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CHAPTER I

INTRODUCTION

1.1 Research Motivation

A bicycle was first introduced in the 19th century [1] and still popular over the world up to now. The

bicycle has attractive performances. It has light-weight, narrow body, ability to travel to a steeper

and rough terrain with also lower installation and maintenance costs. In the environment-friendly

aspect, bicycles produce low noise pollution and no CO2 emission from the organic fuel. Various

types of bicycles have been conventionally manufactured without consideration on their dynamics.

However, as the advent and evolution of the computer and electronic sensors, the complex control

system becomes more feasible.

Bicycle researches induce a rich problem in the area of mechanics (modeling technique) and

nonlinear control (control technique). Moreover, the method to control the bicycle can be divided by

taking the actuator type into account. For example, it is obvious to see how we control the bicycle

by steering the handlebar and balancing our bodies. Another method which cannot be realized by a

human rider is to use the flywheel with high spinning rate and precessing about another perpendicular

axis. By exploiting the gyroscopic effect, the flywheel generates the torque to help stabilize the

bicycle. Since the technique is possible both when the bicycle stands at zero-speed and on moving,

we decide to tackle this bicycle control problem with this type of actuator.

The derivation of the bicycle control has 2 main approaches which are the Newtonian approach

(Force/Torque balance) and the Lagrangian approach (Conservation of Energy). We have selected

the model that mostly fits our aim of research. Our model is from Spry and Girard (2008) [2] which

is mainly concerning the model derivation and verification. This model describes the dynamics of

bicycle at a constant forward and rotating speed of the bicycle with gyroscopic flywheel and was

derived through the Lagrangian method. For our research, the parameter size is on the larger scale

comparing with the experiment in [2]. Our parameters are based on the human size bicycle, not a toy

size as presented in [2]. The proposed control method was a simple selection of the appropriate gain

to satisfy the stability condition of the linearized model. This motivates our research to develop the

nonlinear control algorithm for this model.

The bicycle with gyroscopic flywheel model is in fact nonlinear and usually linearized about

its operating point to make it possible for using linear control method. To our knowledge, there is no

effective result on the nonlinear control of this model type. Therefore, it is an advantage to extend the

operating range of bicycle rolling angle while keeping less model error as much as possible by using

the new method based on linear models. This results in our proposed control method, the Piecewise

Affine (PWA) Control.

PWA systems belongs to the promising class of representation of nonlinear systems by approx-
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imating the nonlinearity with linear or affine functions. It can be considered as a natural model class

for nonlinear systems since it has been used to represent a range of nonlinearities such as dead zones,

saturations, and hysteresis with arbitrary accuracy. Our research will focus on approximating the

nonlinear model to PWA model and deriving the control law based on Piecewise Quadratic (PWQ)

criteria. We mainly refer the theory of PWA control to the results in [3].

1.2 Literature Review

The structure of the literature review will be presented in 2 parts: the bicycle part and the PWA control

part.

Many researches on the bicycle dynamics model and stability analysis and control were done

since the late of 19th century. Many papers discussed about the analysis of bicycle with rider control

qualitatively. Some did the analysis with a bunch of equations to study its dynamics. The nearly

perfect review of bicycle model history was done by A. Schwab et al. [4].

Various types of the bicycle model were presented along the century. Every type is concern-

ing with the rolling angle or leaning angle because we are talking about the stability of the upright

standing bicycle. Human exploits the advantage of a steering handlebar and body leaning himself to

control the path and stabilize the rolling angle. Most of researchers present the interaction between

rolling angle and steering angle and use the rolling angle to act like a feedback controller for stabiliz-

ing the bicycle. N. Getz presented the nonlinear dynamic model with steering and forward velocity

input [5], [6], [7], [8]. His model was derived by constrained Lagrangian method and improved in [9]

with additional issue of non-zero front fork angle. M. Defoort [10] applied sliding-mode control

scheme to Getz’s model. Other works in [11], [12], [13] neglected the front fork angle. Franke et al.

derived the equation of motion by Newton’s formulation [14]. In 2005, Åström [15] released a good

summary of bicycle dynamic and control and also the simple linearized second-order model with

derivation. One year later, Limebeer and Sharp [16] wrote the more exhaustive models for bicycles

and motorcycles including inside analysis of pneumatic tire deflation, flexible frame, etc. A series

of paper from Guo showed the different types of control method to this kind of model; nonlinear

stabilization [17], LQR [18], fuzzy sliding-mode [19], DFL nonlinear control [20]. Moreover, it was

proved that the bicycle with a positive front-fork can be self-stabilized at a specific interval of speed

where the real part of eigenvalues were investigated to stay in the left-half plane [4], [21].

The bicycle robot with balancer control was presented in [22] and also balancer together with

steering control [23], [24] to enlarge the region of stability. This type of model is not widely investi-

gated as well as the gyroscopic stabilization [2], [25], [26], [27], [28]. Parnichkun (2008) [25] applied

the particle-swarm optimization to the proposed model from Gallaspy (1999) [27]. This model cap-

tures the bicycle dynamics at the zero forward velocity. The model in [28] incorporated the forward

moving velocity but lacked of simulation to verify the model validation. The recent gyroscopic stabi-

lization from [2] is more reliable since it is presented with the clear derivation and model validation

by both simulation and real hardware implementation. It included the forward moving velocity and

rotating velocity, and left the higher-level study in control part for further development.
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The guideline for bicycle project and hardware design can be found in Michini (2006) [29]

and a very completed instructive hardware project report “Experimental Validation of a Model for the

Motion of an Uncontrolled Bicycle” by Kooijman (2006) [30].

The Piecewise Affine Control or sometimes called Piecewise Linear Control are presented as

a kind of hybrid system and the model is varied according to the region which the state is staying.

The circuit theory community was said to be the first who recognized PWA systems as an interesting

system class [3]. At the beginning, the research on PWA systems considered the model representation

[31], [32], especially on the electric network [33]. Model approximation of Nonlinear system by

linear model in each region is still be an interesting problem as well. This problem tends to be more

complicated when the number of partitioned states is increasing and also more constraints are added

to made the smooth continuity at the boundary. The research on PWA model approximation can be

found in [34], [35], [36]. To guarantee the stability of the PWA systems, the studies on finding the

Quadratic Lyapunov function were proposed by Hassibi and Boyd [37]. This stability problem was

also covered the hybrid system and solved via LMIs approach [38]. The PWA optimal control can be

found in [39]. The summarize of Piecewise Linear Control was done by Johansson [3]. Besides, one

interesting branch of research on PWA is PWA Identification which can be found in [40], [41], [42].

The applications of PWA control are continue to release: Anti-Wind up controller [43], PWA

control of a boiler-turbine unit [44], MPC [45], etc. There is not much papers published about PWA

applying with vehicle dynamics control application. However, we have found some application to a

vehicle yaw control in [46], [47].

This thesis mainly follows the PWA system theory presented extensively in [3].

1.3 Thesis Objective

The main objective of this research is to design a piecewise affine controller based on piecewise

quadratic stability criteria for the autonomous bicycle with gyroscopic flywheel stabilization and to

build a start-up prototype bicycle for the future implementation work on the bicycle robot. We first

obtain the bicycle dynamics model from the previous work and then approximate the nonlinear model

into the form of a piecewise affine model. The controller based on a global piecewise quadratic

Lyapunov function is derived by solving the semidefinite programming problem.

1.4 Scope of Thesis

1. To derive Piecewise affine bicycle with gyroscopic flywheel model

2. To design the feedback controller based on the Piecewise Quadratic criteria

3. To build a physical prototype of the bicycle robot for retrieving the practical bicycle parameters

and for a future research
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1.5 Methodology

1. Literature review on Bicycle model and PWA systems.

2. Select an autonomous bicycle robot model with gyroscopic stabilization.

3. Do parameter measurement from the real bicycle.

4. Derive the PWA model from the selected nonlinear dynamics bicycle model.

5. Design the Piecewise Quadratic controller for PWA bicycle model.

1.6 Contributions

1. A Piecewise Affine bicycle with gyroscopic flywheel model.

2. A Piecewise Affine controller for bicycle with gyroscopic flywheel.

3. A start-up prototype of experimental bicycle with gyroscopic flywheel.

1.7 Structure of Thesis

The organization of the thesis is as follows. In the next chapter, the related theories, which are

the primary knowledge and some are considered to be in bicycle robot environment, are presented.

Chapter 3 presents Experimental Bicycle. Chapter 4 presents the bicycle dynamic model. Chapter

5 presents PWA model for the bicycle robot. Chapter 6 presents piecewise affine control for bicycle

robot. In the last chapter, conclusions are given.



CHAPTER II

RELATED THEORIES

In this chapter, an overview of the fundamental theory used in modeling and designing PWA control

systems is given.

2.1 Bicycle Properties

In this section, we describe the important properties of the bicycle that affect the stability of the

bicycle.

2.1.1 Nature of the Bicycle

The bicycle is naturally unstable. When it stays upright, by no holding force, it will roll down left or

right. However, it is not too hard to learn riding a bicycle by human. We turn the steering to the right

when the bicycle seems to roll to the right side. It behaves the same manner for the left hand side.

That is a mean of dynamic control of the bicycle.

2.1.2 The Trail

Figure 2.1: The position of the trail distance of the bicycle [48].

At the beginning, the bicycle has no trail or front fork. That means the handle bar axis is

perpendicular to the ground. This type of bicycle has no effect of trail to the rolling angle when we

steer the handlebar. The non-zero trail distance produce a major impact to the dynamics of the bicycle.

D.E.H. Jones [48] studied this effect by constructing the bicycle with different kinds of trail distance.

The interesting case is the positive trail which we are always familiar with. Positive trail provides a
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torque about the steering axis that counteracts angular momentum when the bike body leans to the

left or the right. This counteracting torque causes the front wheel to turn in the direction opposite to

the direction of lean, and thus enhances the stability of the bike. This torque does not appear only

when the bicycle is moving but it is also generated when the bicycle is tilting.

2.1.3 Self-stability

Imagine when the bicycle is running forward along a road with non-zero speed and no maneuvering.

We know that the bicycle is an unstable system. However, it was proved that the bicycle that has

the positive front fork trail is itself stable in an interval of speed [15, 16, 21]. David E.H. Jones [48]

emphasized that the steering geometry dramatically influences the stability. When the bicycle is

tilting, its center of gravity is lower. Then, the front wheel steers to the tilting direction to minimize

its gravitational potential energy. This will not occur if the trail is zero. In addition, Åström presented

in another perspective. The ground reaction force exerts a torque on the front fork assembly to made

the front fork steer. The analysis through the simple second order linearized model is discussed

in [15].

It is essential to understand the self-stabilization behavior of the bicycle. To control the bicycle

upright and running on a straight path, we do not need any inputs to stabilize the bicycle in a particular

speed range unless we have a curvature path. Here, we show our analysis using the experimental

bicycle parameters that we measure ourselves. The moment of inertias are retrieved via CATIA

CAD-software. The analysis is based on the linear 4th-order equation (The Whipple model) in [21].

The equation of motion is

M

[
ϕ̈

β̈

]
+ vC1

[
ϕ̇

β̇

]
+ (gK0 + v2K2)

[
ϕ

β

]
=

[
Tϕ

Tβ

]
(2.1)

With our real measured and CAD-program calculated parameters in Table 2.1, we have

M =

[
8.6551 0.9466
0.9466 0.3165

]
C1 =

[
0 9.3019

−0.7057 1.4885

]

K0 =

[−14.7837 −2.0400
−2.040 −0.7164

]
K2 =

[
0 14.0139
0 1.9743

] (2.2)

The result is that the self-stable speed range is 3.60 < v < 10.26 m/s. Note that the range is wider

than a bicycle with the rider which has more weight.

