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CHAPTER I 
 

INTRODUCTION 
 

1.1 Genetics Background 

Human Genome 

The human body is made up of trillions of cells. In the cell, there is a ball-
shaped structure called the nucleus which contains thread-like structures called 
chromatins. The chromatin is a long strand of the genetic material bound together with 
proteins called deoxyribonucleic acid, or DNA. The sequence of DNA is same as the 
blueprint of life. DNA provides the information that directs all cellular activities and 
specifies the development plan of multi-cellular organisms. The creation of various 
functions and forms of cells in an organism is controlled by the DNA codes. The regions 
of the DNA sequence that can be coded for proteins are called genes. The human 
genome is the complete DNA sequence, involving all genetic materials that make up 
humans.  

DNA is a polymer. The monomer units of DNA are nucleotides, and the 
polymer is known as a “polynucleotide”. Base nucleotide consists of a 5-carbon sugar 
(deoxyribose), a nitrogen containing base attached to the sugar, and a phosphate 
group. There are four different types of nucleotides found in DNA, differing only in the 
nitrogenous base. The four nucleotides are given one letter abbreviation as shorthand 
for the four bases as follows: A is for adenine, G is for guanine, C is for cytosine, and T is 
for thymine. 

Single Nucleotide Polymorphisms (SNPs) 

In the human genome, there are over 3 billions nucleotides. Most 
nucleotides are similar across the population. About 0.1% of nucleotides in the human 
genome are varied across the population. A Single Nucleotide Polymorphism (SNP) is a 
change in DNA that occurs when a single nucleotide (A, T, C, or G) in the DNA 
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sequence is altered. For example, in the DNA sequence AAGT, a SNP occurs when the 
G base changes to C, and the sequence becomes AACT. SNPs are generally biallelic 
systems; that is, there are only two alleles that an individual may have for a particular 
marker. The biallelic system can be described by the infinite sites model (Halliburton, 
2004). Under this model, each nucleotide position (site) within a DNA sequence is 
considered independently. It assumes that the mutation rate per nucleotide is low 
enough that most nucleotides do not mutate, and those that do, mutate only once. Thus, 
any given nucleotide site will show at most only two alleles (different nucleotide cause 
different gene) in the population. 

SNPs are the simplest forms and the most common source of genetic 
variations in the human genome. Variations in DNA sequence can have a major impact 
on how humans respond to disease; environmental insults such as bacteria, viruses, 
toxins, and chemicals; drugs; and other therapies. This makes SNPs of great value for 
biomedical research and for developing pharmaceutical products or medical 
diagnostics. It can be concluded that, SNP is a small change in a sequence of DNA. In 
fact, it involves only a single chemical change. SNPs, by definition, do not cause health 
problems for people that have them, but they can be useful when studying diseases in 
the general population, as they are natural variations that we all have. 

Haplotype 

To study at particular regions of interest on the human genome, 
researchers usually use a genetic map as a tool. Genetic maps have landmarks known 
as genetic markers or “markers” for short. The term “maker” is used very broadly to 
describe any observable variations that result from an alternation, or mutation, at a 
single genetic locus (the specific location in the DNA sequence is called locus). The 
commonly used DNA markers are Single Nucleotide Polymorphisms (SNPs) and 
microsatellite polymorphisms (a variable number of repetitions of a very small number of 
nucleotides within a sequence). In general, any one of a number of alternative forms of 
the marker at each locus in the DNA sequence is called allele. Each allele presents the 
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genetic variant in the human genome. A sequence of alleles from a single chromosome 
is called haplotype (some literatures may specifically define the haplotype as the group 
of closely linked alleles that are found in a single chromosome and tend to be inherited 
together).  

In most researches on the problem of haplotype inference, the data that 
have been analyzed and focused on are typically the SNP haplotypes. The SNP 
haplotype refers to the sequence of SNP markers on a single chromosome. SNPs are 
the most common form of genomic variation that is used for disease association. The 
study of SNPs and their diversity in a population is central to disease association 
research. The genetic variant influences how people differ in their risk of disease or their 
response to drugs. It is widely anticipated that the study of variation in the human 
genome will provide a means of predicting risk of a variety of complex diseases. 

Each SNP marker can be analyzed independently from other markers 
and it succeeds in identifying individual genes responsible for monogenic disease such 
as Huntingtons and cystic fibrosis. However, most common diseases such as diabetes, 
cancer, stroke, heart disease, depression, and asthma, are affected by multiple genes 
and environmental factors. So when trying to map disease gene, it is more effective and 
informative to analyze SNP markers in a region of interest simultaneously than single 
SNP markers. And also, when using SNP haplotype, only the information from a relatively 
small set of SNPs that capture most of the common patterns of SNP haplotypes can be 
used to test for association with a particular disease, which can reduce the complexity 
of SNPs study.  

Several studies of SNP haplotype structures in the human genome in 
various populations have been published recently, especially, the international HapMap 
project which is a large-scale project aiming to determine the common patterns of DNA 
sequence variation in the human genome, by characterizing sequence variants, their 
frequencies, and correlations between them, in DNA samples from various populations 
(The international HapMap consortium, 2003). Such knowledge may provide valuable 

 



                                                                                                              
                                                                                                                                                              4 

 
information on studies of human evolutionary history, genome wide association, and 
lead to the development of more efficient strategies to identify genetics variants that 
increase susceptibility to human diseases (Zhoa, Pfeiffer, and Gail, 2003).  

Haplotype Block 

Recently, several studies have proposed that the human genome has a 
block-like structure such that it can be decomposed into large blocks referred to as 
haplotype blocks (Daly et al., 2001; Patil et al. 2001; Gabriel et al., 2002). A haplotype 
block is the apparent haplotypic structure of the recombining portions of the genome, in 
which sets of consecutive co-inherited alleles are separated by short boundaries. In 
each block, there is little to no evidence for historical recombination and only a few 
common haplotypes are observed. At any two consecutive blocks, they are separated 
by a short region called hotspot at which recombination could be inferred in the history 
of sample. It is now becoming clear that chromosomal recombination is mostly limited to 
specific hotspots. At present, there is still a debate about the origins of haplotype blocks 
and whether the boundaries correspond to recombination hotspots. 

Within each block, a very small number of common haplotypes (three to 
five) typically capture about 90% of all chromosomes in each population (Gabriel et al., 
2002). This finding is very important to disease association studies, since once the 
blocks and common haplotypes are identified, one can hopefully obtain a much 
stronger association between a haplotype and a disease phenotype. Moreover, rather 
than typing every individual SNP in a particular block, one can choose few 
representative SNPs that suffice to determine all common haplotypes of the block 
(Sebastiani et al., 2003). These representative SNPs are called haplotype tagging SNPs 
(htSNPs) which are able to distinguish the haplotypic variations in a population. Using 
such tag SNPs allows a major saving in typing costs.  

The finding of haplotype block has the initiative of developing of a 
haplotype map which is expected to be a tool that will allow the discovery of sequence 
variants that affect common disease, will facilitate development of diagnostic tools, and 
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will enhance our ability to choose targets for therapeutic intervention (The international 
HapMap consortium, 2003). 

Haplotype mapping is often carried out as part of a genome scan. In a 
population isolate, the appearance of a rare Mendelian disease is almost always 
attributable to a single founder gene or mutation. The disease allele can be identified by 
searching for a common haplotype signature (the haplotype surrounding a particular 
disease susceptibility allele) shared among patients. As the ancestral haplotype 
signature is passed from generation to generation, it is disrupted by recombination. 
Partial conservation of the haplotype signature in a patient strongly suggests that the 
disease locus resides in the conserved region of the haplotype. (Peltonen, Palotie, and 
Lange, 2000) 

Haplotyping 

In diploid organisms (such as human), each cell nucleus contains two 
nearly identical copies of each chromosome arranged in pair, one in each pair inherited 
from each parent which is the nature of genetic inheritance for diploid organisms. So at 
each locus on the chromosome pair, there are two alleles, each one from each parent.  
The known allele pair at each locus is called genotype which itself does not specify 
which allele comes from the father or mother. The term “genotype” can refer to the 
alleles that a person has at a particular locus or for many loci across the genome. The 
DNA sequence from a chromosome pair may be represented by a genotype or 
separately represented by two haplotypes. A method that discovers what genotype a 
person has is called genotyping while a method for determining the haplotypes is called 
haplotyping.  

Currently, a variety of technologies offers practical tools with high-
throughput for genotyping, such as the 5’ nuclease assay (Taq-Man), the 
oligonucleotide ligation assay (OLA), and Sequenom’s matrix-assisted laser 
desorption/ionization (Jenkins and Gibson, 2002). In contrast, current experimental 
methods for haplotyping are technically complicated and cost prohibitive. The direct 
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laboratory haplotyping assays, such as long-range allele-specific PCR 
(MichalatosBeloin et al., 1996) or diploid-to-haploid conversion (Douglas et al., 2001), 
are expensive and low-throughput. Thus, a more sensible strategy is to infer haplotypes 
from the genotype data using the computational methods, either with or without 
pedigree information. This strategy is still the major choice in most haplotype-based 
studies, because of both the lower cost of genotyping and the availability of fast and 
accurate haplotyping algorithms. 

Given the genotype data of each individual, the haplotype of each 
individual can be inferred using the computational methods (Bonizzoni et al., 2003). 
There are several methods for inferring haplotypes from genotype data, which can be 
separated into two categories, statistical methods and rule-based methods. Both 
methodologies can be applied to pedigree data and population data (that have no 
pedigree information). Statistical approaches (Lin and Speed, 1997; Fallin and Schork, 
2000; Stephens, Smith, and Donnelly, 2001; Stephens and Donnelly, 2003) estimate 
haplotype frequencies in addition to the haplotype configuration for each individual. But 
the algorithms of most statistical approaches are usually very time-consuming and thus 
cannot handle large data sets. On the other hand, rule-based approaches are usually 
very fast, although they normally do not provide any numerical assessment of the 
reliability of their results. By utilizing some reasonable biological assumptions such as 
the minimum recombination principle, rule-based methods have been proven to be 
powerful and practical (Gusfield, 2001; Eskin, Halperin, and Karp, 2003; Quin and 
Beckmann, 2002). 

Genotyping Error 

All large genotype data sets usually have errors caused from the errors 
in the genotyping process. Genotyping errors can be due to operational errors or 
genotype scoring errors. Because of an increased use of robotic workstations, stringent 
quality control procedures, and optimized experimental conditions, the occurrence of 
operational errors has been greatly reduced for high-throughput genotyping 
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technologies developed in recent years. In contrast, genotype scoring errors remain a 
significant challenge for automated scoring programs. (Kang et al., 2004) 

There are two types of genotyping errors: those inconsistent with 
Mendelian inheritance commonly known as “Mendelian errors” and those consistent with 
Mendelian inheritance. The genotype is considered to be Mendelian consistent if the 
alleles in the offspring (child) come from its parent’s alleles. If an allele does not inherit 
from the parent, it is said to be inconsistent. Given sufficient pedigree and marker data, 
Mendelian errors can be detected by incorporating checks for consistency with 
Mendelian inheritance. Many genotyping laboratories are content to detect and delete 
only Mendelian errors while it is much harder to detect the errors that are consistent with 
Mendelian inheritance. (Sobel, Papp, and Lange, 2002) 

Detecting errors using only Mendelian consistency checking has the 
detection rate about 25% to 30% of the real genotyping errors and the errors are 
especially difficult to detect for biallelic markers (Gordon, Heath, and Ott, 1999). Thus, 
checking for Mendelian inconsistency cannot exclude all genotyping errors. The errors 
in the pedigree data not only cause the inconsistency of Mendelian inheritance, they 
also cause some artifacts of the recombination event. So it is necessary to be aware of 
the possible occurrences of both inconsistencies and recombination events in the 
pedigree data that have a chance of having errors. 

