. The two kinds are distinguished by their transformation laws. The contravariant vector $\mathbf{A}=A^{\boldsymbol{v}}$ with four components $\mathrm{A}^{0}, A^{1}, A^{2}, A^{3}$ are transformed according to the rule,

and the covariant vector A_{v} vith foum coinponents $A_{0}, A_{1}, A_{2}, A_{3}$ are transformed according

Our defined current-dens foyr-izesgins an example of contravariant four-vector under inertial transformatior

The above definitionsteeng by the invariant int laws Eq.(3.24a), ly from the transformation

$$
\begin{equation*}
\mathrm{ds}^{2}=g_{\mu \nu} \mathrm{dX} \mu_{\mathrm{dX}}{ }^{\nu} \tag{3.27}
\end{equation*}
$$

where $g_{\mu \nu}=g_{\nu \mu}$ is called the metric tensor. For flat spacetime, the metric tensor is diagonal,

$$
\begin{equation*}
g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1) . \tag{3.28}
\end{equation*}
$$

As we have shown in the previous chapter, the covariant coordinate four-vector X_{v} can be obtained from the contravariant $X^{\boldsymbol{V}}$ by contraction with $g_{\mu \nu}$, that is,

$$
\begin{equation*}
X_{\nu}=g_{\mu \nu} X^{v} \tag{3.29a}
\end{equation*}
$$

and its inverse,

$$
\begin{equation*}
X^{v}=g^{\mu v} X_{v} \tag{3.29b}
\end{equation*}
$$

where, for flat spacetime,

With the metric

With the metric lepe
ar 3.28) it tollows that if a contravariant four-vector has components $\mathrm{H} / /, \mathrm{A}^{2}$?, Ar oevariant partner has components,

 four-vectors is

Consider now the transtormation of derivative four vectors Eq.(3.5), it shows that
 transforms as the component of a covariant vector operator. From Eq.(3.29a) it
 contravariant vectop operator. We thefefor empioy the tiotations,

$$
\begin{align*}
& \partial^{v} \equiv \partial / \partial \mathrm{X}_{v}=\left(\partial / \partial \mathrm{X}^{0},-\nabla\right) \\
& \partial_{v} \equiv \partial / \partial \mathrm{X}^{v}=\left(\partial / \partial \mathrm{X}^{0}, \nabla\right) \tag{3.32}
\end{align*}
$$

The four-divergence of a four-vector is the invariant,

$$
\begin{equation*}
\partial_{v} A^{v}=\partial^{v} A_{v}=\left(\partial \mathrm{A}^{0} / \partial \mathrm{X}^{0}\right)+\nabla \cdot \mathbf{a} \tag{3.33}
\end{equation*}
$$

an equation familiar in form from continuity equation, Eq.(3.1), of density and current density of Q . The four-dimensional Laplacian operator is defined to be the invariant contraction,

This is, of course, just he gov/pr af the mave equation in vacuum.

Note that, We cal eds Fve(by) that cor (328) imply the very fundiamental identity

where R^{2} is the squared disterice the invariance on equared diatance. $2^{2}-3 z^{2}$, under rotations and translations of the orfogonal axes in Euclidean thefe-space. Actually, Eq.(3.35) can be written more precisely as

a $98 ?$ or

$$
\begin{equation*}
x=R \cos \theta, \quad i k t=R \sin \theta, \tag{3.37}
\end{equation*}
$$

where $\tan \theta=\mathrm{ik} / \mathrm{v}$. From Eq.(3.37), we obtain the following identity,

$$
\begin{equation*}
(x+k t)=R(\cos \theta-i \sin \theta)=R e^{-i \theta} . \tag{3.38}
\end{equation*}
$$

Finally, we find that

$$
(x+k t)(x-k t)=x^{2}-(k t)^{2}=\left(R^{-i \theta}\right)\left(\operatorname{Re}^{i \theta}\right)=R^{2}
$$

the same result as shown in Eq, $(3,3$,$))$

> ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