We will take this advantage of self-stability to leave the steering bar move freely when we

want the bicycle to run on a straight path at that particular speed range. Also, it is not necessary to

control the roll angle by precessing the gyroscopic flywheel when the bicycle is self-stabilized. The

explanation about how to control the bicycle roll angle will be discuss in the section 4.
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2.1.4 Gyroscopic Effect at the Front Wheel

The gyroscopic action at the front wheel affect the stability of the bicycle. In Figure 2.3, we assume

the bicycle is running with forward speed. According to our earth fixed coordinate frame, the spinning

axis is perpendicular to the direction of the bicycle and have a positive ωspeed. To say, it points to the

same direction as y-axis. Next, when we steer the handlebar to the left, ωsteer vector points vertically

with the z-axis. This will result to the bicycle to roll to the right side. The rolling direction can be

found mathematically by τroll = (Is2ωspeede2) × ωsteere3 = ωrolle1 where Is2 is the moment of

inertia of the steering handlebar with respect to the principal axis e2.
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Figure 2.2: Eigenvalues from the linearized self-stability analysis.

Figure 2.3: Gyroscopic effect at the front wheel coordinate and notation.
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Table 2.1: Parameters of the Experimental Bicycle for Self-stability Analysis.

Parameter Symbol Value Unit
Wheelbase w 1.07 m

Trail c 0.12 m

Front fork angle λ 20.56 degree

Front wheel

Mass mF 2.234 kg

Mass center (xF , yF , zF ) (1.07,0,0.32) m

Radius rF 0.32 m

Moment of inertia

⎡
⎢⎣
IFxx IFxy IFxz

IFyx IFyy IFyz

IFzx IFzy IFzz

⎤
⎥⎦

⎡
⎢⎣
0.099 0 0

0 0.197 0

0 0 0.099

⎤
⎥⎦ kg· m2

Rear wheel

Mass mR 2.234 kg

Mass center (xR, yR, zR) (0,0,0.32) m

Radius rR 0.32 m

Moment of inertia

⎡
⎢⎣
IRxx IRxy IRxz

IRyx IRyy IRyz

IRzx IRzy IRzz

⎤
⎥⎦

⎡
⎢⎣
0.099 0 0

0 0.197 0

0 0 0.099

⎤
⎥⎦ kg· m2

Body (with battery)

Mass mB 30 kg

Mass center (xB, yB, zB) (0.49,0,0.39) m

Moment of inertia

⎡
⎢⎣
IBxx IBxy IBxz

IByx IByy IByz

IBzx IBzy IBzz

⎤
⎥⎦

⎡
⎢⎣

1.995 0 −0.053

0 2.347 0

−0.053 0 0.487

⎤
⎥⎦ kg· m2

Front fork & Handlebar

Mass mH 2.148 kg

Mass center (xH , yH , zH) (0.92,0,0.77) m

Moment of inertia

⎡
⎢⎣
IHxx IHxy IHxz

IHyx IHyy IHyz

IHzx IHzy IHzz

⎤
⎥⎦

⎡
⎢⎣
0.168 0 0.023

0 0.132 0

0.023 0 0.047

⎤
⎥⎦ kg· m2

Gyroscopic Flywheel

Mass mG 9.0329 kg

Mass center (xG, yG, zG) (0.49,0,0.88) m

Moment of inertia

⎡
⎢⎣
IGxx IGxy IGxz

IGyx IGyy IGyz

IGzx IGzy IGzz

⎤
⎥⎦

⎡
⎢⎣
0.138 0 0

0 0.138 0

0 0 0.274

⎤
⎥⎦ kg· m2

Nevertheless, the effect on the bicycle is very small compared to the gravitational torque and
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gyroscopic flywheel unless the wheel spinning speed is very high. Our model therefore neglects this

effect.

2.2 Lagrangian Mechanics

Lagrangian mechanics is a re-formulation of classical mechanics that combines conservation of mo-

mentum with conservation of energy [49]. The Lagrangian is an efficient method to derive the equa-

tion of motion through the energy aspect. The Lagrangian function L is defined as

L(q, q̇) ≡ T (q, q̇)− V (q)

where T is the Kinetic energy, V is the Potential energy, and q is the generalized coordinate. Accord-

ing to the derivation in [50], the result Lagrangian’s equations is then

d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= Q
(nc)
k ; k = 1, 2, . . . ,M (2.3)

where Qnc
k is the nonconservative generalized forces.

The Kinetic energy of the rigid body can be calculated by

T =
1

2
mvc · vc +

1

2
Hc · ω (2.4)

or in the matrix form

T =
1

2
mvT

c vc +
1

2
ωT Icω (2.5)

where vc is the linear velocity of the rigid body, ω is the angular velocity about its mass center, Hc is

the angular momentun about the mass center, and Ic is the moment of inertia of the rigid body.

The Potential energy may be caused by gravitational force, elastic spring force, elastic force

between two charges, etc. It can be represented as

F = −∇V (r) (2.6)

In this thesis, the instrumental force for the potential energy is from the gravity near the Earth’s

surface. It is given by

F = −mgez, V = mgz

2.3 Piecewise Affine System

The Piecewise Affine system is a kind of nonlinear system which is linear in each local cell/partition

where each partition has its own dynamics. The fascinating advantage of this type of control is that it

is linear, however in a region, but provides more accuracy than a linearized model and the controller

synthesis based on Piecewise Quadratic Lyapunov function is global. One time solving a batch LMIs

problem, the obtained gain can be used to stabilize the system in overall operating point.
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2.3.1 Model Representation

Consider piecewise affine systems on the form{
ẋ(t) = Aix(t) + ai +Biu(t)
y(t) = Cix(t) + ci +Diu(t)

x ∈ Xi, i ∈ I (2.7)

Here, x(t) is the continuous state vector, u(t) is an exogenous signal (control or disturbance, depend-

ing on the context), {Xi}i∈I ⊆ Rn is a partition of the state space into a number of closed polyhedral

cells and I is the set of cell indices. Assume that the cells have disjoint interior (so that any two

cells can only share a common boundary) and that they form a partition of some compact subspace

X = ∪i∈IXi of Rn. Let x(t) be a continuous piecewise function on the time interval [0, T ]. We say

that x(t) is a trajectory of (2.7), if for every t ∈ [0, T ] such that the derivative ẋ(t) is defined, the

equation ẋ(t) = Aix(t) + ai + Biu(t) holds for all i with x(t) ∈ Xi. Note that for a given system

there may be initial values such that a corresponding trajectory only exists for small T .

Focus on properties of the equilibrium x = 0, and let I0 ⊆ I be the index set for cells that

contain the origin, let I1 = I \ I0, and assume that ai = 0, ci = 0 for i ∈ I0. For convenient, we use

the notation x̄ =
[
x 1

]T
,

Āi =

[
Ai ai
0 0

]
, B̄i =

[
Bi

0

]
, C̄i =

[
Ci ci

]
and re-write (2.7) as

˙̄x(t) = Āix̄(t) + B̄iu(t)
y(t) = C̄ix̄(t) +Diu(t)

(2.8)

Each polyhedral cell of the system (2.8) is partitioned by K hyperplanes

∂Hk = {x |Hkx+ hk = 0} ∀hk ≤ 0, k = 1, . . . ,K (2.9)

For convenient, all hyperplanes are represented as a hyperplane matrix

H̄ =
[
Hk hk

]
(2.10)

The polyhedral cells are represented on the form

Xi = {x |Gix+ gi 	 0} (2.11)

where 	 denotes elementwise inequality. To made it more compact, we construct matrices

Ḡi =
[
Gi gi

]
where Ḡi is called a cell identifier.

2.3.2 Quadratic Stability

The term quadratic stability refers to stability that can be established using a quadratic Lyapunov

function. It is possible to prove stability of piecewise linear systems using a globally quadratic Lya-

punov function V (x) = xTPx. In particular, if ai = 0 ∀i ∈ I and there exists P > 0 such that

AT
i P + PAi < 0 ∀i ∈ I (2.12)
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Then every trajectory of (2.7) tends to zero exponentially. The stability of a family of linear system

depends on each cell partition. The equation (2.12) are linear matrix inequalities in P which can be

solved as a convex optimization problem.

To verify that there exists no matrix P satisfying (2.12), it is a dual problem to find a positive

definite matrices Ri , i ∈ I such that ∑
i∈I

AT
i Ri +RiAi > 0 (2.13)

If the condition (2.13) is satisfied, then the Lyapunov function P in (2.12) will not be admitted.

2.3.3 Piecewise Quadratic Stability

We consider functions that are continuous and piecewise quadratic. This condition must be satisfied

with all cell Xi, so it is sufficient to require that

xT (AT
i P + PAi)x < 0, for x ∈ Xi (2.14)

To obtain a relaxed conditions for quadratic stability, one applies the S-procedure and construct pos-

itive definite matrices Si, i ∈ I such that

AT
i P + PAi + Si < 0 (2.15)

Matrices Si in S-procedure can be construct from the system description, in this case are cell bound-

ing matrices Ei and Ēi. With nonnegative entries matrices Ui, we have

xTET
i UiEix ≥ 0 , x ∈ Xi, i ∈ I0

x̄T ĒT
i UiĒix̄ ≥ 0 , x ∈ Xi, i ∈ I1

(2.16)

The cell boundings are important parameters from the partition information to enforce the positivity

of the quadratic Lyapunov functions for all x ∈ Xi. The polyhedral cell bounding matrices can be

defined as

Ēi =
[
Ei ei

]
and Ēix̄ 	 0, x(t) ∈ Xi

The next step is to make the quadratic Lyapunov functions to be valid in all regions and continuous

across cell boundaries. Let
Pi = F T

i TFi, i ∈ I0
P̄i = F̄ T

i T F̄i, i ∈ I1
(2.17)

where Fi and F̄i are called the continuity matrices with their properties

F̄i =
[
Fi fi

]
and F̄ix̄(t) = F̄j x̄(t) for x(t) ∈ Xi ∩Xj

Since the expression for Pi is linear in a symmetric matrix T , it will be possible to state the search

for a piecewise quadratic Lyapunov function as a set of linear matrix inequalities. The constructed

Lyapunov function will in general have the form

V (x) =

{
xTPix, x ∈ Xi, i ∈ I0
x̄T P̄ix̄, x ∈ Xi, i ∈ I1

(2.18)

Next, we formulate LMIs for finding an existence of piecewise quadratic Lyapunov function of the

system (2.7).
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Theorem 2.1 (Piecewise Quadratic Stability). [3]
Consider symmetrics T,Ui and Wi have nonnegative entries, while Pi = F T

i TFi, i ∈ I0 and P̄i =

F̄ T
i T F̄i, i ∈ I1 {

0 > AT
i Pi + PiAi + ET

i UiEi

0 < Pi − ET
i WiEi

i ∈ I0 (2.19)

{
0 > ĀT

i P̄i + P̄iĀi + ĒT
i UiĒi

0 < P̄i − ĒT
i WiĒi

i ∈ I1 (2.20)

then every trajectory x(t) of (2.7) with u ≡ 0 for t ≥ 0 tends to zero exponentially.

2.3.4 Piecewise Quadratic Stabilization of PWA system

This section will show how to obtain the globally linear state feedback that stabilizes a PWA system.

This can be cast as a convex optimization problem. Let us consider the state feedback

u = −Lx

which results in the closed loop system

ẋ(t) = (Ai −BiL)x(t) + ai x ∈ Xi i ∈ I. (2.21)

to be asymptotically stable for all region.

For the quadratic stabilization problem, we need to find a gain L that admits a quadratic Lya-

punov function V (x) = xTPx. For each cell Xi, we use the ellipsoid cell boundings

‖Six+ si‖2 ≤ 1 ∀x ∈ Xi (2.22)

or

1− (Six+ si)
T (Six+ si) ≥ 0 ∀x ∈ Xi (2.23)

or [
x
1

]T [−ST
i Si −ST

i si
−sTi Si 1− sTi si

] [
x
1

]
≥ 0 ∀x ∈ Xi (2.24)

and the condition in (2.14) to derive the sufficient condition for PWA system stability via S-procedure.