Missing Genotype 

Determining the genotype value in the genotyping process is performed 
by genotype scoring. For the automated scoring programs, genotype scoring errors 
remain a significant challenge. In circumstances when genotype clusters are not 
sufficiently separated, which can be caused by wide variations in fluorescence signals 
for different subjects and unbalanced amplifications of the two alternative alleles for 
heterozygotes, genotype scoring is typically performed manually. However, this is 
extremely time consuming and error prone (humans are likely to make errors due to 
fatigue or oversight when manual scoring becomes routine). (Kang et al., 2004) 
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When the genotype clusters are not sufficiently separated, the unsure 

determinations of genotypes may result in errors. Instead, as another choice, the 
ambiguous genotypes may be designated as missing genotype (missing data). For this 
work, we will use the term “missing alleles” to refer to the ambiguous alleles from the 
genotyping process. The occurrence of missing alleles in a pedigree data is considered 
to be significant in this work. 
 

1.2 Haplotype Inference on a Pedigree 

We are interested in the problem of haplotype inference from the 
genotype data on a pedigree, which is the process of determining the haplotypes from 
the genotype data for each individual in the pedigree. For this problem, the optimality 
criterion generally used for finding the haplotype solutions is finding haplotype 
configurations with minimum number of recombinants (Bonizzoni et al., 2003). This 
criterion comes from a minimum recombination principle which basically says that a 
genetic recombination is rare and thus haplotypes with fewer recombinants should be 
preferred in a haplotype inference (Li and Jiang, 2003). The minimum recombination 
principle is well supported by practical data, especially with the data from the region 
within a haplotype block (Daly et al., 2001; Patil et al. 2001; Gabriel et al., 2002).  

In the case that the genotype data are obtained from the region within a 
block (haplotype block), there should be no recombination event in the pedigree data. 
Accordingly, the optimality criterion used for inferring the haplotypes should be modified 
from the minimum number of recombinants to be no recombinant. But despite the nature 
of haplotype block, there is still a chance (although very less) for the real pedigree data 
to have recombination events. These abnormal recombination events can probably 
occur by the occurrence of genotyping errors which are often found in the practical 
data. This means that whether the pedigree data come from either the region that 
probably has recombination events or the region in a block which should have no 
recombination, there is still a chance for the occurrence of recombination events. Thus, 
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it is more preferable to use the minimum number of recombinants as an optimality 
criterion for this inference problem. And so, in this work, we will use the minimum 
number of recombinants as an optimality criterion for inferring haplotype on a pedigree 
in order to allow the inference method to be able to support the pedigree data in general 
cases.  

For this work, the problem of haplotype inference from the genotype data 
on a pedigree can be stated as follows. Given a pedigree and the genotype information 
of each member in the pedigree with possibly contains missing data; we want to find the 
haplotype configurations for each member such that there is minimum number of 
recombination events in the whole pedigree. We call this problem the Minimum-
Recombinant Haplotype Configuration (MRHC) problem, which firstly proposed by 
Tapadar, Ghosh, and Majumder (2000). There are two ways to solve this optimization 
problem, one that gives the approximated solutions and one that gives the exact 
solutions. The methods that give the approximated solutions mostly base on the greedy 
algorithms, which use a shorter running time and can support large data sets. But the 
solution does not guarantee the optimal solutions. In contrast, the methods that give the 
exact solutions which guarantee the optimal solutions perform slowly on the large data 
sets. This is the trade off between these two types of methods. 
 

1.3 Objective of the Research 

We are interested in the method for finding the exact solutions of the 
MRHC problem. From the work of Li and Jiang (2003), it has been proved that finding 
exact solutions for the MRHC problem is an NP-hard, which means that the computing 
time increases exponentially by the size of data (the haplotype length and the pedigree 
size). Although there are some recent works that proposed the methods for finding the 
exact solutions of the MRHC problem (Doi, Li, and Jiang, 2003; Li and Jiang, 2004), 
these works still have some limitations.  
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The first limitation is the restriction on the size of data. The results from 

the previous works show that their methods have restrictions on the size of pedigree and 
the haplotype length (Doi, Li, and Jiang, 2003; Li and Jiang, 2004). This restriction 
comes from the fact that the computing time of this problem increases exponentially by 
the size of data. In the human genome, haplotype blocks tend to be approximately from 
a few kilobases (kb) to hundreds kilobases in size (Daly et al., 2001; Patil et al. 2001; 
Gabriel et al., 2002) and therefore it probably contains up to a hundred of SNPs that 
travel as a group. Since SNPs occur (on average) every 1,000–2,000 bases (The 
International SNP Map Working Group, 2001), so the number of SNP in each block can 
be up to a hundred. This means that the length of haplotype to be inferred can be up to 
a hundred of loci. But the exponential nature of the computing time limits a typical 
algorithm to be feasible for only the haplotype of about less than 20 loci in length. This 
restriction makes the current methods impractical for the case of inferring long 
haplotypes (more than 20 loci in length).  

The major point that we are interested is to develop a method that can 
work with long haplotypes. By considering from the available methods that have been 
proposed for solving this problem, we are interested in the method of Doi, Li, and Jiang 
(2003) which uses the dynamic programming to solve the MRHC problem. The results of 
this method show that using the dynamic programming can make the computing time 
linear with increasing of the haplotype length, but it is restricted to work only on very 
small size of a pedigree (not over 10 of members). The first objective of this work is to 
improve this method of Doi, Li, and Jiang so that the computing time of the dynamic 
programming is reduced and also supports larger sizes of a pedigree. 

Beside the improvement of computing time, there is another limitation 
that we will consider. From the method of Doi, Li, and Jiang (2003), it cannot handle the 
pedigree data that have missing alleles. In practice, pedigree data often contain a 
significant amount of missing alleles. For example, as much as 14.5% of the alleles 
belonging to a block could be missing in the pedigree data studied in the work of 
Gabriel et al., 2002. So another objective is to make the inference process handle the 
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missing alleles, by incorporating the algorithm for imputing the missing alleles to the 
method of Doi, Li, and Jiang based on the Mendelian law of inheritance. 

The cases that the alleles are Mendelian inconsistent can be caused 
from the real mutation events or the error of the genotype data (genotyping errors). The 
case of real mutation events may be very rare but the case of genotyping errors is often 
found. Although there are many works that proposed the method for identifying the 
Mendelian inconsistencies in the pedigree data (O’Connell and Weeks, 1998; Aceto et 
al., 2003), there is no investigation for the case of pedigree data containing some 
missing alleles. Since this work allows the occurrence of missing alleles, as a 
consequence, we cannot use the existing methods to handle the problem of Mendelian 
inconsistent data. All of current available methods for solving MRHC problem assume 
that the genotype data must be consistent with Mendelian inheritance (Mendelian law). 
The minor objective of this work is to improve the inference method, so that it can work 
with the data that possibly contain some Mendelian inconsistent alleles, which has never 
been investigated in the previous works. The method that we will use for solving this 
problem is to add a pre-process for finding all possible pedigree haplotypes that has 
minimum number of inconsistent alleles. This method based on our assumption which 
assumes that the pedigree haplotypes with fewer inconsistent alleles are preferred in a 
haplotype inference.  

In summary, the objective of this work is to improve the method of Doi, Li, 
and Jiang (2003) so that: 

1. The dynamic programming time (computing time) is reduced and 
feasible for inferring long haplotypes (more than 20 loci) in a moderate size pedigree 
(15-25 members). 

2. The inference process can handle the missing alleles, by 
incorporating an algorithm for imputing the missing alleles based on the Mendelian law 
of inheritance. 
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3. The occurrence of Mendelian inconsistent alleles is allowed by 

assuming only a few (this is a minor objective). 
 

1.4 Scope of the Research 

This research will focus on the method of finding the minimum 
recombination haplotype configuration. We will not emphasize on the improvement of 
the accuracy for the haplotype inference problem. We only emphasize on the 
improvement of the current dynamic programming method for MRHC problem so that it 
runs efficiently with respect to the time and data size. We also consider the problem of 
missing alleles and inconsistent genotype data. The algorithm for handling the 
inconsistent genotypes is not the error correction algorithm; it is just the way to ignore 
those inconsistent genotypes which cause the conventional method to be disrupted. So 
there will be no statistical assessment of the reliability of this algorithm. 

Inferring the haplotypes based on the minimum-recombination criterion 
normally results in many haplotype solutions. This work will not concern with the method 
for selecting the best one. We may think of this work as the pre-filtering phase for the 
haplotype inference problem. 

The genotype data are assumed to be any types of genetic markers. The 
data that we used in the research comes from the simulation method. We develop a 
simulation program for generating the pedigree data so that we can easily incorporate 
and adjust all variables that will effect on the MRHC problem. The experiment on the real 
data will be ignored in this research. 
 

1.5 Assumptions and Limitations 

The main assumption for this work is that the genotype data for the 
inference problem is assumed to be from the group of loci in which the recombination 
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events very rarely occur. The data may be from a region within a block (haplotype block) 
which should have no recombination event or from a group of any interesting loci. 

The occurrence of inconsistent genotypes is assumed to be very rare so 
that they cannot make any significant effects on the reliability of haplotype solutions. 

At present, the public pedigree data are unavailable. Then one limitation 
is the lack of the real testing data. In this work, we will use the synthetic data which are 
generated from our simulation model. We assume that we can incorporate all necessary 
variables that can affect on the results of the algorithm. This means that the simulated 
data can be used to test and evaluate the algorithm almost as same as the real data. 

Since this work only focuses on the improvement of the current dynamic 
programming method that works with long haplotypes, the other limitation is that the 
proposed method will has no significant improvement on the aspect of the pedigree 
size. 
 

1.6 Benefit of the Research 

This work improves the current algorithm for the problem of haplotype 
inference on a pedigree so that the computational method can be used more practically 
in the real-life usages. 
 

1.7 Outline of the Research 

This research is organized as follows. The next chapter is the literature 
review. In Chapter 3, the biological background for the haplotype inference problem and 
also the concept of the dynamic programming algorithm will be introduced. The 
formulation of the problem will be described in Chapter 4. The details of our proposed 
method will be presented in Chapter 5. The experimental results will be presented in 
Chapter 6 and the conclusion is in Chapter 7. 

 



CHAPTER II 
 

LITERATURE REVIEW 
 

A study of the haplotype diversity in a population became central to 
disease association research. The haplotypes was used for genome wide association 
studies and in the study of population histories. Unfortunately, current experimental 
techniques to infer the haplotypes of an individual are both expensive and time 
consuming. In contrast, a variety of current technologies offers practical tools with high-
throughput for genotype determination. Therefore, several methods of inferring 
haplotypes from the genotype data have been proposed (Bonizzoni et al., 2003). 

The previous works of inferring haplotypes from genotype data can be fit 
into two categories, statistical methods and rule-based methods. Statistical approaches 
(Lin and Speed, 1997; Fallin and Schork, 2000; Stephens, Smith, and Donnelly, 2001; 
Stephens and Donnelly, 2003) estimate haplotype frequencies in addition to the 
haplotype configurations for each individual. The statistical approaches are time 
consuming and only used the population genotype data without a pedigree structure. 
The inferred haplotypes from the statistical methods that perform inference without a 
pedigree data are not guaranteed to be consistent with the Mendelian law. On the other 
hand, rule-based approaches typically use the genotype data with a pedigree structure. 
The addition information from the pedigree structure makes the rule-base approaches 
faster than the statistical approaches. The haplotype inference with a pedigree can 
result in a high degree of accuracy because the constraints provided by other members 
in a pedigree would force the algorithm to settle on a unique haplotype as being the 
most probable. 

Haplotyping analysis in a pedigree considers the whole space of all 
possible distinct haplotype configurations and uses some criteria to select the most 
probable haplotype configurations. 
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Tapadar, Ghosh, and Majumder (2000) firstly used the minimum 

recombination principle for the problem of haplotype inference on a pedigree. The 
minimum recombination principle states that the genetic recombination is rare and thus 
haplotypes with only a few of recombinants should be included in a haplotype inference 
(the rationale for and pitfalls of ignoring those haplotype configurations that does not 
have minimum number of recombinants require further investigation). The haplotype 
inference problem based on this principle can be formulated as an optimization problem 
in which the solutions are those haplotype configurations that have minimum number of 
recombinants. The method that Tapadar, Ghosh, and Majumder proposed uses a 
genetic algorithm to find the optimal solutions. But their method is hard to extend to 
handle the missing genotypes and is not expected to find all minimum-recombinant 
haplotype configurations in a limited computing time. In this paper, we refer to the 
haplotype inference using the minimum recombination principle as the minimum-
recombinant haplotype configuration (MRHC) problem. 

Qian and Beckmann (2002) proposed a six-rule minimum-recombinant 
haplotyping (MRH) algorithm that exhaustively searches all possible minimum-
recombinant haplotype configurations in a large pedigree with many markers and allows 
missing genotype data to be imputed during the haplotyping process. This method 
performs very well for small pedigrees, but it runs extremely slow on data of moderate 
sizes, especially for data with biallelic markers. 

Li and Jiang (2003) showed that MRHC problem is in general NP-hard, 
which means that the computing time increases exponentially with respect to the data 
size. They developed an iterative heuristic algorithm, called block-extension, for finding 
MRHC which is more efficient than the previous work of Qian and Beckmann. This 
algorithm assumed that the input genotype data are consistent with the Mendelian law. 
The missing alleles are imputed using random sampling method based on the allele 
frequency. Although this algorithm does not give the exact or real optimal solutions (the 
haplotype configurations with minimum number of recombinants), the experimental 
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results show that the solutions from the block-extension algorithm are often close to the 
optimal solutions when the minimum number of recombinants required is small. 

Doi, Li, and Jiang (2003) proposed two dynamic programming 
algorithms for finding the exact solutions of MRHC problem, the locus-based and the 
member-based dynamic programming algorithms. Their algorithms cannot handle 
missing data and the algorithms are developed for small data size. The member-based 
algorithm is appropriated for pedigrees of small sizes (less than 10 members) and the 
locus-based algorithm is appropriated for non-looped pedigrees with a small number of 
marker loci.  

Li and Jiang (2004) develop an effective integer linear programming 
(ILP) formulation of the MRHC problem with missing data. The ILP is solved by a branch-
and-bound strategy that utilizes a partial order relationship (and some other special 
relationships) among variables to decide the branching order. This method can give the 
exact solutions and also incorporate a consistent imputation of missing alleles in the 
optimization process. Their experiment on the simulated data shows very efficient and 
highly accurate results. But we still in doubt with the results of their algorithm because 
when we used their program, PedPhase, to test with our simulated data, we found that 
the solutions are not exactly optimal.  

In this work, we are interested in the method that can work with long 
haplotypes. By considering available methods, we are interested in the method of Doi, 
Li, and Jiang (2003) which uses dynamic programming algorithm to solve the MRHC 
problem. The results from their method showed the linear computing time using the 
dynamic programming, though it was restricted to work only on very small size of a 
pedigree (not over 10 members). This shows the feasibility of the dynamic programming 
method to be used for the case of inferring long haplotypes. 

Also, all previous works assume that the input genotype data must be 
consistent with the Mendelian law. The genotype is consistent with the Mendelian law if 
the alleles in the offspring (child) come from its parents’ alleles. If the allele does not 
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inherit from the parents, it is said to be Mendelian inconsistent. The case that the 
pedigree data contain some Mendelian inconsistencies will be also considered in this 
work. 

For this research, we intend to develop an algorithm for inferring long 
haplotypes from the genotype data on a pedigree that contains some missing alleles. 
We will improve the dynamic programming method of Doi, Li, and Jiang (2003) so that it 
works efficiently with respect to the computing time and data size; and also, it works with 
the data containing some missing alleles and with the rare occurrence of Mendelian 
inconsistent alleles. 

 



CHAPTER III 
 

BACKGROUND KNOWLEDGES 
 

3.1 A Brief Review of Genetics 

Genetics is about the transfer of information among many different levels 
of an organism. The foundation level is a molecule called DNA. The information in DNA 
is organized into genes. Genes, in turn, make up chromosomes. Every cell in an 
individual contains a genome. At last, the population level involves how individuals are 
genetically connected to their families and larger populations through inheritance 
patterns. The genetic terms related to each level are described as follows.  

DNA 

DNA, an abbreviation for deoxyribonucleic acid, is a macro-molecule 
polymer found in the nucleus of cells. DNA is in the form of twisted double strand 
(double helix) held together by weak bonds between base pairs of nucleotides. The four 
nucleotides in DNA contain the bases adenine (A), guanine (G), cytosine (C) and 
thymine (T). In nature, base pairs form only between A and T and between G and C, 
thus the base sequence of each single strand can be deduced from that of its partner. 
DNA carries the genetic information necessary for the organization and functioning of 
most living cells. The nucleotide sequence on the DNA acts like a blueprint of life. It 
directs all cellular activities and specifies the development plan of multi-cellular 
organisms. The specific location in the DNA sequence is called locus. 

Mutation 

Mutation is defined as any heritable change in the genetic material. In 
the DNA sequence, mutation is both the process by which a gene or chromosome 
changes structurally and the end result of that process. Mutation is the ultimate source 
of all genetic variations; without mutation, the biological diversity that exists today could 
not have evolved. The mutation can be caused by an error in replication or some 
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external influence such as exposure to chemicals and radiation. The mutation of primary 
concern in this work is the point mutation. The point mutation is the change of a single 
nucleotide in the nucleotide sequence. When a particular nucleotide is replaced with the 
other one, the reading codon of the gene will change and may result in a new protein. 
So, mutation is an alternation in the sequence of DNA, which can potentially lead to 
health problems. 

Gene 

Gene is the basic unit of heredity in a living cell. It is a sequence of 
contiguous nucleotides located in a particular position on a particular chromosome that 
encodes for a specific RNA molecule or protein. Genes are the “blueprint” for the growth 
and development of the organisms. The alternative forms of a gene at any specific locus 
are called alleles. In general, the term “allele” is used as one of the variant forms of a 
DNA sequence at a particular locus on a chromosome (such as the genetic markers). 

Chromosome 

A chromosome is a thread-like structure found in the nucleus of a cell. It 
is a very long strand of DNA, which carries the genetic material in the form of genes, 
regulatory elements and other intervening nucleotide sequences. Each cell in the human 
body contains 23 pairs of chromosomes. One chromosome in each pair comes from the 
mother and one from the father. Egg and sperm cells have only 23 chromosomes each. 
Chromosomes number 1-22 are autosomes and the last pair is the sex chromosomes, 
XX for a female and XY for a male. Each chromosome contains about 2,000 genes. The 
total human genome consists of about 35,000 genes. 

Recombination 

During meiosis (the type of cell division that produces the gametes, egg 
and sperm), two chromosomes of each pair become physically close. And then, the 
exchange of portions between two closed chromosomes may occur. The resulting 
chromosomes are the combination of the portions from the two original chromosomes. 
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This process is called recombination and the process of portions exchanging is called 
crossing-over. 

Genetic Markers 

Just like the city maps that have buildings served as landmarks, genetic 
maps have landmarks known as genetic markers or “markers” for short. The term 
“maker” is used very broadly to describe any observable variations that result from an 
alternation, or mutation, at a single genetic locus (the specific location in the DNA 
sequence is called locus). Genetic marker is a segment of DNA at a known physical 
location on a chromosome. A marker can be a gene or a section of DNA with no known 
function. They can be used to track the inheritance pattern of genes that have not yet 
been identified, but whose approximate locations are known. The commonly used DNA 
markers are SNPs and microsatellite polymorphisms. Like the form of gene, each 
different forms of the genetic marker is also called allele. 

SNP (single nucleotide polymorphism) is a variation in the DNA 
sequence that occurs when a single nucleotide (A, T, C, or G) in the genome sequence 
is altered. For a variation to be considered as SNP, it must occur in at least 1% of the 
population. SNPs, which make up about 90% of all human genetic variations, occur 
every 100 to 300 bases along the 3-billion-base human genome. Most of the SNPs have 
only two alleles (called biallelic). 

Microsatellite is defined as a unit of variable number of repeating of 
about 2 to 5 nucleotides (e.g., CACACA). The average number of repeats in a cluster is 
usually about 10 to 20. At each locus there may be dozens of different alleles 
corresponding to different numbers of repeats. In the human genome, there are at least 
50,000 microsatellite loci. 

Genetic Inheritance 

In diploid organisms (such as human), each cell nucleus contains two 
nearly identical copies of each chromosome arranged in pair, one in each pair inherited 
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from each parent which is the nature of genetic inheritance for diploid organisms. So at 
each locus on the chromosome pair, there are two alleles, each one from each parent.  
The known allele pair at each locus is called genotype which itself does not specify 
which allele comes from the father or the mother. . The term “genotype” can refer to the 
alleles that a person has at a particular locus or for many loci across the genome. At a 
particular locus, if it has two identical alleles, it is said to be homozygous otherwise it is 
said to be heterozygous. 

The nature of the genetic inheritance of the diploid organisms is 
corresponding to the Mendelian law of inheritance. In the Mendelian law, it states that 
the alleles in an offspring (child) must inherit from the alleles of the parents. For a 
particular allele in an offspring, if it inherits from at least one of the parents, we will say 
that this allele is consistent with the Mendelian law or it is Mendelian consistent, 
otherwise it is inconsistent with the Mendelian law.  

Pedigree 

To study the inheritance of the genetic traits in the population, the 
biologists usually use a pedigree. Generally, the pedigree is a family tree diagram that 
shows how a particular genetic trait or disease has been inherited. But for this work, the 
pedigree is used to show the genotype data corresponding to each member and to 
show the relations of the genotypes between each related member. In the pedigree, all 
members connect to each other by some relations such as mate, offspring (child) or 
parent, and so the pedigree can be represented as a linked graph.  

Typically, the researches on the computational method for the problem 
of haplotype inference on a pedigree need a large number of pedigree samples for the 
experimental testing. We have found that the public sources for obtaining the pedigree 
data that represent the genotypes of each member is hard to find, especially if we are 
not the researchers that directly concern in the field of genetics. Most of researches on 
the problem of haplotype inference on a pedigree usually use the simulated version of 
the pedigree data.  
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To simulate the pedigree data, one must understand the basic of 

population genetics. Population genetics is the field that considers the factors that 
determine the evolution of a population, such as a natural selection, a genetic drift, a 
mutation, a recombination, and a gene flow. We can simulate the genetic inheritance in 
the population using the evolution models that have been presented by many theories in 
population genetics. In population genetics, the population is usually separated into 
generations. Each generation contains the group of population that is alive in the same 
period of time. The genetic inheritance from one generation the other consecutive 
generation is controlled by many of genetic variables. Based on this generation-based 
model, we can build the simulation program for generating the genotype data of the 
population for many generations. Therefore, the genotype data of the population in the 
form of pedigree structure can be obtained from the simulation program. 
 

3.2 Dynamic Programming 

(This section is adapted from Winston, 2004) 

Dynamic programming is one of a technique used to solve an 
optimization problem. In general, dynamic programming obtains solutions by breaking 
up a large, unwieldy problem into a series of smaller, more tractable problems. The idea 
is to find the solutions from the subproblems which have smaller size, and then, use the 
results of these subproblems to find the solutions of the larger problems until ending 
with the original size of the problem. 

3.2.1 Shortest Path Problem 

In this section, we will introduce the idea of the dynamic programming by 
demonstrating the shortest path problem and showing how the dynamic programming 
can be used to solve this problem. The example of the shortest path problem can be 
described as follows. 
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Tom lives in the city A, but he plans to drive to the city J to seek fame 

and fortune. Tom’s budgets are limited, so he has decided to spend each night on his 
trip at a friend’s house. Tom has friends in the cities B, C, D, E, F, G, H and I. Tom knows 
that after one day’s drive he can reach the cities B, C, or D. After two days of a driving, 
he can reach the cities E, F, or G. After three days of a driving, he can reach the cities H 
or I. Finally, after four days of a driving, he can reach the city J. To minimize the number 
of miles traveled, where should Tom spend each night of the trip? The actual road 
mileages between cities are given in Figure 3.1. 
 