Then, the closed-loop system is quadratically stable if we can find a positive definite matrix P =

P T ≥ 0 and positive scalars ui ≥ 0 such that⎧⎨
⎩

0 > (Ai −BiL)
TP + P (Ai −BiL) i ∈ I0

0 >

[
(Ai −BiL)

TP + P (Ai −BiL) Pai
aTi P 0

]
+ ui

[−ST
i Si −ST

i si
−sTi Si 1− sTi si

]
i ∈ I1

(2.25)

The above condition is bilinear in L and P and not efficient to be solved, however the problem

can be transformed and resulted in Theorem 2.2.
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Theorem 2.2 (Quadratic Stabilization). [3]
If there exists a positive definite matrix Q = QT > 0, positive scalars vi ≥ 0 and a matrix Y such
that ⎧⎪⎨

⎪⎩
0 > QAT

j +AjQ− Y TBT
j −BjY

0 <

[
QAT

i +AiQ− Y TBT
i −BiY − viaia

T
i QST

i − viais
T
i

(QST
i − viais

T
i )

T vi(I − sis
T
i )

]
(2.26)

where j ∈ I0 and i ∈ I1. Then, the feedback u = −Lx with L = Y Q−1 renders the piecewise linear
system exponentially stable.

In this thesis, we will use this criteria to design the PWA state feedback control laws.



CHAPTER III

EXPERIMENTAL BICYCLE

In this chapter, we focus on the parameter measurement of the prototype autonomous bicycle with

gyroscopic flywheel. the critical issues are the bicycle dimensions and the gyroscopic flywheel pa-

rameters.

3.1 Bicycle

This bicycle is the adult size bicycle and meets the criteria of the BicyRobo Thailand competition.

The wheel base length is more than 50 cm, the diameter of each wheel is more than 50 cm, and the

tire width is less than 5 cm. We end up with the our used bicycle in Figure 3.1. The body is a rigid

frame without suspension.

Figure 3.1: The selected bicycle before modifying.

To design the new features and estimate the parameters from the real world model, we draw the

3D CAD graphic in CATIA1. Figure 3.2 shows the 3D CAD of bicycle robot with the actual measured

dimension. The pedal, saddle, barrel adjuster and rear deraileur will be removed from this original

bike.

The measured bicycle parameters are collected in Table 2.1. Some parameters such as the

moment of inertia is needed to calculated indirectly. Here, we let the CATIA software to calculate

them all by inputing the mass that we can simply measure it and the type of part material (to figure

out the mass density). These data are used for the whole simulation in this project.

1CAD software for designing mechanical part.
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Figure 3.2: The 3D CAD drawing of the bicycle before modifying.

Figure 3.3: Bicycle robot attached with gyroscopic flywheel.

3.2 Gyroscopic Flywheel

The flywheel is treated as an actuator for controlling the bicycle rolling angle. We consider the critical

case that this actuator can generate the moment to resist the moment produced by the gravitational

torque when the bicycle is tilting. While the bicycle rolling angle is larger, the gravitational moment

becomes larger too.

From Figure 3.4, xyz is the global axes and e1e2e3 is the principal axes of the flywheel. The

basis vector {e1, e2, e3} rotate together with the gyroscopic flywheel at the angular velocity ωe.

ωe = ϕ̇e1 + α̇e2 (3.1)
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Figure 3.4: The bicycle configuration for sizing the flywheel (mass and dimension).

Let the bicycle initially stands at the rolling angle of ϕ radian with zero forward moving velocity and

the flywheel spin at a constant speed Ω rad/s about e3-axis and precessing at α̇ rad/s about e2 axis.

The angular momentum of the flywheel about O can be written as

Ho = I1oϕ̇e1 + I2oα̇e2 + I3oΩe3 (3.2)

where I1o, I2o, I3o are the moment of intertia with respect to the point O. We assign the point O to be

the midpoint between the ground contact point of front and rear wheel. The vertical principal e3-axis

of of the flywheel pass through this point. In our case ϕ̇ = 0 because we assume that the gravitational

moment is equal to the moment generated by the precession torque from the gyroscopic effect. By

the way, we should note that the flywheel will precess to generate the moment with magnitude greater

than the gravitational torque to pull the bicycle back to stand upright at ϕ = 0 rad. Yet, we calculate

the least moment that the flywheel must be able to generate. Thus, it reduces to

Ho = I2α̇e2o + I3oΩe3 (3.3)

Carrying out the details for the change of Ho, we write

Ḣo = I2oα̈e2 + I2oα̇ė2 + I3oΩe3 + I3oΩė3
= I2oα̈e2 + I2oα̇(ωe × e2) + I3oΩe3 + I3oΩ(ωe × e3)
= I3oΩα̇e1 + (I2oα̈− I3oΩϕ̇)e2 + I2oα̇ϕ̇e3

Take ϕ̇ = 0, we have

Ḣo = I3oΩα̇e1 + I2oα̈e2 (3.4)

This change in Ho1 must equal to the gravitational moment Mo1 around x-axis. The produced mo-

ment is given by
Mo1 = zBe3 × (−mBgk) + zGe3 × (−mGgk)

= (mBzB +mGzG)g sinϕe1
(3.5)

From the Euler’s equation for rigid-body dynamics Mo1 = Ḣo1, (3.4), and (3.5), we have

I3oΩα̇ = (mBzB +mGzG)g sinϕ (3.6)

I2oα̈− I3oΩϕ̇ = 0 (3.7)
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Torque component e2 of Ḣo will result at the ground contact point of front and rear wheel and it is

resisted by the reaction torque of the ground contact. Therefore, there is no rotational motion for this

axis (The bicycle does not tip over to the front or back). The important role to stabilize the bicycle

is at the e1 axis. Its relationship is shown in (3.6). We need an excessive moment to pull the bicycle

in the reverse direction. The gyroscopic flywheel should be designed in order to satisfy the equation

below

(mBzB +mGzG)g sinϕ < I3oΩα̇ (3.8)

Note that I3o = I3 where I3 is the moment of inertia of the flywheel about its principal axis. For

simplicity to manage the calculation, we introduce

Mreq = (mBzB +mGzG)g sinϕ (3.9)

Mgen = I3GΩα̇ (3.10)

Take the parameter value in Table 3.1 and the formula in Table 3.2 to find Mreq and Mgen, we finally

get Mreq = 20.5481 kg·m and Mgen = 29.8311 kg·m. The DIY2 Gyroscopic Flywheel can produce

the moment in which its magnitude is greater than the required value with the factor of 1.4518.

Table 3.1: Parameters for Gyroscopic Flywheel Design Calculation.

Parameter Symbol Value Unit
Disk mass md 3.3929 kg

Circular tube mass mc 5.6400 kg

Flywheel mass mG 9.0329 kg

Bicycle body mass mB 30 kg

Outer radius rd 0.20 m

Inner radius rc 0.18 m

Disk thickness hd 0.01 m

Circular tube thickness hc 0.03 m

Height of bicycle center of mass zB 0.50 m

Height of flywheel center of mass zG 1.00 m

Rolling angle ϕ 5 degree

Spinning angular velocity Ω 3000 rpm

Precessing angular velocity α̇ 20 degree/s

Gravitational acceleration g 9.81 m/s2

Iron mass density ρFe 7874 kg/m3

Aluminium mass density ρAl 2700 kg/m3

2Do It Yourself
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Moment of Inertia of Flywheel
The Flywheel is assigned to spin about e3 axis and precess about e2 axis. Figure 3.5 shows the

dimension and other description for the calculation of the flywheel moment of inertia. Refer to the

“List of moments of inertia” from [51], we obtain the moment of inertia in two parts - Disk and

Cylindrical tube about the point D and C. Then, we take them to rotate about O using Parallel axis

theorem and combine them together by addition. The summary of the Flywheel moment of inertia is

in Table 3.2. The mass calculation here are md = ρAlVd, mc = ρFeVc, and mG = md +mc where

ρAl is the density of Aluminium and ρFe is the density of iron.

Figure 3.5: Side View Cross-section of Flywheel configuration.

Table 3.2: Summary of Flywheel Moment of Inertia.

Object I3 I2 Volume

Disk (about D)
I3D =

1

2
mdr

2
d I2D =

1

12
md(3r

2
d + h2d)

VD = πr2dhd

Cylindrical tube

(about C)
I3C =

1

2
mc(r

2
c + r2d) I2C =

1

12
mc[3(r

2
c + r2d) + h2c ]

VC = π(r2d − r2c )hc

Gyroscopic

Flywheel (about O)

I3G = I3D + I3C I2G = I2D +mdh
2
f + I2C +

mc(hf +
hd
2

+
hc
2
)2

VG = VD + VC



CHAPTER IV

BICYCLE DYNAMIC MODEL

The equation of motion of 3D rigid body can be derived in 3 aspects. Those are the conservation of

force (torque), momentum (angular momentum), and energy. The model of a bicycle with gyroscopic

stabilization is mostly derived by the Lagrangian method (Energy aspect) because it is easy to obtain

the linear and angular velocity while the internal force or any other workless forces can be ignored.

From the literature review, we have inspected many types and complicated levels of the bicycle. We

end up with the nonlinear dynamic model from Spry [2] and extend the model to PWA model.

We next define the bicycle geometry, the assumption and limitation of the model, the notation

of the parameters and lastly the nonlinear model with neglecting relatively small-value terms.

4.1 Bicycle Geometry

Figure 4.1: The Bicycle Geometry.

Parameter Definition

The parameter notations here are also consistent with the measured parameter in Tables 2.1 and

3.1. We present them separately to emphasize each component; the bicycle dimension, the flywheel

(for design calculation), and the bicycle with gyroscopic flywheel model parameters. These are shown

in Table 4.1. The constant mass, moment of inertia, and height of the center of mass are obtained via

CATIA CAD software. These values in Table 4.1 may differ from Tables 2.1 and 3.1 since we consider

the model here in two parts; the body and the flywheel. See more in the bicycle model assumption.
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Table 4.1: Parameters for Bicycle Gyroscopic Flywheel Dynamic Model.

Parameter Symbol Value Unit
Bike roll angle ϕ - rad

Flywheel precession angle α - rad

Bike rotation rate ψ̇ - rad/s

Flywheel spinning rate Ω - rad/s

Track radius curvature r - m

The midpoint of track segment s - m

The distance between s and wheelbase midpoint h - m

The wheelbase midpoint speed σ - m/s

Disturbance force Fd - N

Bicycle body mass mB 30 kg

Flywheel mass mG 9 kg

Height of Bicycle center of mass zG 0.39 m

Height of Flywheel center of mass zB 0.88 m

Bike Moment of inertia (IBxx, IByy, IBzz) (5.947,8.083,2.295) kg· m2

Flywheel Moment of inertia (IGxx, IGyy, IGzz) (0.138,0.138,0.274) kg· m2

Figure 4.2: The bicycle curvature path.

To explain more about the curvature path of the bicycle, see Figure 4.2. In Figure, F is the

front wheel ground contact point, R is the rear wheel ground contact point, and O is the center point

of rotation. The distance betweenR and F is called “wheelbase length ” (w). We can find the relation

between ṡ and ψ̇ is σ = ṡ(r−h)/r = ψ̇(r−h). For straight path running, r → ∞, h = 0 and σ = ṡ.

4.2 Model Assumptions

It is much more complex to treat the bicycle model as a 3D rigid body. The simplified model that

captured the major effects on the bicycle and is well enough to describe the bicycle dynamics is a

better choice. However, we should be careful to define the assumption and its limitation as shown

below.
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• The steering axis has no trail.

• The bicycle is rolling on a flat plane

• The tires has no width and no deformation.

• The longituditional and lateral slips at the front and rear wheel are neglected.

• The bicycle is considered as a point mass at the center of mass height zB

• The flywheel is considered as a point mass at the center of mass height zG

• The mass moment of inertia of the front and rear wheel are neglected.