 
Figure 3.1  The actual road mileages between cities. 

 

We have classified all the cities that tom can stay at the beginning of the 
nth day of his trip as stage n cities. Tom needs to know the shortest path between the 
cities A and J. We will find it by beginning with smallest subproblem, two stages 
problem, and extend to the larger problem until ending with the five stages problem. The 
idea of this method is that we should begin by solving an easy problem that will 
eventually help us to solve a complex problem. Hence, we begin by finding the shortest 
path from the city A to each city in stage 2, which will make the new three subproblems. 

Stage5 Stage 1 Stage 2 Stage 3 Stage 4 
670 E B 700 
800 660 

960 950 

A C 

D 

F 

G 

H 

I 

J 720 

640 

890 

980 

740 

500 

1000 

450 

930 1100 

900 

560 

820 

870 
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Then, we use this information to find the shortest path from the city A to each city in 
stage 3. With this information in hand, we are able to find the shortest path from the city 
A to each city in stage 4. Finally, we can find the shortest path from the city A to the city 
J in the last stage.  

We define  as the road mileage between the city  and the city . 
For example,  = 660 is the road mileage between the city C and the city E. Let 

,i jc i j

,C Ec

( )tf i  be the length of the shortest path from the city A to the city i  in stage t . 

The computation for stage 2 

We first determine the shortest path from the beginning city A to each 
city in stage 2. We immediately see that there is only one path from the city A to each 
city in stage 2. Then the shortest paths can be computed as follows. 2( )f B  = 960, 

2( )f C  = 720, and 2( )f D  = 640.  

The computation for stage 3 

We now work on the next stage. Let’s consider the city E. The shortest 
path from the city A to the city E must be one of the following. 

Path 1: Go from the city A with the shortest path to the city B and, then, 
go from the city B to the city E. 

Path 2: Go from the city A with the shortest path to the city C and, then, 
go from the city C to the city E. 

Path 3: Go from the city A with the shortest path to the city D and, then, 
go from the city D to the city E. 

The length of path 1 can be written as 2( ) ,B Ef B c+ . The length of path 
2 can be written as 2( ) C E,f C c+ . And the length of path 3 can be written as 

2( ) D E,f D c+ . Hence, the shortest distance from the city A to the city E can be written 
as 
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2 ,

3 2 ,

2 ,

( ) 960 670 1,630

( ) min ( ) 720 660 1,380

( ) 640 1,100 1,740

B E

C E

D E

f B c

f E f C c

f D c

⎧ ⎫+ = + =
⎪ ⎪

= + = + =⎨ ⎬
⎪ ⎪+ = + =⎩ ⎭

 

Thus, the shortest path from the city A to E is the path A-C-E which has 
the distance of 1,380 miles. We can see that to obtain this result, we has made use of 
our knowledge of 2( )f B , 2( )f C , and 2( )f D . 

Similarly, we can find the shortest path from the city A to the cities F and 
G as follows. 

2 ,

3 2 ,

2 ,

( ) 960 800 1,760

( ) min ( ) 720 560 1,280

( ) 640 820 1,460

B F

C F

D F

f B c

f F f C c

f D c

⎧ ⎫+ = + =
⎪ ⎪

= + = + =⎨ ⎬
⎪ ⎪+ = + =⎩ ⎭

 

 
2 ,

3 2 ,

2 ,

( ) 960 950 1,910

( ) min ( ) 720 900 1,620

( ) 640 740 1,380

B G

C G

D G

f B c

f G f C c

f D c

⎧ ⎫+ = + =
⎪ ⎪

= + = + =⎨ ⎬
⎪ ⎪+ = + =⎩ ⎭

 

The shortest path from the city A to F is the path A-C-F with the distance 
of 1,280 miles and the shortest path from the city A to G is the path A-D-G with the 
distance of 1,380 miles. 

The computation for stage 4 

Given the knowledge of 3( )f E , 3( )f F , and 3( )f G , we can easily find 
the shortest path from the city A to each cities in stage 4 by the same method used for 
stage 3. The computation can be written as follows. 
 

3 ,

4 3 ,

3 ,

( ) 1,380 700 2,080

( ) min ( ) 1,280 500 1,780

( ) 1,380 930 2,310

E H

F H

G H

f E c

f H f F c

f G c

⎧ ⎫+ = + =
⎪ ⎪

= + = + =⎨ ⎬
⎪ ⎪+ = + =⎩ ⎭
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3 ,

4 3 ,

3 ,

( ) 1,380 870 2,250

( ) min ( ) 1,280 1000 2,280

( ) 1,380 450 1,830

E I

F I

G I

f E c

f I f F c

f G c

⎧ ⎫+ = + =
⎪ ⎪

= + = + =⎨ ⎬
⎪ ⎪+ = + =⎩ ⎭

 

Here, we can see that the shortest path from the city A to H has the 
distance of 1,780 miles and consists of the shortest path from the city A to F appended 
with the path from the city F to H, which is the path A-C-F-H. Similarly, the shortest path 
from the city A to I is the path A-D-G-I with the distance of 1,830 miles. 

The computation for stage 5 

We can now find the solution of the Tom’s problem, the shortest path 
from the city A to the city J. For the last stage, we have the knowledge of 4( )f H  and 

4( )f I . The computation can be written as follows. 
 

4 ,
5

4 ,

( ) 1,780 890 2,670
( ) min

( ) 1,830 980 2,810
H J

I J

f H c
f J

f I c

+ = + =⎧ ⎫⎪ ⎪= ⎨ ⎬+ = + =⎪ ⎪⎩ ⎭
 

From the computation above, the shortest path from the city A to the city 
J consists of the shortest path from the city A to H appended with the path from the city 
H to J. Thus, the solution is the path A-C-F-H-J with the distance of 2,670 miles. And this 
path is the optimal path for Tom to drive from the city A to the city J. 

3.2.2 Computational Efficiency of a Dynamic Programming 

For the example of the shortest path problem described above, it would 
have been an easy matter to determine the shortest path by enumerating all possible 
paths which, after all, there are only 3(3)(2) = 18 paths. Thus, in this example problem, 
the use of dynamic programming did not really serve much purpose. But for the larger 
networks, however, dynamic programming is much more efficient for determining a 
shortest path than the explicit enumeration of all paths. To see this, consider the network 
in Figure 3.2. In this network, it is possible to travel from any node in stage k to any node 
in stage k+1. Let  denote the distance between node  and node . Suppose that ,i jc i j
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5

5 =

we want to determine the shortest path from node 1 to node 27. One way to solve this 
problem is explicit enumeration of all paths. There are 5  possible paths from node 1 to 
node 27. It takes five additions to determine the length of each path. Thus, explicitly 
enumerating the length of all paths requires 5 additions. (5) 15,625
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Figure 3.2  The example of a large network for the shortest path problem. 

 

Suppose we use dynamic programming to determine the shortest path 
from node 1 to node 27. Let’s ( )tf i  be the length of the shortest path from node 1 to 
node  in stage t . To determine the shortest path from node 1 to node 27, we begin by 
finding , , , , and . This does not require any additions. 
Then we consider at the next stage by finding , , , , and 

. We repeat for each stage until we can find . To find each 

i

2 (2)f 2 (3)f 2 (4)f 2 (5)f 2 (6)f

3(7)f 3(8)f 3(9)f 3(10)f

3(11)f 7 (27)f ( )tf i , for 
example , we use the following equation: 3(7)f

 
3 2 ,7(7) min { ( ) } ( 2, 3, 4, 5, 6)jj

f f j c j= + =  

Determining  in this manner requires five additions. Thus, the 
calculation of all the 

3(7)f

3( )f ⋅ ’s requires 5(5) = 25 additions. Similarly, the calculation of all 
the 4( )f ⋅ ’s requires 25 additions, all the 5( )f ⋅ ’s requires 25 additions, all the 6( )f ⋅ ’s 
requires 25 additions, and for the last requires 5 additions. Thus, in total, 7 (27)f
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5

dynamic programming requires 4(25) + 5 = 105 additions to find the shortest path from 
node 1 to node 27. Because the explicit enumeration requires 15,625 additions, we can 
see that dynamic programming requires only 0.007 times as many additions as explicit 
enumeration. For larger networks, the computational savings affected by dynamic 
programming are even more dramatic. 

Beside additions, determination of the shortest path in a network requires 
comparisons between the lengths of path. If explicit enumeration is used, then 

 comparisons must be made (that is, compare the length of the first two 
paths, then compare the third path with the shortest path of the first two paths, and so 
on). If dynamic programming is used, for t  = 3, 4, 5, 6, 7, determination of each 

5 1 3,124− =

( )tf i  
requires 5-1 = 4 comparisons. Thus to find shortest path from node 1 to node 27, 
dynamic programming requires a total of 20(5-1) + 4 = 84 comparison. Again, dynamic 
programming comes out far superior to the explicit enumeration. 

3.2.3 Characteristics of Dynamic Programming Applications 

The applications or problems that are appropriated to be solved by the 
dynamic programming method usually have some common characteristics as follows. 

Characteristic 1: The problem can be divided into stages with a decision 
required at each stage. 

Characteristic 2: Each stage has a number of states associated with it. 
By a state, we mean the information that is needed at any stage to make the optimal 
decision. 

Characteristic 3: The decision chosen at any stage describes how the 
state at the current stage is transformed into the state at the next stage. 

Characteristic 4: Given the current state, the optimal decision for each of 
the remaining stages must not depend on previously reached states or previously 
chosen decisions. This idea is known as the principle of optimality. 
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t

Characteristic 5: If the states for the problem have been classified into 
one of T stages, there must be a recursion that relates the cost or reward earned 
between two adjacent states. 

3.2.4 Optimization Method of Dynamic Programming 

The first step of the dynamic programming is to formulate the problem as 
the recursion. For the minimization problem, the recursion can be write in general form 
as 

, 1( ) min { ( ) }t j ij
f i c f − j= +  

where  ,      and  . {1,..., }t T∈ {1,..., }ti ∈ N

1t−

1{1,..., }tj N −∈

Let T be the total number of stages.  denotes the number of states in 
stage  and  denotes the number of states in stage 

tN

t N 1t − . ( )tf i  is a function of an 
optimal value for the subproblem that end at the stage t  with the state i . Each ( )tf i  will 
has the solutions (can be one or more) associated with it. Here, one particular solution of 
the problem is the selection of specific states for each stage (one state for each stage).  

,j ic  denotes a cost or weight for the transition or link from the state  of 
the previous stage  to the state i  of the current stage t . Or we can say that when 
the state of the previous stage is , if we choose the state i  for the current stage t , it 
will cost 

j

1t −

j

,j ic . 

We can now describe how to make optimal solutions. Let’s 1( )f ⋅  be 
assigned with the fixed value, in general, is 0. We begin by finding the optimal solution 
for each state associated with the second stage by determining 2( )f ⋅  using the 
recursion equation above. Each ( )tf i  has only one optimal value but can have many 
solutions associated with it. Then, we find 3( )f ⋅  using the knowledge of 2( )f ⋅ . We 
continue in this fashion until we have computed ( )Tf ⋅ . Then, the final optimal solutions 
of the problem are chosen from  min ( )T

i
f i  (there may be many solutions). 

 



CHAPTER IV 
 

PROBLEM FORMULATION 
 

There are many works on the problem of haplotype inference. These 
works can be separated into two categories, inference by population data with and 
without pedigree. We are interested in the problem of haplotype inference on a pedigree 
based on the minimum recombination principle. This problem can be solved by two 
types of methods. One is a greedy algorithm which results in approximated solutions. 
The other one is a global optimization which results in exact solutions. From our 
observation, there are two methods that have been proposed for finding the exact 
solution of this problem, a dynamic programming method and an integer linear 
programming method. This work involves the improvement of the dynamic programming 
method in order to reduce the computing time and make it work with the pedigree data 
that contain some missing alleles, and also, the inconsistent alleles. 
 

4.1 Preliminary Definitions 

This work focuses on the problem of inferring haplotypes from a 
pedigree with the genotype information for each member in the pedigree. The genotype 
information may contain some missing alleles which are the alleles that could not been 
specified from the genotyping process. The genotype information may contain some 
inconsistent alleles which are the alleles that do not inherit from the parents. For the 
simplification, we will define some necessary biological terms for this work as follows. 
 

DEFINITION 4.1.1  A conventional representation of a pedigree can be 
transformed to a graph representation. A pedigree can be represented as a weakly 
connected directed acyclic graph { , }P V E= , where V is a set of nodes (vertices) and 

 is a set of edges. V M , where E F= ∪ M  stands for the male nodes and  stands 
for the female nodes. The in-degree of each node will be 0 for the founder nodes (have 

F
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no parents) and 1 or 2 for the non-founder nodes. There are only two types of edges, the 
edges starting from one of the parent nodes to its mate node and the edges starting 
from one of the parent nodes to its offspring (child) nodes. 
 

Female

Male

 
 

Figure 4.1  The conventional representation of a pedigree (left) and its corresponding 
representation as a weakly connected directed acyclic graph (right). 

 
DEFINITION 4.1.2  For a particular pedigree, if there exists two nodes that can 

connect to each other by more than one path, it will be said to be a looped pedigree 
(the pedigree that has loops). For the graph representation, we may consider the looped 
pedigree as the pedigree in which there exists a node that has the in-degree equal to 2. 
 

Looped Node

Female

Male

 
 

Figure 4.2  The looped pedigree represented by a conventional form (left)  
and a graph form (right). 
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DEFINITION 4.1.3  For a particular looped pedigree, a looped node is the node 

(the members of the pedigree) that has the in-degree equal to 2. The looped node can 
be assigned in different way depending on the way we build the pedigree graph.  
 

DEFINITION 4.1.4  A haplotype of length  is a vector  in 
which 

m 1 2, , ..., mH a a a= 〈 〉

ja  represents the allele at the locus  on the haplotype and 
in which is the number of possible values of allele at each locus. 

The value 0 of 

j

{0, 1, 2,..., }ja ∈ k k

ja  is used to represent the missing alleles. 
 

DEFINITION 4.1.5  A genotype sequence (genotype vector) of length  is a 
vector  in which 

m

1 2, , ..., mG g g g= 〈 〉 jg  is a genotype at the locus  on the genotype 
sequence (sometime we may use the term “genotype” to refer to a genotype sequence). 
A genotype of locus  is an unordered pair of alleles that comes from two associated 
haplotypes and is represented as 

j

j

,1 ,2( , )j j jg a a= .So the genotype vector of length  
may be represented by 

m

1,1 1,2 2,1 2,2 3,1 3,2 ,1 ,2( , ), ( , ), ( , ), ..., ( , )m mG a a a a a a a a= 〈 〉  in 
which a genotype ,1 ,2( , )j ja a  is an unordered pair of alleles at the locus  on the 
genotype. For a particular genotype, each allele in the allele pair comes from one of two 
haplotypes that compose the genotype. For example, two haplotypes of length 4 with 
the value (0, 2, 1, 2) and (1, 2, 2, 1) can be combined into the genotype 

. 

j

(0,1), (2, 2) , (2,1), (1, 2)〈 〉

 
DEFINITION 4.1.6  A genotype of a particular locus is said to be homozygous if 

its allele pair made of two identical values, otherwise it is said to be heterozygous. For 
example, (1,1) and (2,2) are homozygous while (1,2) is heterozygous. 
 

DEFINITION 4.1.7  For a particular genotype (a pair of alleles), if we can specify 
that which allele is the paternal allele (an allele that inherit from the father) and which 
one is the maternal allele (an allele that inherit from the mother), we will say that this 
genotype has been haplotyped. 
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Figure 4.3  The representation of genotypes and haplotypes for each member in a 

pedigree. 
 

DEFINITION 4.1.8  For a known paternal allele at a particular locus on the 
paternal haplotype of any offspring, an allele is said to be Mendelian consistent if it is 
identical to at least one of the alleles in the father’s genotype at the same locus. And for 
a known maternal allele at a particular locus on the maternal haplotype of any offspring, 
an allele is said to be Mendelian consistent if it is identical to at least one of the alleles in 
the mother’s genotype at the same locus. 
 

DEFINITION 4.1.9  The allele that is not consistent with the Mendelian law will be 
referred to as an inconsistent allele (short for Mendelian inconsistent). 
 

DEFINITION 4.1.10  For a genotype at a particular locus on the genotype 
sequence of any offspring, it is said to be Mendelian consistent if its paternal and 
maternal alleles can be assigned so that both alleles are Mendelian consistent. If the 
genotype is not Mendelian consistent, it will be referred to as an inconsistent genotype 
(short for Mendelian inconsistent). 
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DEFINITION 4.1.11  For a known paternal allele at a particular locus on the 

paternal haplotype of any offspring, a grandparent of this allele refers to the haplotype 
source of this allele. If this allele inherits from the paternal haplotype of the father, its 
grandparent will be specified as ‘grandfather’ denoted by the value 1 and if this allele 
inherits from the maternal haplotype of the father, its grandparent will be specified as 
‘grandmother’ denoted by the value 2. This definition is also used for the maternal allele 
in similar way. 
 

DEFINITION 4.1.12  A grandparent vector corresponding to a particular 
haplotype is represented as 1 2{ , , ..., }mS v v v=  in which jv  is the grandparent value 
(haplotype source) of an allele at the locus  of the haplotype and  in 
which the value 0 denotes the unknown grandparent. For any haplotype, it must have 
one grandparent vector corresponding to it. When considering at any locus, we may call 
the grandparent of the paternal allele as the paternal grandparent and the grandparent 
of the maternal allele as the maternal grandparent. 

j {0, 1,2}jv ∈

 

1
1
2
1
2
1

2
2
2
2
2
2

1
1
1
1
1
2
2
2
1
1

Father Mother

Offspring

Maternal HaplotypePaternal Haplotype

1
2
2
1

2
1
1
2

1
1
1
1
1
2
2
2
1
1

2
2
2
2
2
1
1
1
1
2

1
1
1
1
1
1
1
1
1
1

2
2
2
2
1
1
1
1
1
1Paternal Grandparent Vector Maternal Grandparent Vector

Recombination Point

2
1
1
2
1
1
2
1
2
1

 
Figure 4.4  The representation of grandparent vectors corresponding to the relation 

between the haplotypes of the offspring and its parents. 
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)

)

DEFINATION 4.1.13  A haplotype is said to be a recombinant haplotype if it is a 
combination of parts from the paternal and maternal haplotypes of the parents. The 
positions in the grandparent vector in which two adjacent grandparents are different are 
called recombination points. The recombination point will be used for counting of 
recombination events. 
 

DEFINATION 4.1.14  The term “haplotype configuration” refers to the 
specification of the paternal and maternal alleles for the genotype at any loci. For a 
particular genotype, a haplotype configuration is denoted by  where  is 
a paternal allele and  is a maternal allele. 

( |p mh a a= pa
ma

 
DEFINITION 4.1.15  The term “family haplotype configuration” refers to the 

specification of all haplotype configurations of all members in a particular family at one 
particular locus. 
 

DEFINITION 4.1.16  The term “pedigree haplotype configuration” refers to the 
specification of all haplotype configurations of all members in the pedigree at one 
particular locus. 

 
DEFINATION 4.1.17  The term “grandparent configuration” refers to the 

specification of the grandparents for the paternal and maternal allele at any loci. For a 
particular genotype with known paternal and maternal alleles, a grandparent 
configuration is denoted by  where  is a grandparent value of the 
paternal allele and  is a grandparent value of the maternal allele. 

( |p ms v v= pv
mv

 
DEFINITION 4.1.18  The term “family grandparent configuration” refers to the 

specification of all grandparent configurations of all offspring in a particular family at one 
particular locus. 
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DEFINITION 4.1.19  The term “pedigree grandparent configuration” refers to the 

specification of all grandparent configurations of all non-founder members in the 
pedigree at one particular locus. 
 

4.2 The Problem Formulation 

We are interested in the method of finding the solution for the MRHC 
problem. To infer the haplotypes from the pedigree with the genotype information for 
each member in the pedigree, we use the minimum recombination principle which 
basically says that genetic recombination is rare and thus haplotype configurations with 
fewer recombinants should be preferred in a haplotype inference. There are some 
recent works that propose the methods for solving this problem but the one that we are 
interested is the dynamic programming method. We will improve the dynamic 
programming method of Doi, Li, and Jiang (2003) so that it runs efficiently with respect 
to the computing time and size of data; and also, it can work with the data containing 
some missing alleles and with the rare occurrence of Mendelian inconsistent alleles. The 
formulation of our problem can be stated as follows. 
 

INPUT: A pedigree with the genotype information (genotype vector) for each 
member. The input genotype vector may contain some missing alleles and also some 
alleles may be Mendelian inconsistent. The example of input data is shown in Figure 4.5. 
 

OUTPUT: A set of haplotype solutions. Each haplotype solution refers to a 
specification of haplotype configurations for all loci of all members in the pedigree that 
require minimum number of recombination events. Note that, these haplotype solutions 
are obtained based on the set of pedigree haplotype configurations that have minimum 
number of inconsistent alleles. The example of one haplotype solution corresponding to 
the input data in Figure 4.5 is shown in Figure 4.6. 
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Our inference method will consist of the processes of local inferring for 

the haplotype and grandparent configurations, finding the set of all possible pedigree 
haplotype configurations that have minimum number of inconsistent alleles and also get 
the corresponding grandparent configurations, using dynamic programming to find the 
minimum-recombinant pedigree grandparent configurations, and then get the final 
solutions as the haplotype configurations that require minimum number of recombination 
events. 
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Figure 4.5  The example of an input data. 
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Figure 4.6  The example of a haplotype solution corresponding to the input data in 
Figure 4.5. This solution has one recombinant as shown in member 16. 

 



CHAPTER V 
 

HAPLOTYPE INFERENCE ON A PEDIGREE 
USING DYNAMIC PROGRAMMING 

 

5.1 The Computational Framework 

In general, finding haplotype and grandparent configurations for the 
pedigree that requires minimum number of recombination events consists of two main 
processes, the pre-inference process and the optimization process. The pre-inference 
process is the process of direct inferring for some haplotype or grandparent 
configurations based on the Mendelian law of inheritance. There are some haplotype 
and grandparent configurations that we can directly infer in order to make them 
consistent with the Mendelian law. And also, we can eliminate some possible haplotype 
configurations that are not consistent with the Mendelian law in the pre-inference phase. 
The optimization process is the process of finding the set of haplotype or grandparent 
configurations that requires minimum number of recombination events. Generally, the 
optimization methods can be separated into two categories, the methods that find the 
exact solutions and the methods that find the near-optimal solutions. In this work, we will 
use the method that finds the exact solutions, a dynamic programming. 

Typically, the methods for the problem of haplotype inference on a 
pedigree usually suffer from the problem of missing alleles. When the genotype data 
contain some missing alleles, we must try to assign the values for those missing alleles 
based on the Mendelian law. The problem is that, when assigning each missing allele, it 
must be Mendelian consistent within not only its associated family but also the whole 
pedigree. Checking for the Mendelian consistency of the whole pedigree is quit difficult. 
From our observation in the previous works, we have seen only one work that can 
completely handle this missing allele problem. Li and Jiang (2004) proposed the method 
for finding the minimum-recombinant haplotype configurations with missing alleles using 
integer linear programming method. Their method implicitly embedded the constraints 
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that control the Mendelian consistency of each allele assignment. Although their method 
works efficiently for handling of missing alleles, it can only work in the framework of 
integer linear programming method. 