4.2.1 Nonlinear Dynamic Model

The model derivation is done by Lagrangian method. We follow the derivation in [2] but we combine

the load and flywheel cage into the bicycle body in one point mass. The kinetic energy of the system

is

T =
1

2
mBv

T
BvB +

1

2
ωT
BIBωB +

1

2
mGv

T
GvG +

1

2
ωT
GIGωG (4.1)

and the potential energy of the system is

V = (mBzB +mGzG)g sinϕ (4.2)

where

ωB =

⎡
⎣ ϕ̇

ψ̇ sinϕ

ψ̇ cosϕ

⎤
⎦ vB =

⎡
⎣σ + (ψ̇ sinϕ)zB

ϕ̇zB
0

⎤
⎦

ωG =

⎡
⎣ ϕ̇ cosα− ψ̇ cosϕ sinα

ψ̇ sinϕ+ α̇

ϕ̇ sinα+ ψ̇ cosϕ cosα+Ω

⎤
⎦ vG =

⎡
⎣σ + (ψ̇ sinϕ)zG

ϕ̇zG
0

⎤
⎦

From the Lagrangian L(q, q̇) ≡ T (q, q̇)− V (q), we can derive the Lagrange’s equations in the

form
d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= Qk (4.3)

where the generalized coordinates are{
q1 : ϕ (Bike roll angle)
q2 : α (Flywheel precession angle)

and the generalized forces are {
Q1 = FdzB cosϕ
Q2 = Tα
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According to (4.3), the equation of motions are obtained as follow:

Bicycle rolling equation

(k9 + k4 cos
2 α+ k6 sin

2 α)ϕ̈

−2k10ϕ̇α̇ sinα cosα

+ψ̇α̇ cosϕ(k10(sin
2 α− cos2 α)− k5)

−ψ̇2 cosϕ sinϕ(k11 − k4 sin
2 α− k6 cos

2 α)

+(ΩIGzz cosα)α̇

+ψ̇ΩIGzz cosα sinϕ

−k7g sinϕ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= k7σψ̇ cosϕ+ FdzB cosϕ (4.4)

Flywheel precessing equation

k5α̈

+k5ψ̇ϕ̇ cosϕ

+k10(ϕ̇
2 cosα sinα− ψ̇2 cos2 ϕ cosα sinα− ψ̇ϕ̇ cosϕ(sin2 α− cos2 α))

+Ω(ψ̇ cosϕ sinα− ϕ̇ cosα)IGzz

⎫⎪⎪⎬
⎪⎪⎭ = Tα (4.5)

where
k1 = IBxx k2 = IByy

k3 = IBzz k4 = IGxx

k5 = IGyy k6 = IGzz

k7 = mBzB +mGzG k8 = mBz
2
B +mGz

2
G

k9 = k1 + k8 k10 = k4 − k6
k11 = k8 + k2 − k3 + k5

4.3 Linearized Dynamic Model

The conventional simple way to deal with the nonlinear system is to linearize the nonlinear system

around its equilibrium point. We will use this linearized model for a comparison with our reduced

nonlinear in the next section. Let the state vector

x =
[
ϕ α ϕ̇ α̇

]T
Linearize the nonlinear model (4.4) and (4.5) about x = 0, then

(k9 + k4)ϕ̈− k7σψ̇ +ΩIGzzα̇+ΩIGzzψ̇ϕ = k7gϕ (4.6)

k5α̈+Ω(ψ̇α− ϕ̇)IGzz = Tα (4.7)

Rewrite the above two equations in a state space form

d

dt

⎡
⎢⎢⎣
ϕ
α
ϕ̇
α̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
a31 0 0 a34
0 a42 a43 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ϕ
α
ϕ̇
α̇

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

σψ̇k7/(k9 + k4)
Tα/k5

⎤
⎥⎥⎦ (4.8)
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where

a31 =
k7g − ψ̇ΩIGzz

k9 + k4
a34 =

−ΩIGzz

k9 + k4

a42 = − 1

k5
(ψ̇ΩIGzz) a43 =

ΩIGzz

k5



CHAPTER V

PIECEWISE AFFINE MODEL FOR BICYCLE ROBOT

In order to synthesis the controller by PWQ stabilization technique, one needs to model the nonlinear

system dynamics to be the PWA model with the error as small as possible. In this chapter, we describe

how to obtain the PWA model by a simple trigonometric terms approximation method, least-square-

error without boundary constraints, and least-square-error without boundary constraints.

We starts with defining the regions that will be approximated by PWA model. The bicycle

roll angle is partitioned into 3 regions, the flywheel precession angle does so. Thus, the operating

regions were split into 9 regions or polyhedral cells, see Fig. 5.1. X5 is considered to be in I0 or

the steady state point region where the state trajectory rest at the point (0, 0, 0, 0) when the system is

made stable. The other cells Xi are in the set I1. Note that these 9 regions is not the best choice to

reduce model error. More regions lead to more accurate model but more calculation is needed.

The nonlinear differential equations (4.4) and (4.5) can be approximated by continuous PWA

functions into the state-space form (2.7). We define the parameters for our bicycle robot model as

x =

⎡
⎢⎢⎣
ϕ
α
ϕ̇
α̇

⎤
⎥⎥⎦ u = Tα Ai =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

A
(i)
31 A

(i)
32 A

(i)
33 A

(i)
34

A
(i)
41 A

(i)
42 A

(i)
43 A

(i)
44

⎤
⎥⎥⎥⎦ ai =

⎡
⎢⎢⎢⎣

0
0

a
(i)
3a

a
(i)
4a

⎤
⎥⎥⎥⎦ Bi =

⎡
⎢⎢⎣

0
0
0

B
(i)
41

⎤
⎥⎥⎦

Next, the PWA model approximation methods will be shown from a simple method (fast cal-

culation but roughly accuracy) to the more complex (longer time for calculation but more accuracy)

method. All constant terms are taken from Table 4.1.

5.1 Trigonometric Terms Approximation

We approximate the nonlinear terms sin and cos by least square error method in each interval, while

the other nonlinear terms are approximated by linearization about the operationg point (0, 0, 0, 0).

• Approximate the nonlinear terms sin and cos by least square error method and use ‘θ’ to repre-

sent ϕ and α only for this occasion as follow

– When θ ≤ −0.1745, we approximate sin θ ≈ m1(θ + 0.1745) and cos θ ≈ m2(θ +

0.1745),

m1 = argmin

∫ −0.1745

−1.0472
(m1(θ + 0.1745)− 0.1745− sin θ)2dθ

m2 = argmin

∫ −0.1745

−1.0472
(m2(θ + 0.1745) + 1− cos θ)2dθ
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Figure 5.1: Polyhedral partition of the PWA bicycle state space model.

*The calculation is done only in the range −1.0472 ≤ θ ≤ −0.1745 or −60◦ ≤ θ ≤
−10◦.

– When −0.1745 ≤ θ ≤ 0.1745, we linearize sin θ and cos θ around θ = 0,

sin θ ≈ θ cos θ ≈ 1

– When θ ≥ 0.1745, we approximate sin θ ≈ m3(θ−0.1745) and cos θ ≈ m4(θ−0.1745),

m3 = argmin

∫ 1.0472

0.1745
(m3(θ − 0.1745) + 0.1745− sin θ)2dθ

m4 = argmin

∫ 1.0472

0.1745
(m4(θ − 0.1745) + 1− cos θ)2dθ

*The calculation is done only in the range −1.0472 ≤ θ ≤ −0.1745 or 10◦ ≤ θ ≤ 60◦.

Finally,

sin θ ≈
⎧⎨
⎩

0.8558θ − 0.02516 θ ≤ −0.1745
θ −0.1745 ≤ θ ≤ 0.1745
0.8558θ + 0.02516 θ ≥ 0.1745

(5.1)

cos θ ≈
⎧⎨
⎩

0.4957θ + 1.0865 θ ≤ −0.1745
1 −0.1745 ≤ θ ≤ 0.1745
−0.4957θ + 1.0865 θ ≥ 0.1745

(5.2)

• Substitute the approximated functions from (5.1) and (5.2) shown below into (4.4) and (4.5).

sinα ≈ a1iα+ b1i cosα ≈ a2iα+ b2i
sinϕ ≈ a3iϕ+ b3i cosϕ ≈ a4iϕ+ b4i
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Figure 5.2: Affine approximation of functions sin and cos.

where i = 1, . . . , 9 indicated the region of approximation.

• Approximate the higher order terms and other nonlinear terms of α̇ and ϕ̇ based on linearization

about the operating point (α, α̇, ϕ, ϕ̇) = (0, 0, 0, 0) into the state-space form (2.7) where

A
(i)
31 = (K

(i)
9 +K

(i)
11 −K

(i)
3 −K

(i)
7 )/K

(i)
1 A

(i)
41 = −(K

(i)
14 +K

(i)
18 )/k5

A
(i)
32 = −(K

(i)
4 +K

(i)
6 )/K

(i)
1 A

(i)
42 = −(K

(i)
21 +K

(i)
15 )/k5

A
(i)
33 = 0 A

(i)
43 = −(K

(i)
13 +K

(i)
17 +K

(i)
20 )/k5

A
(i)
34 = −(K

(i)
2 +K

(i)
5 )/K

(i)
1 A

(i)
44 = 0

a
(i)
3a = (K

(i)
10 −K

(i)
8 −K

(i)
22 )/K

(i)
1 a

(i)
4a = −(K

(i)
16 +K

(i)
19 )/k5

B
(i)
41 = 1/k5
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Table 5.1: Approximated trigonometric functions in each polyhedral cell.

α ↑
sinα ≈ 0.8558α+ 0.02516 sinα ≈ 0.8558α+ 0.02516 sinα ≈ 0.8558α+ 0.02516

cosα ≈ −0.4957α+ 1.0865 cosα ≈ −0.4957α+ 1.0865 cosα ≈ −0.4957α+ 1.0865

sinϕ ≈ 0.8558ϕ− 0.02516 sinϕ ≈ ϕ sinϕ ≈ 0.8558ϕ+ 0.02516

10◦
cosϕ ≈ 0.4957ϕ+ 1.0865 cosϕ ≈ 1 cosϕ ≈ −0.4957ϕ+ 1.0865

sinα ≈ α sinα ≈ α sinα ≈ α

cosα ≈ 1 cosα ≈ 1 cosα ≈ 1

sinϕ ≈ 0.8558ϕ− 0.02516 sinϕ ≈ ϕ sinϕ ≈ 0.8558ϕ+ 0.02516

−10◦
cosϕ ≈ 0.4957ϕ+ 1.0865 cosϕ ≈ 1 cosϕ ≈ −0.4957ϕ+ 1.0865

sinα ≈ 0.8558α− 0.02516 sinα ≈ 0.8558α− 0.02516 sinα ≈ 0.8558α− 0.02516

cosα ≈ 0.4957α+ 1.0865 cosα ≈ 0.4957α+ 1.0865 cosα ≈ 0.4957α+ 1.0865

sinϕ ≈ 0.8558ϕ− 0.02516 sinϕ ≈ ϕ sinϕ ≈ 0.8558ϕ+ 0.02516

cosϕ ≈ 0.4957ϕ+ 1.0865 cosϕ ≈ 1 cosϕ ≈ −0.4957ϕ+ 1.0865

−10◦ 10◦ → ϕ

K
(i)
1 = (k9 + k4b

2
2i + k6b

2
1i) K

(i)
2 = ψ̇b4i(k10(b

2
1i − b22i)− k5)

K
(i)
3 = −ψ̇2(a3ib4i + a4ib3i)(k11 − k4b

2
1i − k6b

2
2i) K

(i)
4 = −ψ̇2b3ib4i(−2k4a1ib1i − 2k6a2ib2i)

K
(i)
5 = ΩIGzzb2i K

(i)
6 = ψ̇ΩIGzz(a2ib3i)

K
(i)
7 = ψ̇ΩIGzz(a3ib2i) K

(i)
8 = ψ̇ΩIGzz(b3ib2i)

K
(i)
9 = k7ga3i K

(i)
10 = k7gb3i

K
(i)
11 = k7σψ̇a4i K

(i)
12 = k7σψ̇b4i

K
(i)
13 = k5ψ̇b4i K

(i)
14 = −k10ψ̇2(2a4ib4ib1ib2i)