The other problem is the problem of inconsistent alleles. From our 
observation in the previous works, there are no methods that handle the problem of 
inconsistent alleles. Those methods assume that the input genotype data must be 
Mendelian consistent. Our work will handle this problem. The assumption that we use to 
handle this problem is quite similar to the minimum recombination principle. We assume 
that the occurrence of inconsistent alleles is very rare, both by natural events and by 
genotyping errors. Then, the haplotype configuration of the pedigree should have very 
few or no inconsistent alleles. So we can state that the haplotype configuration that has 
minimum number of inconsistent alleles should be preferred in a haplotype inference. 
We will assume the priority of minimum-inconsistent criterion over the minimum-
recombinant criterion. Our concept is to find the set of haplotype configurations that 
have minimum number of inconsistent alleles at first and, then, use this set of haplotype 
configurations to find the final solutions with the minimum-recombinant criterion. 

Both solving for the haplotype configurations with minimum number of 
inconsistent alleles and for the haplotype configurations with minimum number of 
recombinants are optimization problems which will be solved using a dynamic 
programming method. For the case of solving for the minimum-recombinant haplotype 
configurations, our method will not directly solve it similar to the previous work. Instead, 
we will first solve for the minimum-recombinant grandparent configurations; and then, 
use the resulted solutions to infer the corresponding haplotype configurations later. This 
modification is aimed to reduce the computing time. 

The computational framework of our method can be represented by the 
process flow as shown in Figure 5.1. 
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Performing Local Haplotype Inference by a Mendelian Law

Eliminating the Haplotype Configurations

Finding the Set of Pedigree Haplotype Configurations with Minimum 
Number of Inconsistent Alleles

Finding the Set of all Possible Pedigree Grandparent Configurations

Finding the Grandparent Solutions  with Minimum Number of 
Recombinants by a Dynamic Programming

Performing Local Grandparent Inference by a Mendelian Law

Getting the Haplotype Solutions by Mapping from the Grandparent 
Solutions

1

2

3

4

5

6

7

 
Figure 5.1  The inference process. 

 

5.2 Local Haplotype Inference by a Mendelian Law 

From the genotype data of the pedigree, there are usually some alleles 
that we can directly infer based on a Mendelian law. Local haplotype inference refers to 
the process of direct inferring the paternal and maternal alleles from a genotype at a 
particular locus of a particular trio (father, mother, and child) regardless of other 
members in a pedigree. The local haplotype inference concerns only the inferring that 
will not affect the optimal criterion of a whole pedigree. The process of local haplotype 
inference will be performed as the first phase of the framework. This includes imputation 
of missing alleles and the specification for the paternal and maternal alleles. The 
concept used for the local haplotype inference is to choose the configuration that is 
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Mendelian consistent or if the consistency is not possible, chooses the one that has 
fewer inconsistent alleles.  

After we have known some paternal or maternal alleles, we could directly 
infer the grandparents for some of these known paternal or maternal alleles. Since in the 
later phases, there may be some more information for inferring the grandparents thus we 
will perform the inference of the grandparents once in the later phase. The detail of local 
grandparent inference will be described in the later section. 

The local haplotype inference can be performed only for the members 
that have parents because the inference rules depend on the information of the parents. 
We use the letter  to represent a father, F M  to represent a mother, and  to 
represent an offspring. The inference will be performed by considering at one locus at a 
time. For each inference, the genotype information of each member in the trio will be 
used. Here, each member will be represented in the forms  for a father, 

O

{F information}

}{M information  for a mother, and  for an offspring. The part 
 represents the characteristic of the genotype. The detail of genotype 

information is listed in Table 5.1. 

{O information}

}{information

 
Table 5.1  The detail of genotype information. 
 

Information Description 

1 2( , )a a  The allele pair of the genotype (here, if the value of  is 0, it 
means the missing allele). 

ka

1 2( | )a a  The genotype of which the paternal and maternal alleles have 
been specified already ( represents the paternal allele and  
represents the maternal allele). 

1a 2a

fa  The allele value of the father’s genotype (used for the case that the 
father’s genotype is homozygous). 

ma  The allele value of the mother’s genotype (used for the case that 
the mother’s genotype is homozygous). 
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Information Description 
A  and B  Two allele values where A B≠  

homo  The genotype is homozygous. 
homo∼  The genotype is not homozygous (it is heterozygous or has some 

missing alleles). 
homo A=  The genotype is homozygous and the values of both alleles are . A

homo A≠  The genotype is homozygous and the value of both alleles are not 
equal to A . 

(.,.)A∈  At least one of the alleles of the genotype has the value . A

 

Imputing an allele on the member that has some offspring may affect the 
consistency in its offspring’s genotypes. To consider the consistencies for whole 
pedigree is out of the scope of this local inference process. So we will ignore the 
imputation of missing alleles for the member that has some offspring, and only the 
specifications for paternal and maternal alleles will be performed for these members. 
The local haplotype inference rules are set for two cases. A first set of rules is for the 
members that have some offspring and the second set is for the members that have no 
offspring (the members in both cases must have parents). Two sets of inference rules 
are shown in Table 5.2 and Table 5.3. 
 
Table 5.2  The local haplotype inference rules for a particular genotype of the members 
having some offspring. 
 

Condition on genotypes Resulted Genotype 
 
Case   -  The genotype has no missing allele and is heterozygous. {( , )}O A B

1.  { }F homo B≠   AND  { ( , )M B }∈ ⋅ ⋅  {( | )}O A B  
2.    AND  { }F homo A≠ { ( , )M A }∈ ⋅ ⋅  {( | )}O B A  
3.    AND  { ( , )F A∈ ⋅ ⋅ } { }M homo A≠  {( | )}O A B  

 



                                                                                                              
                                                                                                                                                              45 

 
Condition on genotypes Resulted Genotype 

4.    AND  { ( , )F B∈ ⋅ ⋅ } { }M homo B≠  {( | )}O B A  
 
Case   -  The genotype has one missing allele. {( ,0)}O A

5.   { }F homo A= {( | 0)}O A  
6.  { }M homo A=  {(0 | )}O A  
7.    AND  { }F homo A≠ { (M homo and A , )}∈ ⋅ ⋅∼  {(0 | )}O A  
8.    AND  { ( ,F homo and A∈ ⋅ ⋅∼ { })}  {( | 0)}O A  M homo A≠

 
 
Table 5.3  The local haplotype inference rules for a particular genotype of the members 
having no offspring. 
 

Condition on genotypes Resulted Genotype 
 
Case   -  The genotype has no missing allele and is heterozygous. {( , )}O A B

1.  { }F homo B≠   AND  { ( , )M B }∈ ⋅ ⋅  {( | )}O A B  
2.    AND  { }F homo A≠ { ( , )M A }∈ ⋅ ⋅  {( | )}O B A  
3.    AND  { ( , )F A∈ ⋅ ⋅ } { }M homo A≠  {( | )}O A B  
4.    AND  { ( , )F B∈ ⋅ ⋅ } { }M homo B≠  {( | )}O B A  
 
Case   -  The genotype has one missing allele. {( ,0)}O A

5.    AND  { }F homo A= { }M homo∼  {( | 0)}O A  
6.    AND  { }F homo∼ { }M homo A=  {(0 | )}O A  
7.    AND   { }F homo A= { }M homo  {( | )}mO A a  
8.   AND   {F homo} { }M homo A=  {( | )}fO a A  
9.    AND { }F homo A≠ { (M homo and A , )}∈ ⋅ ⋅∼  {( | )}fO a A  
10.    AND   { ( , )F homo and A∈ ⋅ ⋅∼ { }}  {( | )}mO A a  M homo A≠
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Condition on genotypes Resulted Genotype 

 
Case   -  The paternal allele has been specified but the maternal allele is 
not known. 

{( | 0)}O A

11.  { }M homo  {( | )}mO A a  
 
Case   -  The maternal allele has been specified but the paternal allele is 
not known. 

{(0 | )}O A

12.   { }F homo {( | )}fO a A  
 
Case   -  The genotype has two missing alleles. {(0,0)}O

13.   AND  {F homo} { }M homo  {( | )}f mO a a  
14.    AND   {F homo} { }M homo∼  {( | 0)}fO a  
15.    AND   {F homo∼ } { }M homo  {(0 | )}mO a  

 

5.3 Detection of Looped Nodes 

A pedigree can possibly have loops (the looped pedigree with less than 
30 members usually has only one loop). If the given pedigree contains a loop, some 
computational phases can not be computed directly. This problem should be handled 
by fixing the looped nodes with specific computational values. So it is necessary that the 
looped nodes must be specified first. 
 

One of these nodes can be 
selected as a looped node

One case of a 
Looped Node  

 
Figure 5.2  The looped pedigree and the corresponding looped nodes. 
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A particular loop in a pedigree may have more choices of node to be 

assigned as a looped node. But for our computational purpose, we need only one 
looped node per loop. Detecting the looped node is a first task to be performed before 
sending the looped pedigree to the inference process. The algorithm used for detecting 
the looped nodes is the algorithm for building the directed acyclic graph corresponding 
to the looped pedigree. The nodes that have the in-degree equal to two will be identified 
as the looped nodes. The resulted looped nodes may vary, depending on the order or 
step of a graph building process. 

The Algorithm for Detecting the Looped Nodes 
Part 1: Set the flags for each node to present that each node has not been 

checked yet. Then, randomly select the starting node from the first generation of the 
pedigree. Next, set this starting node to be a parent node and perform part 2 with this 
node. 

Part 2: Consider a specific node. If this node is a parent node, perform part A. 
Otherwise (this node is an offspring node), perform part B. 

Part A: Consider a specific parent node. 
1. Consider the mate node. If it has not been checked then set it 

to be ‘checked’. Otherwise (it has already been checked), if it has not been set as the 
looped node then set it to be the looped node. 

2. Consider each offspring node. If it has not been checked then 
set it to be ‘checked’. Otherwise (it has already been checked), if it has not been set as 
the looped node then set it to be the looped node. 

3. If the mate node has not been set as the looped node and it 
has parents, then, set it to be an offspring node and perform part 2 with this mate node. 

4. Consider each offspring node. If it has not been set as the 
looped node and it has some offspring, then, set it to be a parent node and perform part 
2 with this offspring node. 

Part B: Consider a specific offspring node. 
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1. Consider each parent node (father node and mother node). If 

it has not been checked then set it to be ‘checked’. Otherwise (it has already been 
checked), if it has not been set as the looped node then set it to be the looped node. 

2. Consider each sibling node (the brother or sister of this node). 
If it has not been checked then set it to be ‘checked’. Otherwise (it has already been 
checked), if it has not been set as the looped node then set it to be the looped node. 

3. Consider each parent node. If it has not been set as the 
looped node and it has parents, then, set it to be an offspring node and perform part 2 
with this mate node. 

4. Consider each sibling node. If it has not been set as the 
looped node and it has some offspring, then, set it to be a parent node and perform part 
2 with this offspring node. 

After the algorithm for detecting the looped nodes has been performed, 
all the looped nodes will be specified (one looped node per each loop). These looped 
nodes will be used to separate the looped pedigree into the corresponding non-looped 
pedigrees. 
 

5.4 The Pedigree Tree and the Sub-Rooted Nodes 

In some computational phases, we must perform computations by 
traveling along each node in the pedigree. To do this, we transform the pedigree into a 
tree structure. For the case of non-looped pedigree, the representation of a pedigree as 
a directed acyclic graph is already a tree structure. But for the case of looped pedigree, 
it cannot be directly transformed to a tree structure. In this case, the looped nodes must 
be duplicated into two identical nodes in order to preserve the property of a tree 
structure as in Figure 5.3. The detail of breaking the loops by duplicating the looped 
nodes will be considered in the later section. 
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A B

E F H IG

J K L NM

O QP
This is a looped node

C D A B

E F H IG

J K L NM

O QP
A looped node is 

duplicated to be two 
nodes

C D

L

 
Figure 5.3  The looped pedigree and its corresponding tree structure. 

 

To traverse a pedigree tree, we will go through the sub-rooted nodes. 
Here, the term “sub-rooted node” refers to the node that is not a branch node of the tree. 
When we perform the operation on a particular family, the sub-rooted nodes will be used 
as the reference nodes for each family. Figure 5.4 shows the example of the sub-rooted 
nodes. 
 