K
(i)
15 = −k10ψ̇2(a1ib2i + a2ib1i)b

2
4i K

(i)
16 = −k10ψ̇2b1ib2ib

2
4i

K
(i)
17 = −k10ψ̇b4(b21i − b22i) K

(i)
18 = Ωψ̇IGzz(a4ib1i)

K
(i)
19 = Ωψ̇IGzz(b1ib4i) K

(i)
20 = −ΩIGzzb2i

K
(i)
21 = Ωψ̇IGzz(a1ib4i) K

(i)
22 = −ψ̇2b3ib4i(k11 − k4b

2
1i − k6b

2
2i)

• Substitute the bicycle parameters in the Table 4.1 and get the resulting system matrices

5.2 Least-Square Error Approximation without Boundary Constraints

This approximation method gives a discontinuous model at the cell boundaries since the error is forced

to be minimized while nothing concerning with the boundary constraints are taken into account. To

approximate the nonlinear terms of α̈ and ϕ̈ into a state-space form, we formulate the least square

problem from the proposed approximated linear model :

ÿN×1 = GN×mθm×1 + μN×1 (5.3)
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where

G =
[
x1 x2 x3 x4 1

]
θϕ =

[
A

(i)
31 A

(i)
32 A

(i)
33 A

(i)
34 a

(i)
3

]T
or

θα =
[
A

(i)
41 A

(i)
42 A

(i)
43 A

(i)
44 a

(i)
4

]T
ÿ is the exact value of ϕ̈ or α̈ obtained from the bicycle dynamic equation (4.4) and (4.5)

μ is the approximation error

xk is the kth vector containing N realizations of a uniform random variable in the range

[xkmin
, xkmax ] in each Xi

N is the number of realization (higher is better)

m is the number the state plus a single affine term

Then we can present the problem as

θ̂(i) = argmin
θ(i)

∥∥ ÿ −G(i)θ(i)
∥∥2
2

(5.4)

Solving (5.4) for each cell, we will get all 9 sets of system matrices of the bicycle PWA model.

5.3 Least-Square Error Approximation with Boundary Constraints

This model is continuous across the boundary. We carefully begin an approximation with the cell

X5 ∈ I0 in order to made this cell the most accurate. The benefit is that there is no constraint for

model continuity at the first approximation in X5. When the first cell has already been placed, it

introduces one more boundary constraint at its attached polyhedral cell. This is in case II and in the

same manner for more constraints in case III.

• Case I: No constraint

Formulate the least square problem (5.4) with the same methodology for the operating-point

region X5. The closed form solution is

θ̂(5) = (G(5)TG(5))−1G(5)T ÿ (5.5)

• Case II: One constraint

One constraint of the problem is appeared when the approximation is done in the nearby region

of X5 i.e. X2, X4, X6, X8. Consider an example of X6, the continuity the model at boundary

x1 = γ connecting X5 to X6. The solution for θ̂(6) can be obtained by solving the following

problem

minimize
∥∥ ÿ −G(6)θ(6)

∥∥2
2

subject to Gγθ
(6) = Gγθ

(5)
(5.6)

where Gγ =
[
γ x2 x3 x4 1

]
For the rest of X5 connected regions X2, X4, X6, X8, the approximation is applied in the sim-

ilar fashion.
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• Case III: Two constraints

Two constraints are taken into account when an approximation is done in the regionX1, X3, X7, X9.

Consider the continuity of the model in X3 at the boundary x1 = γ that connects the region X2

and X3 and the boundary x2 = β that connects to the region X6 and X3, the problem can be

written in this form
minimize

∥∥ ÿ −G(3)θ(3)
∥∥2
2

subject to Gγθ
(3) = Gγθ

(2)

Gβθ
(3) = Gβθ

(6)

(5.7)

where Gγ =
[
γ x2 x3 x4 1

]
Gβ =

[
x1 β x3 x4 1

]
In 5.2 and 5.3, the range [x1min , x1max ] and [x2min , x2max ] are defined upon the region Xi. For the

angular velocities as represented by x3 and x4, there is no partition region given. Hence, we assign

an operating point (0, 0) for them. The approximation of x1 and x2 will be varied in each region but

x3 and x4 will be fixed at (0, 0) which its resulting models are like the linearisation model around this

point.

The example of system matrices in each region after substituting constant parameters are shown

in the next pages. They are calculated by the assumption that the bicycle rotating velocity and forward

velocity are very small and no disturbance force (Fd = 0) in the system. Also, the constant terms

ψ̇ = 0.01 rad/s, σ = 0 m/s, Ω = 3000 rpm = 314.16 rad/s, and other values from Table 4.1 are also

included.
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Trigonometric terms approximation model

A1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.291 −0.0006 0 −5.3011
−0.0778 −5.8 677.723 0

⎤
⎥⎥⎦ a1 =

⎡
⎢⎢⎣

0
0

−0.2732
−0.1705

⎤
⎥⎥⎦ B1 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8566 0 0 −5.3011
0 −5.3383 677.7228 0

⎤
⎥⎥⎦ a2 =

⎡
⎢⎢⎣

0
0
0

−0.1569

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A3 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.291 0.0006 0 −5.3011
0.0778 −5.8 677.723 0

⎤
⎥⎥⎦ a3 =

⎡
⎢⎢⎣

0
0

0.2732
−0.1705

⎤
⎥⎥⎦ B3 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A4 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3079 0 0 −4.886
0 −6.7773 623.7653 0

⎤
⎥⎥⎦ a4 =

⎡
⎢⎢⎣

0
0

−0.2736
0

⎤
⎥⎥⎦ B4 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A5 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8762 0 0 −4.886
0 −6.2378 623.7654 0

⎤
⎥⎥⎦ a5 =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ B5 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A6 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3079 0 0 −4.886
0 −6.7773 623.7653 0

⎤
⎥⎥⎦ a6 =

⎡
⎢⎢⎣

0
0

0.2736
0

⎤
⎥⎥⎦ B6 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A7 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.291 0.0006 0 −5.3011
0.0778 −5.8 677.723 0

⎤
⎥⎥⎦ a7 =

⎡
⎢⎢⎣

0
0

−0.2732
0.1705

⎤
⎥⎥⎦ B7 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A8 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8566 0 0 −5.3011
0 −5.3383 677.7228 0

⎤
⎥⎥⎦ a8 =

⎡
⎢⎢⎣

0
0
0

0.1569

⎤
⎥⎥⎦ B8 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A9 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.291 −0.0006 0 −5.3011
−0.0778 −5.8 677.723 0

⎤
⎥⎥⎦ a9 =

⎡
⎢⎢⎣

0
0

0.2732
0.1705

⎤
⎥⎥⎦ B9 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

Ci = 0 ci = 0 Di = 0

I0 = {5} I1 = {1, 2, 3, 4, 6, 7, 8, 9}



31

Least-square error approximation without boundary constraints model – Discontinuous model

A1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

8.7185 0.0357 −0.0015 −3.862
−1.6106 −3.7379 494.975 0.1775

⎤
⎥⎥⎦ a1 =

⎡
⎢⎢⎣

0
0

−0.7247
−1.6888

⎤
⎥⎥⎦ B1 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8284 0.0011 0.0053 −3.87
0.717 −5.586 495.2182 −0.671

⎤
⎥⎥⎦ a2 =

⎡
⎢⎢⎣

0
0

0.0026
0.0386

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A3 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

8.7356 −0.019 −0.0014 −3.8658
0.5886 −3.0051 495.1564 0.1435

⎤
⎥⎥⎦ a3 =

⎡
⎢⎢⎣

0
0

0.7089
−1.2207

⎤
⎥⎥⎦ B3 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A4 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

8.7439 −0.0007 −0.0001 −4.8606
−0.0724 −4.9344 620.5933 −0.0131

⎤
⎥⎥⎦ a4 =

⎡
⎢⎢⎣

0
0

−0.7004
−0.055

⎤
⎥⎥⎦ B4 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A5 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8427 0.0001 0.0001 −4.861
−0.0354 −6.0111 620.6116 −0.0106

⎤
⎥⎥⎦ a5 =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ B5 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A6 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

8.7377 −0.0044 −0.0004 −4.8619
−0.0269 −4.9932 620.6132 0.0017

⎤
⎥⎥⎦ a6 =

⎡
⎢⎢⎣

0
0

0.7045
0.0196

⎤
⎥⎥⎦ B6 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A7 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

8.7356 −0.0484 0.002 −3.8671
1.4033 −5.4668 494.6352 −0.2225

⎤
⎥⎥⎦ a7 =

⎡
⎢⎢⎣

0
0

−0.7257
0.435

⎤
⎥⎥⎦ B7 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A8 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.7681 0.014 0.0001 −3.8668
6.6803 −3.2871 494.709 −0.0058

⎤
⎥⎥⎦ a8 =

⎡
⎢⎢⎣

0
0

0.0061
0.7354

⎤
⎥⎥⎦ B8 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A9 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

8.7063 0.014 −0.0018 −3.8661
−2.721 −6.1022 494.6512 0.0637

⎤
⎥⎥⎦ a9 =

⎡
⎢⎢⎣

0
0

0.7192
0.8622

⎤
⎥⎥⎦ B9 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

Ci = 0 ci = 0 Di = 0

I0 = {5} I1 = {1, 2, 3, 4, 6, 7, 8, 9}
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Least-square error approximation with boundary constraints model – Continuous model

A1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3186 0.0104 0.0001 −4.861
0.011 −6.2415 620.6116 −0.0106

⎤
⎥⎥⎦ a1 =

⎡
⎢⎢⎣

0
0

−0.2678
0.0483

⎤
⎥⎥⎦ B1 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8427 0.0104 0.0001 −4.861
−0.0354 −6.2415 620.6116 −0.0106

⎤
⎥⎥⎦ a2 =

⎡
⎢⎢⎣

0
0

−0.0018
0.0402

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A3 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3166 0.0104 0.0001 −4.861
0.0088 −6.2415 620.6116 −0.0106

⎤
⎥⎥⎦ a3 =

⎡
⎢⎢⎣

0
0

0.2646
0.0325

⎤
⎥⎥⎦ B3 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A4 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3186 0.0001 0.0001 −4.861
0.011 −6.0111 620.6116 −0.0106

⎤
⎥⎥⎦ a4 =

⎡
⎢⎢⎣

0
0

−0.266
0.0081

⎤
⎥⎥⎦ B4 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A5 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8427 0.0001 0.0001 −4.861
−0.0354 −6.0111 620.6116 −0.0106

⎤
⎥⎥⎦ a5 =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ B5 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A6 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3166 0.0001 0.0001 −4.861
0.0088 −6.0111 620.6116 −0.0106

⎤
⎥⎥⎦ a6 =

⎡
⎢⎢⎣

0
0

0.2664
−0.0077

⎤
⎥⎥⎦ B6 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A7 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3186 0.013 0.0001 −4.861
0.011 −2.9629 620.6116 −0.0106

⎤
⎥⎥⎦ a7 =

⎡
⎢⎢⎣

0
0

−0.2638
0.5401

⎤
⎥⎥⎦ B7 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A8 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

10.8427 0.013 0.0001 −4.861
−0.0354 −2.9629 620.6116 −0.0106

⎤
⎥⎥⎦ a8 =

⎡
⎢⎢⎣

0
0

0.0022
0.532

⎤
⎥⎥⎦ B8 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

A9 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

9.3166 0.013 0.0001 −4.861
0.0088 −2.9629 620.6116 −0.0106

⎤
⎥⎥⎦ a9 =

⎡
⎢⎢⎣

0
0

0.2686
0.5243

⎤
⎥⎥⎦ B9 =

⎡
⎢⎢⎣

0
0
0

7.2464

⎤
⎥⎥⎦

Ci = 0 ci = 0 Di = 0

I0 = {5} I1 = {1, 2, 3, 4, 6, 7, 8, 9}
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5.4 Comparison of Model Error

The rms errors are calculated from the 10,000 uniform random points within the respected region.

The values are collected in the Table 5.4 and Table 5.4. The error in each partitioned region is shown

in three dimensions plot in Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10. The model which

has the highest to the lowest error are linearized model, trigonometric terms approximation model,

continuous model, and discontinuous model, respectively. This happens to both the bicycle roll angle

and flywheel precessing angle. The approximation yields a good result for partitioning the roll angle

at ±10◦. Partitioning for more regions will possibly reduce the error.

Table 5.2: Summary of the root-mean-square error of the approximated PWA model.

Bicycle angle

Model region Linearized Continuous Discontinuous trig. terms approx.

X1 0.8168 0.2100 0.1537 0.2116

X2 0.0026 0.0027 0.0036 0.0054

X3 0.8147 0.2100 0.1528 0.2077

X4 0.8037 0.2101 0.1533 0.2123

X5 0.0015 0.0025 0.0013 0.0013

X6 0.8036 0.2101 0.1534 0.2124

X7 0.8175 0.2100 0.1532 0.2071

X8 0.0026 0.0027 0.0070 0.0067

X9 0.8169 0.2100 0.1539 0.2123

Average 0.5422 0.1409 0.1036 0.1419

Flywheel angle

Model region Linearized Continuous Discontinuous trig. terms approx.

X1 1.4861 1.0376 0.3231 1.1844

X2 0.6506 0.1398 0.2099 0.4688

X3 1.4574 1.0376 0.4514 1.1873

X4 0.1816 0.1880 0.0823 0.1117

X5 0.0310 0.0053 0.0183 0.0183

X6 0.1817 0.1880 0.0794 0.1118

X7 1.4642 1.0376 0.4358 0.6338

X8 0.6498 0.1398 0.9693 1.2216

X9 1.4905 1.0376 0.6298 0.6384

Average 0.8437 0.5346 0.3555 0.6196
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Table 5.3: Summary of the maximum absolute error of the approximated PWA model.

Bicycle angle

Model region Linearized Continuous Discontinuous trig. terms approx.

X1 1.9624 0.6175 0.4319 0.6295

X2 0.0114 0.0128 0.0117 0.0195

X3 1.9663 0.6175 0.4512 0.6459

X4 1.9333 0.6033 0.4396 0.6069

X5 0.0038 0.0099 0.0041 0.0041

X6 1.9332 0.6033 0.4379 0.6052

X7 1.9651 0.6175 0.4476 0.6499

X8 0.0115 0.0128 0.0138 0.0218

X9 1.9612 0.6175 0.4359 0.6255

Maximum 1.9663 0.6175 0.4512 0.6499

Flywheel angle

Model region Linearized Continuous Discontinuous trig. terms approx.

X1 4.1177 3.4618 1.2155 3.7983

X2 1.4790 0.4272 0.6162 1.1821

X3 4.0637 3.4618 1.0550 3.7934

X4 0.6119 0.6413 0.3404 0.5110

X5 0.0702 0.0220 0.0346 0.0346

X6 0.6148 0.6413 0.3385 0.5091

X7 4.0478 3.4618 1.9893 1.6790

X8 1.4816 0.4272 2.3126 1.7674

X9 4.1000 3.4618 1.7019 1.6914

Maximum 4.1177 3.4618 2.3126 3.7983
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Figure 5.3: The roll angle error plane of the linearized model.

Figure 5.4: The precession angle error plane of the linearized model.
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Figure 5.5: The roll angle error plane of the trigonometic terms approximation PWA model.

Figure 5.6: The precession angle error plane of the trigonometic terms approximation PWA model.
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Figure 5.7: The roll angle error plane of the discontinuous PWA model.

Figure 5.8: The precession angle error plane of the discontinuous PWA model.
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Figure 5.9: The roll angle error plane of the continuous PWA model.

Figure 5.10: The precession angle error plane of the continuous PWA model.



CHAPTER VI

PIECEWISE AFFINE CONTROL FOR BICYCLE ROBOT

The unstable nonlinear bicycle robot system has been already transformed to the PWA system de-

fined by the state-space matrices and cell boundings. This made the stability analysis for the actual

nonlinear system easier by searching for the PWQ Lyapunov candidate function of an approximated

PWA model. The problem can be cast as a convex optimization problem which has a powerful tool

for solving this kind of problem.

In this chapter, we gather all information so far from the beginning to derive the globally

quadratic Lypunov function and thus to generate the feedback control laws for system stabilization.

6.1 Problem Formulation

The problem is formulated according to Theorem 2.2. In this problem, we use the discontinuous

model which provides the smallest average error value. The system matrices will be brought from

Chapter 4. The quadratic cell boundings are computed via the minimum volume outer ellipsoid

covering polytopes (see Figure 6.1) problem see the detail in Appendix B. This is the feasibility SDP

problem which will be solved using YALMIP [52], the modeling language for advanced modeling

and solution of convex and nonconvex optimization problems, which is implemented in MATLAB.

The selected solver is SDPT3 [53].

6.2 Main Result

The outcome parameters of solving the problem (2.26) are shown below:

Y =
[−62.444 −116.74 569.69 6956.2

]

Q = QT =

⎡
⎢⎢⎣
0.33589 0.057914 −0.98225 1.2957

∗ 0.56223 −1.9066 −3.7011
∗ ∗ 9.2882 12.037
∗ ∗ ∗ 315.32

⎤
⎥⎥⎦ > 0

L = Y Q−1 =
[−337.98 −116.31 −28.303 23.165

]
The globally quadratic Lyapunov function is V (x) = xTPx where

P = Q−1 =

⎡
⎢⎢⎣
9.7037 7.7934 2.6923 −0.051174

∗ 12.29 3.3681 −0.016343
∗ ∗ 1.1013 −0.013572
∗ ∗ ∗ 0.003708

⎤
⎥⎥⎦ > 0
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Figure 6.1: Polyhedral partition with its outer minimum volumn ellipsoid approximation.

The obtained gainL is used to feedback with u = −Lx in the bicycle system. We show the simulation

result of this control laws in the original nonlinear bicycle model (Figure 6.2) and the approximated

PWA model (Figure 6.3).

From the series of resulting plots in Figures 6.4-6.11, we conclude that the gain L can perfectly

stabilize the approximated PWA system and also the original nonlinear bicycle system. Moreover,

the approximated PWA model yield a very good response as it travels quite close to the nonlinear

trajectory for all partitioned regions.



4
1

precess dynamics

f(u)

phi-alpha 1

Transition detector

u yfcn

Torque input

Step

Scope2

Lean dynamics

f(u)

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

1
s

Flywheel precession velocity

Flywheel precession angle
Feedback gain

K*u
Bike roll velocity

Bike roll angle

alpha

phi_dot

alpha_dot

phi

phi_dot phi_dot

phi_dot

phi phi

phi

alpha_dot alpha_dot

alpha_dot

alpha alpha

alpha

Mu

alpha_ddot

phi_ddot
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Figure 6.4: The response of roll angle, roll velocity, precession angle, and precession velocity of

Nonlinear and PWA model with the initial condition (ϕ(0), α(0), ϕ̇(0), α̇(0)) = (0.3, 0.3, 0, 0).
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Figure 6.5: The response of roll angle, roll velocity, precession angle, and precession velocity of

Nonlinear and PWA model with the initial condition (ϕ(0), α(0), ϕ̇(0), α̇(0)) = (−0.3, 0.3, 0, 0).
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Figure 6.6: The response of roll angle, roll velocity, precession angle, and precession velocity of

Nonlinear and PWA model with the initial condition (ϕ(0), α(0), ϕ̇(0), α̇(0)) = (−0.3,−0.3, 0, 0).
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Figure 6.7: The response of roll angle, roll velocity, precession angle, and precession velocity of

Nonlinear and PWA model with the initial condition (ϕ(0), α(0), ϕ̇(0), α̇(0)) = (0.3,−0.3, 0, 0).
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Figure 6.8: The response of roll angle, roll velocity, precession angle, and precession velocity of

Nonlinear and PWA model with the initial condition (ϕ(0), α(0), ϕ̇(0), α̇(0)) = (0, 0.3, 0, 0).
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Figure 6.9: The response of roll angle, roll velocity, precession angle, and precession velocity of

Nonlinear and PWA model with the initial condition (ϕ(0), α(0), ϕ̇(0), α̇(0)) = (0,−0.3, 0, 0).
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CHAPTER VII

CONCLUSIONS

7.1 Summary

This thesis has proposed the new idea of bicycle robot control using gyroscopic stabilization effect.

This idea encounters the nonlinear unstable bicycle system by modeling it into a set of linear model or

piecewise affine model. Then, the piecewise quadratic stability theorem can be applied and used for

searching for the globally quadratic Lyapunov function to guarantee the system stability. Furthermore,

this condition can be extended with the ellipsoid cell boundings to derive the feedback stabilization

gain. The effectiveness of the proposed method has been illustrated through simulation examples. To

summarize the thesis, we highlight main topics in the following.

Chapter 1 briefly introduces the motivation behind the research. Next, the literature review is

given to cover an overview of bicycle model and its control method as well as some application of

PWA systems. Afterward, we present the thesis objective, scope and research contributions.

In Chapter 2, a basic knowledge with some important concepts of a bicycle; its nature and

the effect of gyroscopic which can help stabilize the bicycle. An important tool to be used to derive

the dynamic equation of the bicycle are included in this chapter. The overview of PWA system and

its representation of matrix parameterization has been introduced. And it follows with the quadratic

stability condition that uses for finding the quadratic Lyapunov function and the feedback control gain.

In chapter 3, the parameter measurement and calculation on the experimental bicycle are performed.

The major apparatus are the body of the bicycle itself and the gyroscopic flywheel. Some parameters

are obtained by the real measurement and some are obtained through the CAD modeling program

based on the real bike parameters.

Chapter 4 and 5 presents the detail steps in deriving the nonlinear dynamic model of an au-

tonomous bicycle using gyroscopic effect and an approximation of this model to be the PWA model.

The nonlinear dynamic model is derived by Lagrangian mechanics theory. The PWA model is ap-

proximated by the 3 proposed methods, i.e. trigonometric terms approximation, Least-square error

approximation without boundary constraints, and Least-square error approximation with boundary

constraints.

Finally, all information from the former chapters are gathered to formulate the quadratic sta-

bilization problem. The unconstrained was selected as a PWA model to solve for the feedback stabi-

lization gain. The graphical results are also shown in various initial conditions accompanied with the

comparison of the response of the nonlinear model and the approximated PWA model.

The conclusion and future work guideline are briefly described at the end.
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7.2 Future Work Guideline

1. Control of autonomous bicycle with bicycle velocity feedback

The result of bicycle control in this thesis starts from the simpler case which does not tackle the

problem of bicycle speed varying. As we saw in Chapter 2 that the bicycle gives a significant

effect on the bicycle stability, so it is expected to be easier to utilize the speed to help stabilize

the bicycle. However, the problem will be more complex in the bicycle modeling and the

mutual effect to the bicycle roll angle by the gyroscopic effect and bicycle velocity.

2. PWA Identification of an autonomous bicycle using gyroscopic effect

There are another methods for deriving the PWA model of the bicycle. The PWA model pro-

posed in this thesis is derived by a simple technique and thus easy to debug. We recommend

to proceed to the more advance technique that has been studied widely in [54], [55], [42], [56],

[57], [58], [59], [60] and in Ph.D. thesis [61].

3. An implementation on the real bicycle

To the best proof of this control strategy, an implementation on the real hardware is encouraged.

From the author experience, since there is no ready bicycle robot for testing the control laws in

the market and an individual work is quite a large burden to be busy working on the electronics

and mechanics stuff, this future work is recommended to be done in a team.
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APPENDIX A

Constraint Matrices Formulation

The constraints matrices are the crucial parameters to define the region of the state in a poly-

hedral partition, to perform the PWA stability analysis and the controller synthesis. This section will

show the summary how to construct the constraint matrices Ḡi, Ēi, F̄i, S̄i. It is instructive to first

formulate H̄ , F̄i, Ḡi, and Ēi, respectively.