A B

E F H IG

J K L NM

O QP

C D

L

 
 
Figure 5.4  The example for the sub-rooted nodes of a pedigree. In this pedigree, node 

A, F, K, H, and I are sub-rooted nodes. 
 

5.5 Elimination of the Haplotype Configurations 

O’Connell and Weeks (1999) proposed the optimal algorithm for 
automatic genotype elimination which was used to eliminate all genotypes that led to a 
Mendelian inconsistency. Their algorithm is the extension of the original Lange-Goradia 
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algorithm which is not optimal for a pedigree with loops. O’Connell and Weeks improved 
the Lange-Goradia algorithm so that it finds the optimal solution for a pedigree with 
loops. Their idea is to break each loop by duplicating a looped-breaker node (one 
looped node of a particular loop) so that the pedigrees corresponding to each possible 
genotype of the looped-breaker nodes will be created as a non-looped pedigree and, 
then, separately performing the calculation for each non-looped pedigree. The obtained 
results are merged together. 

Elimination of the haplotype configurations is the process that is used to 
eliminate all haplotype configurations leading to Mendelian inconsistency. Our algorithm 
for elimination of the haplotype configurations is based on the algorithm of O’Connell 
and Weeks but has an extension for handling the data containing some Mendelian 
inconsistent alleles. In fact, in the algorithm of O’Connell and Weeks, the genotype is 
considered as an ordered genotype which is identical to our term, haplotype 
configuration.  

5.5.1 The Algorithm for Eliminating the Haplotype Configurations for a Non-looped 
Pedigree 

Consider at one particular locus, the algorithm for eliminating the 
haplotype configurations for the non-looped pedigree can be described as follows. 

Part 1: List all possible haplotype configurations for each member in the 
pedigree. This includes setting of all possible values for the missing alleles. For 
example, let’s consider the genotype (1,0)g =  in which the possible values of the 
missing allele can be either 1 or . The possible haplotype configurations of this 
genotype can be listed as . Next, perform part 2. 

2

{(1|1), (1| 2), (2 |1)}h ∈

Part 2: For each family (normally, consider in bottom-up order), perform the 
following steps. Then, perform part 3. 

1. Consider each father-mother haplotype configuration pair. 
a. If each offspring has at least one consistent haplotype 

configuration (the haplotype configuration that can inherit from this father-mother 
haplotype configuration pair) in the list, then save the haplotype configurations of the 
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parents from this father-mother haplotype configuration pair and also save those 
consistent haplotype configurations of each offspring. 

b. Otherwise, take no action (there are some offspring that has 
none of the consistent haplotype configuration with this father-mother haplotype 
configuration pair). 

2. For each member of this family, exclude the haplotype configurations 
that have not been saved during step 1. If there are no haplotype configurations have 
been saved for this family, it means that there are some Mendelian inconsistent alleles in 
this family. For this case, no haplotype configurations should be excluded. So keep all 
haplotype configurations of each member in the family. 

Part 3: Repeat part 2 until no more haplotype configurations can be excluded. 

After the elimination algorithm above has been performed, there should 
be only those haplotype configurations that can possibly be assigned in any particular 
ways to make the whole pedigree consistent. But if there are some Mendelian 
inconsistent alleles, there may be some invalid haplotype configurations left in the 
eliminated haplotype configuration set. 

5.5.2 The Problem of the Looped Pedigree 

The concept of the haplotype elimination algorithm in Section 5.5.1 can 
be stated as follows. For a particular parent, if it is assigned with a valid haplotypes 
configuration, the other members in its family must be assigned with some haplotype 
configurations so that all haplotype configurations are consistent. Using this concept for 
a looped pedigree may not result in the optimal solution. For example, let’s consider the 
looped pedigree in Figure 5.5. The current haplotype configuration lists of each member 
are shown in the figure. If we perform the elimination process on this pedigree using the 
algorithm above, there will be no haplotype configurations to be excluded. Let’s 
consider the case that B is assigned with (1|1). Following, both C and D will be assigned 
with (1|1) in order to be consistent. But when both C and D are assigned with (1|1), the 
haplotype configurations of the trio C, D, and F will be inconsistent. This means that, in 
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fact, the haplotype configuration (1|1) of the member B should be eliminated. The 
algorithm above fails to eliminate the haplotype configuration (1|1) of B because it 
checks the consistency for each family independently but not check the consistency of 
all families simultaneously. So, as in this example, it cannot know that C and D must not 
be assigned as (1|1), simultaneously.  
 

G

C D

FE

A B

{ (1|1) } { (1|1), (1|2) }

{ (1|1) }

{ (1|1), (1|2) }{ (1|1), (1|2) }

{ (1|1), (1|2) } { (2|1), (1|2) }  
Figure 5.5  The example looped pedigree with the sets of possible haplotype 

configurations of each member. 
 

To consider this problem in a larger pedigree, let’s see Figure 5.6. 
Assume that the initial haplotype configuration lists of both F and G are { (1|1), (1|2) }.  

First, consider the pedigree with no loops in Figure 5.6. The elimination 
process is performed as follows. 

Step 1: Find the valid haplotype configurations for the family of A, B, E, 
and F. After this step, assume that the haplotype configuration (1|1) and (1|2) of F are 
still valid.  

Step 2: Find the valid haplotype configurations for the family of F, G, J, K, 
and L. After this step, assume that G has a valid haplotype configuration (1|1) 
corresponding to the haplotype configuration (1|2) of F (the haplotype configuration of 
the parents are considered as a pair, each one from the father and mother), and also, 
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has a valid haplotype configuration (1|2) corresponding to the haplotype configurations 
(1|1) of F.  

Step 3: Find the valid haplotype configurations for the family of C, D, G, 
H, and I. After this step, assume that the haplotype configuration (1|1) and (1|2) of G are 
still valid.  

Let’s consider the result. If the family of C, D, G, H, and I are assigned 
with some valid haplotype configurations that forces G to be assigned with the 
haplotype configuration (1|1), F will be forced to be assigned with haplotype 
configuration (1|2). Consequently, the member A, B, E, J, K, and L could be also 
assigned with some valid haplotype configurations. In general, the elimination process 
for the pedigree with no loops must result in the optimal solution. 
 

A B C D

E F G IH

J LK

M N

A B C D

E F G IH

J LK

Step 1

Step 2

Step 1

Step 4

Step 3

Step 2

Step 3

 
 
Figure 5.6  The performing steps of the haplotype configuration elimination process for 

the non-looped pedigree (left) and the pedigree with one loop (right).  

Now, let’s consider the case of a looped pedigree in Figure 5.6. Assume 
that the initial haplotype configuration lists of both F and G are { (1|1), (1|2) }. The 
elimination process is performed as follows. 

Step 1: Find the valid haplotype configurations for the family of A, B, E, 
and F. After this step, assume that the haplotype configuration (1|1) and (1|2) of F are 
still valid and there exists some valid haplotype configurations for B. 
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Step 2: Find the valid haplotype configurations for the family of M, N, B, 

and C corresponding to the valid haplotype configurations of B. After this step, assume 
that C has some valid haplotype configurations. 

Step 3: Find the valid haplotype configurations for the family of C, D, G, 
H, and I corresponding to the valid haplotype configurations of C. After the third step, 
assume that G has valid haplotype configurations as (1|1) and (1|2). And assume that M 
has one valid haplotype configuration as (1|1) which is valid only if F is assigned with 
(1|1) and G is assigned with (1|1).  

Step 4: Find the valid haplotype configurations for the family of F, G, J, K, 
and L corresponding to the valid haplotype configurations of G. After this step, assume 
that J, K, and L have some valid haplotype configurations corresponding to the 
haplotype configuration pair of its parents which are the pair of F(1|1)/G(1|2) and the pair 
of F(1|2)/G(1,1). This means that the haplotype configurations, (1|1) and (1|2), of both F 
and G are still valid. 

There is a problem at the valid haplotype configuration (1|1) of M which 
is assumed to be valid only if F is assigned with (1|1) and G is assigned with (1|1). But 
there is no valid haplotype configuration of the offspring of F and G that is valid with the 
haplotype configuration pair F(1|1)/G(1|1). This means that the haplotype configuration 
(1|1) of M should be eliminated. For a looped pedigree, this problem can occur when 
some valid haplotype configurations in one particular family require the haplotype 
configuration pairs in the other family that are not valid for that family. 
 

5.5.3 The Elimination Process 

To avoid the problem from the loop, the original looped pedigree will be 
separated into non-looped pedigrees. In each non-looped pedigree, the looped nodes 
will be assigned with one fixed haplotype configuration (see the example in Figure 5.7). 
The number of the corresponding non-looped pedigrees will be equal to the possible 
number of the combinations of all possible haplotype configurations of each looped 
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node. So, the algorithm above (in Section 5.5.1) will be performed at each non-looped 
pedigree. After that, the results from each non-looped pedigree will be merged together 
to get the final result for the original looped pedigree. 
 

A B

C D E F

G H I J

K ML

{(1|1),(1|2)}

A B

C D E F

G H I J

K ML

(1|1)

H

(1|1)

A B

C D E F

G H I J

K ML

(1|2)

H

(1|2)

Looped Pedigree

Non-Looped Pedigree 1 Non-Looped Pedigree 2

 
 

Figure 5.7  The separation of the looped pedigree into non-looped pedigrees. 
 

When perform the elimination process at each non-looped pedigree, 
some families may have no valid haplotype configurations which may cause from the 
occurrence of Mendelian inconsistent alleles or the invalid of the haplotype configuration 
of the looped node. Assume that a given looped pedigree has two corresponding non-
looped pedigrees. In the first non-looped pedigree, there is one family that has no valid 
haplotype configurations, and so, none of its haplotype configurations are eliminated. In 
the second non-looped pedigree, some of the haplotype configurations of this family are 
eliminated. After merging process, none of the haplotype configurations of this family 
are eliminated. In fact, the haplotype configurations of this family should be eliminated. 
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Then, it is necessary that the elimination process must be performed again. We will 
perform the elimination process in the original looped pedigree at first and, then, 
separately perform for each non-looped pedigrees again. Finally, the results from each 
non-looped pedigree will be merged together into the original looped pedigree as the 
final result. 
 

5.6 Finding the Set of Pedigree Haplotype Configurations with Minimum Number of 
Inconsistent Alleles 

In order to find the pedigree haplotype configurations that have minimum 
number of recombinants, first, we must find the set of all possible pedigree haplotype 
configurations that are consistent with the Mendelian law. But in this work, the pedigree 
can contain some inconsistent alleles which make it impossible to find consistent 
haplotype configurations for some loci. Then, the problem will be relaxed to finding the 
set of all possible pedigree haplotype configurations that have minimum number of 
inconsistent alleles. This method is based on the assumption that the inconsistent alleles 
usually occur rarely in the observed pedigrees. 

The pedigree haplotype configuration refers to one set of the haplotype 
configurations of all members in the pedigree at one particular locus. The consistency of 
the haplotype configurations in one locus does not depend on the configurations of the 
other loci. Therefore, the consistency of the haplotype configurations in a pedigree can 
be considered separately by each locus at a time. Finding the set of all possible 
pedigree haplotype configurations that have minimum number of inconsistent alleles is 
performed one locus at a time. 

The method that is used for finding the set of all possible pedigree 
haplotype configurations that have minimum number of inconsistent alleles is a dynamic 
programming. The concept is to divide the problem into smaller problems as 
subpedigrees. The consistency will be considered at the unit of a family. To perform a 
dynamic programming by subpedigree, the pedigree must not contain loops. Then, if 
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the pedigree has loops, it will be separately considered by the corresponding non-
looped pedigrees which can be created by the same method as described in Section 
5.5. At first, the pedigree will be transformed into a tree structure and the computation of 
each family will be considered at each sub-rooted node. A detailed description of the 
algorithm for finding the set of all possible pedigree haplotype configurations that have 
minimum number of inconsistent alleles at one particular locus is given below. 