Polyhedral Hyperplane

From the definition of the hyperplane ∂Hk (2.9) and the hyperplane matrix H̄ (2.10), it is obvious to

obtain ∂Hk from the linear equation that separates any regions and all of them are collected in H̄ .

Each hyperplane induced two closed half-spaces

∂H+
k = {x |Hkx+ hk ≥ 0} (1)

∂H−
k = {x |Hkx+ hk ≤ 0} (2)

with the convention hk ≤ 0 that implies I0 is always in ∂H−
k for all k ∈ K.

Continuity Matrix

kth row of F̄i =

{
kth row of H̄, Xi ⊆ ∂H+

k

0, otherwise
(3)

In order to make the continuity matrices full column rank, we can augment them according to

F̄i =

[
Fi fi
I 0

]
(4)

Cell Identifier

kth row of Ḡi =

{
(−1)× kth row of H̄, Xi ⊆ ∂H−

k

(+1)× kth row of H̄, Xi ⊆ ∂H+
k

Cell Bounding

The cell boundings Ēi can be obtained by

• If i ∈ I0, delete all rows of Ḡi whose the last entry is non-zero.

• If i ∈ I1, and Xi is unbound, augment Ḡi with the row
[
01×n 1

]
• Otherwise, Ēi = Ḡi.
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The Constraint Matrices for PWA Bicycle model

Region Ḡi Ēi F̄i

X1

[−1 0 0 0 −0.1745
0 1 0 0 −0.1745

] ⎡
⎢⎢⎣
−1 0 0 0 −0.1745
0 1 0 0 −0.1745
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 0 0 0
−1 0 0 0 −0.1745
0 1 0 0 −0.1745
0 0 0 0 0

⎤
⎥⎥⎦

X2

⎡
⎣−1 0 0 0 0.1745

1 0 0 0 0.1745
0 1 0 0 −0.1745

⎤
⎦

⎡
⎢⎢⎣
−1 0 0 0 0.1745
1 0 0 0 0.1745
0 1 0 0 −0.1745
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 1 0 0 −0.1745
0 0 0 0 0

⎤
⎥⎥⎦

X3

[
1 0 0 0 −0.1745
0 1 0 0 −0.1745

] ⎡
⎢⎢⎣
1 0 0 0 −0.1745
0 1 0 0 −0.1745
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0 −0.1745
0 0 0 0 0
0 1 0 0 −0.1745
0 0 0 0 0

⎤
⎥⎥⎦

X4

⎡
⎣−1 0 0 0 −0.1745

0 −1 0 0 0.1745
0 1 0 0 0.1745

⎤
⎦

⎡
⎢⎢⎣
−1 0 0 0 −0.1745
0 −1 0 0 0.1745
0 1 0 0 0.1745
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 0 0 0
−1 0 0 0 −0.1745
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

X5

⎡
⎢⎢⎣
−1 0 0 0 0.1745
1 0 0 0 0.1745
0 −1 0 0 0.1745
0 1 0 0 0.1745

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

X6

⎡
⎣1 0 0 0 −0.1745
0 −1 0 0 0.1745
0 1 0 0 0.1745

⎤
⎦

⎡
⎢⎢⎣
1 0 0 0 −0.1745
0 −1 0 0 0.1745
0 1 0 0 0.1745
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0 −0.1745
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

X7

[−1 0 0 0 −0.1745
0 −1 0 0 −0.1745

] ⎡
⎢⎢⎣
−1 0 0 0 −0.1745
0 −1 0 0 −0.1745
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 0 0 0
−1 0 0 0 −0.1745
0 0 0 0 0
0 −1 0 0 −0.1745

⎤
⎥⎥⎦

X8

⎡
⎣−1 0 0 0 0.1745

1 0 0 0 0.1745
0 −1 0 0 −0.1745

⎤
⎦

⎡
⎢⎢⎣
−1 0 0 0 0.1745
1 0 0 0 0.1745
0 −1 0 0 −0.1745
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 −0.1745

⎤
⎥⎥⎦

X9

[
1 0 0 0 −0.1745
0 −1 0 0 −0.1745

] ⎡
⎢⎢⎣
1 0 0 0 −0.1745
0 −1 0 0 −0.1745
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0 −0.1745
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 −0.1745

⎤
⎥⎥⎦
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APPENDIX B

Ellipsoid Cell Boundings

In mathematics, the ellipsoid can be written in different ways, e.g. the quadratic set, the shape

matrix with uncertainty, etc. We will not go further to those topics. The minimum volume ellipsoid

that cover each polyhedral cell in this thesis is suitable to define in this form

Emve = {x ∈ R
n | ‖Sx+ s‖2 ≤ 1}

Our interested parameter of polyhedral cell is its m vertices vi. The minimum volume ellipsoid is

obtained by solving the following convex optimization problem

minimize log detS−1

subject to

[
I Svi + s

vTi S
T + sT 1

]
≥ 0, i = 1, . . . ,m

S = ST > 0

(5)

We call S an ellipsoid cell bounding. It is useful for deriving the control law as shown in Theorem 2.2.

The Ellipsoid Cell Bounding for PWA Bicycle model

The computed parameter, polyhedral vertices, and the resulted ellipsoid cell bounding in all 9 regions

are listed below.
xa = 0.1745 ya = 0.1745 za = 100
xb = 1.0472 yb = 1.0472 zb = 100

xa and xb denote the bounding point of parameter ϕ (10◦, 60◦).

ya and yb denote the bounding point of parameter α (10◦, 60◦).

zb denotes the bounding point of parameter ϕ̇, α̇ (no bounding, so we assign a sufficiently high value).
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Polytope X1

v111 =

⎡
⎢⎢⎣
−xa
yb
−zb
−zb

⎤
⎥⎥⎦ v112 =

⎡
⎢⎢⎣
−xa
yb
−zb
zb

⎤
⎥⎥⎦ v113 =

⎡
⎢⎢⎣
−xa
yb
zb
−zb

⎤
⎥⎥⎦ v114 =

⎡
⎢⎢⎣
−xa
yb
zb
zb

⎤
⎥⎥⎦

v121 =

⎡
⎢⎢⎣
−xb
yb
−zb
−zb

⎤
⎥⎥⎦ v122 =

⎡
⎢⎢⎣
−xb
yb
−zb
zb

⎤
⎥⎥⎦ v123 =

⎡
⎢⎢⎣
−xb
yb
zb
−zb

⎤
⎥⎥⎦ v124 =

⎡
⎢⎢⎣
−xb
yb
zb
zb

⎤
⎥⎥⎦

v131 =

⎡
⎢⎢⎣
−xb
ya
−zb
−zb

⎤
⎥⎥⎦ v132 =

⎡
⎢⎢⎣
−xb
ya
−zb
zb

⎤
⎥⎥⎦ v133 =

⎡
⎢⎢⎣
−xb
ya
zb
−zb

⎤
⎥⎥⎦ v134 =

⎡
⎢⎢⎣
−xb
ya
zb
zb

⎤
⎥⎥⎦

v141 =

⎡
⎢⎢⎣
−xa
ya
−zb
−zb

⎤
⎥⎥⎦ v142 =

⎡
⎢⎢⎣
−xa
ya
−zb
zb

⎤
⎥⎥⎦ v143 =

⎡
⎢⎢⎣
−xa
ya
zb
−zb

⎤
⎥⎥⎦ v144 =

⎡
⎢⎢⎣
−xa
ya
zb
zb

⎤
⎥⎥⎦

Ellipsoid E1

S1 =

⎡
⎢⎢⎣
1.1459 0 0 0

0 1.1459 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s1 =

⎡
⎢⎢⎣

0.7
−0.7
0
0

⎤
⎥⎥⎦

Polytope X2

v211 =

⎡
⎢⎢⎣
xa
yb
−zb
−zb

⎤
⎥⎥⎦ v212 =

⎡
⎢⎢⎣
xa
yb
−zb
zb

⎤
⎥⎥⎦ v213 =

⎡
⎢⎢⎣
xa
yb
zb
−zb

⎤
⎥⎥⎦ v214 =

⎡
⎢⎢⎣
xa
yb
zb
zb

⎤
⎥⎥⎦

v221 =

⎡
⎢⎢⎣
−xa
yb
−zb
−zb

⎤
⎥⎥⎦ v222 =

⎡
⎢⎢⎣
−xa
yb
−zb
zb

⎤
⎥⎥⎦ v223 =

⎡
⎢⎢⎣
−xa
yb
zb
−zb

⎤
⎥⎥⎦ v224 =

⎡
⎢⎢⎣
−xa
yb
zb
zb

⎤
⎥⎥⎦

v231 =

⎡
⎢⎢⎣
−xa
ya
−zb
−zb

⎤
⎥⎥⎦ v232 =

⎡
⎢⎢⎣
−xa
ya
−zb
zb

⎤
⎥⎥⎦ v233 =

⎡
⎢⎢⎣
−xa
ya
zb
−zb

⎤
⎥⎥⎦ v234 =

⎡
⎢⎢⎣
−xa
ya
zb
zb

⎤
⎥⎥⎦

v241 =

⎡
⎢⎢⎣
xa
ya
−zb
−zb

⎤
⎥⎥⎦ v242 =

⎡
⎢⎢⎣
xa
ya
−zb
zb

⎤
⎥⎥⎦ v243 =

⎡
⎢⎢⎣
xa
ya
zb
−zb

⎤
⎥⎥⎦ v244 =

⎡
⎢⎢⎣
xa
ya
zb
zb

⎤
⎥⎥⎦

Ellipsoid E2

S2 =

⎡
⎢⎢⎣
2.8647 0 0 0

0 1.1459 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s2‘ =

⎡
⎢⎢⎣

0
−0.7
0
0

⎤
⎥⎥⎦
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Polytope X3

v311 =

⎡
⎢⎢⎣
xb
yb
−zb
−zb

⎤
⎥⎥⎦ v312 =

⎡
⎢⎢⎣
xb
yb
−zb
zb

⎤
⎥⎥⎦ v313 =

⎡
⎢⎢⎣
xb
yb
zb
−zb

⎤
⎥⎥⎦ v314 =

⎡
⎢⎢⎣
xb
yb
zb
zb

⎤
⎥⎥⎦

v321 =

⎡
⎢⎢⎣
−xa
yb
−zb
−zb

⎤
⎥⎥⎦ v322 =

⎡
⎢⎢⎣
−xa
yb
−zb
zb

⎤
⎥⎥⎦ v323 =

⎡
⎢⎢⎣
−xa
yb
zb
−zb

⎤
⎥⎥⎦ v324 =

⎡
⎢⎢⎣
−xa
yb
zb
zb

⎤
⎥⎥⎦

v331 =

⎡
⎢⎢⎣
−xa
ya
−zb
−zb

⎤
⎥⎥⎦ v332 =

⎡
⎢⎢⎣
−xa
ya
−zb
zb

⎤
⎥⎥⎦ v333 =

⎡
⎢⎢⎣
−xa
ya
zb
−zb

⎤
⎥⎥⎦ v334 =

⎡
⎢⎢⎣
−xa
ya
zb
zb

⎤
⎥⎥⎦

v341 =

⎡
⎢⎢⎣
xb
ya
−zb
−zb

⎤
⎥⎥⎦ v342 =

⎡
⎢⎢⎣
xb
ya
−zb
zb

⎤
⎥⎥⎦ v343 =

⎡
⎢⎢⎣
xb
ya
zb
−zb

⎤
⎥⎥⎦ v344 =

⎡
⎢⎢⎣
xb
ya
zb
zb

⎤
⎥⎥⎦

Ellipsoid E3

S3 =

⎡
⎢⎢⎣
1.1459 0 0 0

0 1.1459 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s3 =

⎡
⎢⎢⎣
−0.7
−0.7
0
0

⎤
⎥⎥⎦

Polytope X4

v411 =

⎡
⎢⎢⎣
−xa
ya
−zb
−zb

⎤
⎥⎥⎦ v412 =

⎡
⎢⎢⎣
−xa
ya
−zb
zb

⎤
⎥⎥⎦ v413 =

⎡
⎢⎢⎣
−xa
ya
zb
−zb

⎤
⎥⎥⎦ v414 =

⎡
⎢⎢⎣
−xa
ya
zb
zb

⎤
⎥⎥⎦

v421 =

⎡
⎢⎢⎣
−xb
ya
−zb
−zb

⎤
⎥⎥⎦ v422 =

⎡
⎢⎢⎣
−xb
ya
−zb
zb

⎤
⎥⎥⎦ v423 =

⎡
⎢⎢⎣
−xb
ya
zb
−zb

⎤
⎥⎥⎦ v424 =

⎡
⎢⎢⎣
−xb
−ya
zb
zb

⎤
⎥⎥⎦

v431 =

⎡
⎢⎢⎣
−xb
−ya
−zb
−zb

⎤
⎥⎥⎦ v432 =

⎡
⎢⎢⎣
−xb
−ya
−zb
zb

⎤
⎥⎥⎦ v433 =

⎡
⎢⎢⎣
−xb
−ya
zb
−zb

⎤
⎥⎥⎦ v434 =

⎡
⎢⎢⎣
−xb
−ya
zb
zb

⎤
⎥⎥⎦

v441 =

⎡
⎢⎢⎣
−xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v442 =

⎡
⎢⎢⎣
−xa
−ya
−zb
zb

⎤
⎥⎥⎦ v443 =

⎡
⎢⎢⎣
−xa
−ya
zb
−zb

⎤
⎥⎥⎦ v444 =

⎡
⎢⎢⎣
−xa
−ya
zb
zb

⎤
⎥⎥⎦

Ellipsoid E4

S4 =

⎡
⎢⎢⎣
1.1459 0 0 0

0 2.8647 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s4 =

⎡
⎢⎢⎣
0.7
0
0
0

⎤
⎥⎥⎦
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Polytope X5

v511 =

⎡
⎢⎢⎣
xa
ya
−zb
−zb

⎤
⎥⎥⎦ v512 =

⎡
⎢⎢⎣
xa
ya
−zb
zb

⎤
⎥⎥⎦ v513 =

⎡
⎢⎢⎣
xa
ya
zb
−zb

⎤
⎥⎥⎦ v514 =

⎡
⎢⎢⎣
xa
ya
zb
zb

⎤
⎥⎥⎦

v521 =

⎡
⎢⎢⎣
−xa
ya
−zb
−zb

⎤
⎥⎥⎦ v522 =

⎡
⎢⎢⎣
−xa
ya
−zb
zb

⎤
⎥⎥⎦ v523 =

⎡
⎢⎢⎣
−xa
ya
zb
−zb

⎤
⎥⎥⎦ v524 =

⎡
⎢⎢⎣
−xa
ya
zb
zb

⎤
⎥⎥⎦

v531 =

⎡
⎢⎢⎣
−xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v532 =

⎡
⎢⎢⎣
−xa
−ya
−zb
zb

⎤
⎥⎥⎦ v533 =

⎡
⎢⎢⎣
−xa
−ya
zb
−zb

⎤
⎥⎥⎦ v534 =

⎡
⎢⎢⎣
xa
−ya
zb
zb

⎤
⎥⎥⎦

v541 =

⎡
⎢⎢⎣
xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v542 =

⎡
⎢⎢⎣
xa
−ya
−zb
zb

⎤
⎥⎥⎦ v543 =

⎡
⎢⎢⎣
xa
−ya
zb
−zb

⎤
⎥⎥⎦ v544 =

⎡
⎢⎢⎣
xa
−ya
zb
zb

⎤
⎥⎥⎦

Ellipsoid E5

S5 =

⎡
⎢⎢⎣
2.8648 0 0 0

0 2.8648 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s5 =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦

Polytope X6

v611 =

⎡
⎢⎢⎣
xb
ya
−zb
−zb

⎤
⎥⎥⎦ v612 =

⎡
⎢⎢⎣
xb
ya
−zb
−zb

⎤
⎥⎥⎦ v613 =

⎡
⎢⎢⎣
xb
ya
−zb
−zb

⎤
⎥⎥⎦ v614 =

⎡
⎢⎢⎣
xb
ya
−zb
−zb

⎤
⎥⎥⎦

v621 =

⎡
⎢⎢⎣
xa
ya
−zb
zb

⎤
⎥⎥⎦ v622 =

⎡
⎢⎢⎣
xa
ya
zb
−zb

⎤
⎥⎥⎦ v623 =

⎡
⎢⎢⎣
xa
ya
zb
−zb

⎤
⎥⎥⎦ v624 =

⎡
⎢⎢⎣
xa
ya
zb
−zb

⎤
⎥⎥⎦

v631 =

⎡
⎢⎢⎣
xa
−ya
zb
−zb

⎤
⎥⎥⎦ v632 =

⎡
⎢⎢⎣
xa
−ya
−zb
zb

⎤
⎥⎥⎦ v633 =

⎡
⎢⎢⎣
xa
−ya
−zb
zb

⎤
⎥⎥⎦ v634 =

⎡
⎢⎢⎣
xa
−ya
−zb
zb

⎤
⎥⎥⎦

v641 =

⎡
⎢⎢⎣
xb
−ya
zb
zb

⎤
⎥⎥⎦ v642 =

⎡
⎢⎢⎣
xb
−ya
zb
zb

⎤
⎥⎥⎦ v643 =

⎡
⎢⎢⎣
xb
−ya
zb
zb

⎤
⎥⎥⎦ v644 =

⎡
⎢⎢⎣
xb
−ya
zb
zb

⎤
⎥⎥⎦

Ellipsoid E6

S6 =

⎡
⎢⎢⎣
1.1459 0 0 0

0 2.8647 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s6 =

⎡
⎢⎢⎣
−0.7
0
0
0

⎤
⎥⎥⎦
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Polytope X7

v711 =

⎡
⎢⎢⎣
−xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v712 =

⎡
⎢⎢⎣
−xa
−ya
−zb
zb

⎤
⎥⎥⎦ v713 =

⎡
⎢⎢⎣
−xa
−ya
zb
−zb

⎤
⎥⎥⎦ v=14

⎡
⎢⎢⎣
−xa
−ya
zb
zb

⎤
⎥⎥⎦

v721 =

⎡
⎢⎢⎣
−xb
−ya
−zb
−zb

⎤
⎥⎥⎦ v722 =

⎡
⎢⎢⎣
−xb
−ya
−zb
zb

⎤
⎥⎥⎦ v723 =

⎡
⎢⎢⎣
−xb
−ya
zb
−zb

⎤
⎥⎥⎦ v724 =

⎡
⎢⎢⎣
−xb
−ya
zb
zb

⎤
⎥⎥⎦

v731 =

⎡
⎢⎢⎣
−xb
−yb
−zb
−zb

⎤
⎥⎥⎦ v732 =

⎡
⎢⎢⎣
−xb
−yb
−zb
zb

⎤
⎥⎥⎦ v733 =

⎡
⎢⎢⎣
−xb
−yb
zb
−zb

⎤
⎥⎥⎦ v734 =

⎡
⎢⎢⎣
−xb
−yb
zb
zb

⎤
⎥⎥⎦

v741 =

⎡
⎢⎢⎣
−xa
−yb
−zb
−zb

⎤
⎥⎥⎦ v742 =

⎡
⎢⎢⎣
−xa
−yb
−zb
zb

⎤
⎥⎥⎦ v743 =

⎡
⎢⎢⎣
−xa
−yb
zb
−zb

⎤
⎥⎥⎦ v744 =

⎡
⎢⎢⎣
−xa
−yb
zb
zb

⎤
⎥⎥⎦

Ellipsoid E7

S7 =

⎡
⎢⎢⎣
1.1459 0 0 0

0 1.1459 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s7 =

⎡
⎢⎢⎣
0.7
0.7
0
0

⎤
⎥⎥⎦

Polytope X8

v811 =

⎡
⎢⎢⎣
xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v812 =

⎡
⎢⎢⎣
xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v813 =

⎡
⎢⎢⎣
xa
−ya
−zb
−zb

⎤
⎥⎥⎦ v814 =

⎡
⎢⎢⎣
xa
−ya
−zb
−zb

⎤
⎥⎥⎦

v821 =

⎡
⎢⎢⎣
−xa
−ya
−zb
zb

⎤
⎥⎥⎦ v822 =

⎡
⎢⎢⎣
−xa
−ya
zb
−zb

⎤
⎥⎥⎦ v823 =

⎡
⎢⎢⎣
−xa
−ya
zb
−zb

⎤
⎥⎥⎦ v824 =

⎡
⎢⎢⎣
−xa
−ya
zb
−zb

⎤
⎥⎥⎦

v831 =

⎡
⎢⎢⎣
−xa
−yb
zb
−zb

⎤
⎥⎥⎦ v832 =

⎡
⎢⎢⎣
−xa
−yb
−zb
zb

⎤
⎥⎥⎦ v833 =

⎡
⎢⎢⎣
−xa
−yb
−zb
zb

⎤
⎥⎥⎦ v834 =

⎡
⎢⎢⎣
−xa
−yb
−zb
zb

⎤
⎥⎥⎦

v841 =

⎡
⎢⎢⎣
xa
−yb
zb
zb

⎤
⎥⎥⎦ v842 =

⎡
⎢⎢⎣
xa
−yb
zb
zb

⎤
⎥⎥⎦ v843 =

⎡
⎢⎢⎣
xa
−yb
zb
zb

⎤
⎥⎥⎦ v844 =

⎡
⎢⎢⎣
xa
−yb
zb
zb

⎤
⎥⎥⎦

Ellipsoid E8

S8 =

⎡
⎢⎢⎣
2.8647 0 0 0

0 1.1459 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s8 =

⎡
⎢⎢⎣

0
0.7
0
0

⎤
⎥⎥⎦
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Polytope X9

v911 =

⎡
⎢⎢⎣
xb
−ya
−zb
−zb

⎤
⎥⎥⎦ v912 =

⎡
⎢⎢⎣
xb
−ya
−zb
−zb

⎤
⎥⎥⎦ v913 =

⎡
⎢⎢⎣
xb
−ya
−zb
−zb

⎤
⎥⎥⎦ v914 =

⎡
⎢⎢⎣
xb
−ya
−zb
−zb

⎤
⎥⎥⎦

v921 =

⎡
⎢⎢⎣
xa
−ya
−zb
zb

⎤
⎥⎥⎦ v922 =

⎡
⎢⎢⎣
xa
−ya
zb
−zb

⎤
⎥⎥⎦ v923 =

⎡
⎢⎢⎣
xa
−ya
zb
−zb

⎤
⎥⎥⎦ v924 =

⎡
⎢⎢⎣
xa
−ya
zb
−zb

⎤
⎥⎥⎦

v931 =

⎡
⎢⎢⎣
xa
−yb
zb
−zb

⎤
⎥⎥⎦ v932 =

⎡
⎢⎢⎣
xa
−yb
−zb
zb

⎤
⎥⎥⎦ v933 =

⎡
⎢⎢⎣
xa
−yb
−zb
zb

⎤
⎥⎥⎦ v934 =

⎡
⎢⎢⎣
xa
−yb
−zb
zb

⎤
⎥⎥⎦

v941 =

⎡
⎢⎢⎣
xb
−yb
zb
zb

⎤
⎥⎥⎦ v942 =

⎡
⎢⎢⎣
xb
−yb
zb
zb

⎤
⎥⎥⎦ v943 =

⎡
⎢⎢⎣
xb
−yb
zb
zb

⎤
⎥⎥⎦ v944 =

⎡
⎢⎢⎣
xb
−yb
zb
zb

⎤
⎥⎥⎦

Ellipsoid E9

S1 =

⎡
⎢⎢⎣
1.1459 0 0 0

0 1.1459 0 0
0 0 0.0050 0
0 0 0 0.0050

⎤
⎥⎥⎦ s1 =

⎡
⎢⎢⎣
−0.7
0.7
0
0

⎤
⎥⎥⎦
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