Firstly, assume that the pedigree has already been transformed into a 
tree structure and the sub-rooted nodes have been specified already. If the pedigree 
has loops then it will be separately considered by each corresponding non-looped 
pedigree. And the final result will be computed by merging from the results of each non-
looped pedigree. The computation will be performed from the smallest subpedigrees 
and extend to the larger subpedigrees until reaching the root of the pedigree. The 
process of computing the minimum number of inconsistent alleles will be done at each 
sub-rooted node by postorder traversing in the pedigree tree. And the process of 
enumerating all optimal pedigree haplotype configurations will be done at each sub-
rooted node by preorder traversing in the pedigree tree. See Figure 5.8 for the example 
of the preorder and postorder traversals 
 

A B

E F H IG

J K L NM

O QP

C D

1

2 3

4

5A B

E F H IG

J K L NM

O QP

C D

3

2 5

4

1

Postorder TraversalPreorder Traversal  
 

Figure 5.8  The pedigrees and their corresponding sub-rooted nodes. The highlighted 
nodes are the sub-rooted nodes with the numbers that represent the traversal orders. 
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We denote some notations used in the algorithm as follows. 

iR  denotes the sub-rooted node of index i  where  and  
is the number of all sub-rooted nodes in the pedigree. 

{1,2,..., }i∈ m m

  denotes the haplotype configuration of index  of ,i th t iR  where 
 and {1,2,..., }it p∈ ip  is the number of all possible haplotype configurations of iR . 
C  denotes a pedigree haplotype configuration of a particular locus. The 

pedigree haplotype configuration keeps the specification of the family haplotype 
configurations for each sub-rooted node in the pedigree. 

The term “family of iR ” refers to the family in which each member in the 
family connects to iR  by a directed edge that has the beginning side at iR  ( iR  may be 
a parent or an offspring of the family). 

The term “optimal” is used in the meaning that the subpedigree of the 
current considered sub-rooted node with a specific configuration has minimum number 
of inconsistent alleles. 

Using the notations above, the algorithm for finding the set of all possible 
pedigree haplotype configurations that have minimum number of inconsistent alleles at 
one particular locus can be described as follows. 

The Algorithm for Finding the Set of All Possible Pedigree Haplotype Configurations 
with Minimum Number of Inconsistent Alleles 

Part A: Beginning at the rooted node of the pedigree, perform part B with this 
rooted node. Then, perform part C. 

Part B: Consider a specific sub-rooted node iR . 
1. If there are any sub-rooted nodes in the family of iR , perform part B 

for each of these sub-rooted nodes. 
2. For each haplotype configuration ( ) of ,i th iR , specify the minimum 

number of inconsistent alleles from the optimal pedigree haplotype configurations of the 
subpedigree in which iR  is the root and has the haplotype configuration as  (more 
detail of this process will be described later). 

,i th
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Part C: Perform backtracking to get all optimal pedigree haplotype 

configurations. The backtracking process can be described as follows. 
1. Remove the haplotype configurations that are not associated with any 

optimal configurations by performing part 1-A. This process will be done by preorder 
traversing on each sub-rooted node in the pedigree tree. 

Part 1-A: At the rooted node of a pedigree, remove the haplotype 
configurations of this rooted node that are not the optimal haplotype configurations. 
Then, perform part 1-B for each of these optimal haplotype configurations. 

Part 1-B: Consider a specific haplotype configuration  of a 
specific sub-rooted node 

,i th

iR . 
1. Remove the family haplotype configurations associated 

with  that are not the optimal family haplotype configurations for . ,i th ,i th

2. For each optimal family haplotype configuration, save 
the corresponding haplotype configurations for each sub-rooted node in the family of 

iR . 
3. For each sub-rooted node in the family of iR , exclude 

the haplotype configurations that are not saved in step 2 above, then, perform part 1-B 
for each haplotype configuration of this sub-rooted node. 

(If there is no sub-rooted node in the family of iR , ignore 
step 2 and 3 above.) 

2. Enumerate all optimal pedigree haplotype configurations by 
performing path 2-A. This process will be done by preorder traversing on each sub-
rooted node in the pedigree tree. Firstly, the list of sub-rooted nodes will be specified 
and each node will have the index following the traversing order (preorder traversal). At 
each sub-rooted node, the branching paths used for enumeration are generated from 
the haplotype configurations and their associated family haplotype configurations. Each 
family haplotype configuration will be used for assigning the haplotype configuration of 
each member in the family. 

Part 2-A: At the rooted node of a pedigree (the sub-rooted node 
with the first index), initialize the pedigree haplotype configuration  for each haplotype C
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configuration of this rooted node and perform part 2-B for each of these haplotype 
configurations with their pedigree haplotype configuration C  (now there are no 
assignments in C ). 

Part 2-B: Consider a specific haplotype configuration  of a 
specific sub-rooted node 

,i th

iR  and a pedigree haplotype configuration . Perform part 2-
C for each family haplotype configuration associated with . 

C

,i th

Part 2-C: Consider a specific family haplotype configuration of a 
specific sub-rooted node iR  and a pedigree haplotype configuration . Assign this 
family haplotype configuration with this sub-rooted node 

C

iR  in . Then perform step a 
or b below. 

C

a. If i  is the last index in the list of the sub-rooted nodes, 
it means that all sub-rooted nodes in C  has already been assigned with a specific 
family haplotype configuration. In this case save C  in the list of optimal pedigree 
haplotype configurations.  

b. Otherwise, perform part 2-B for the sub-rooted node of 
the next index with its haplotype configuration corresponding to the associated family 
haplotype configuration that has been previously specified in C  (by the preorder 
traversing, it is certain that this associated family haplotype configuration has been 
specified already in C ) and with this current pedigree haplotype configuration . C

 

For a particular sub-rooted node iR  with a specific family haplotype 
configuration , ,i t cf , the minimum number of inconsistent alleles of the subpedigree in 
which iR  is the root and has the family haplotype configuration as , ,i t cf  can be  
computed as follows. 
 

, , , ,

, , , , , , ,
1

( , ) ( , ( , ) )

( ( , ), ( , ), ( , )

i

i

i i t c s s i t c
s U

i i t c i i t c i l i t c
l q

MinNumF R f MinNumH R Hap R f

NumTrio Hap F f Hap M f Hap O f

∈

≤ ≤

= +∑

∑ )
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, ,i t cf  denotes a family haplotype configuration of index c  where 
 and  is the number of all possible family haplotype configurations 

associated with . 
,{1,2,..., }i tc∈ d ,i td

,i th

sR  denotes the sub-rooted node of index . s

iU  denotes the set of the indices of the sub-rooted nodes in the family of 
iR  (excluding the node iR  ). 

iq  denotes the number of the offspring in the family of iR . 
iF  denotes the father node in the family of iR  
iM  denotes the mother node in the family of iR  
,i lO  denotes the offspring node of index  in the family of l iR  

The function , ,( , )s i t cHap R f  returns the haplotype configuration of sR  
corresponding to the family haplotype , ,i t cf . 

The function ( , , )F M ONumTrio h h h  returns the number of inconsistent 
alleles computed from the haplotype configurations of each member in the trio 
composed of the father ( h ), the mother (F Mh ), and the offspring ( ). The function Oh

,( , )s s tMinNumH R h  returns the minimum number of inconsistent alleles of the 
subpedigree in which sR  is the root and has the specific haplotype configuration as 

,s th . This function can be computed as follows. 
 

, ,( , ) min ( ( , ), )s s t s s t c
c

MinNumH R h MinNumF R f=  

Consider the pedigree in Figure 5.9. Each sub-rooted node is assigned 
with the index obtained from the postorder traversing. On the left, two families are shown 
with the possible haplotype configurations of each node. From this pedigree, the 
example of the computation in part B of the algorithm above can be described as 
follows.  
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(2|2)

(1|2)
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J K
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{ (1|2), (2|2) }

(1|2)(1|1)

(1|2)

{ (1|2), (2|2) }

{ (1|2), (2|2) }  
 

Figure 5.9  The pedigree used as an example for the algorithm of finding the minimum 
number of inconsistent alleles. 

First, we will consider at the sub-rooted node K which is the node with 
the index 1. All possible haplotype configurations of each node in the family of node K 
are shown in the left of Figure 5.9. The number of inconsistent alleles for each haplotype 
configuration of node K can be computed as follows. 

We use the notation ( | )X a b  to represent the haplotype configuration 
of node ( | )a b X . 

 
1 1,1,1( , ) ( (2 | 2), (1| 2), (1| 2) )

( (2 | 2), (1| 2), (1| 2) )
( (2 | 2), (1| 2), (1| 2) )

0 0 0 0

MinNumF R f NumTrio L K O

NumTrio L K P
NumTrio L K Q

= +

+

= + + =

 

 
1 1,1,2( , ) ( (2 | 2), (1| 2), (1| 2) )

( (2 | 2), (1| 2), (1| 2) )
( (2 | 2), (1| 2), (2 | 2) )

0 0 1 1

MinNumF R f NumTrio L K O

NumTrio L K P
NumTrio L K Q

= +

+

= + + =
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1 1,2,1( , ) ( (2 | 2), (2 | 2), (1| 2) )

( (2 | 2), (2 | 2), (1| 2) )
( (2 | 2), (2 | 2), (1| 2) )

1 1 1 3

MinNumF R f NumTrio L K O

NumTrio L K P
NumTrio L K Q

= +

+

= + + =

 

 
1 1,2,2( , ) ( (2 | 2), (2 | 2), (1| 2) )

( (2 | 2), (2 | 2), (1| 2) )
( (2 | 2), (2 | 2), (2 | 2) )

1 1 0 2

MinNumF R f NumTrio L K O

NumTrio L K P
NumTrio L K Q

= +

+

= + + =

 

The minimum number of inconsistent alleles of node K corresponding to 
the haplotype configuration (1|2) can be computed as follows. 
 

1 1,1 1 1,1,( , ) min( ( , )

min(0, 1) 0

c
c

MinNumH R h MinNumF R f=

= =

)
 

The minimum number of inconsistent alleles of node K corresponding to 
the haplotype configuration (2|2) can be computed as follows. 
 

1 1,2 1 1,2,( , ) min( ( , ) )

min(3, 2) 2

c
c

MinNumH R h MinNumF R f=

= =
 

Next, we consider at the sub rooted node F. The index of this node is 2 
and all possible haplotype configurations of each node in the family of node F are shown 
on the left of Figure 5.9. The number of inconsistent alleles for each haplotype 
configuration of node F can be computed as follows. 
 

2 2,1,1 1 1,1( , ) ( , )

( (1|1), (1| 2), (1| 2) )
( (1|1), (1| 2), (1| 2) )

0 0 0 0

MinNum F R f MinNumH R h

NumTrio E F J
NumTrio E F K

= +

+

= + + =
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2 2,1,1 1 1,2( , ) ( , )

( (1|1), (1| 2), (1| 2) )
( (1|1), (1| 2), (2 | 2) )

2 0 1 3

MinNum F R f MinNumH R h

NumTrio E F J
NumTrio E F K

= +

+

= + + =

 

The minimum number of inconsistent alleles of node F corresponding to 
the haplotype configuration (1|2) can be computed as follows. 

2 2,1 2 2,1,( , ) min( ( , ) )

min(0, 3) 0

c
c

MinNumH R h MinNumF R f=

= =
 

For the other sub-rooted nodes, the computation will be performed in the 
similar way. Finally, the process will finish at the rooted node A.  
 

5.7 Local Grandparent Inference by a Mendelian Law 

After performing the processes in Sections 5.2 to 5.6 above, there will be 
many loci in which the paternal and maternal alleles have been specified. If we know the 
paternal or maternal alleles, the grandparent corresponding to these specified alleles 
may be directly inferred. Local grandparent inference refers to the process of inferring 
the grandparent of a specific allele in the way that does not consider a whole pedigree 
simultaneously. This means that, by using just the information of the parents or the 
grandparent values of the adjacent loci, the specific grandparent value that will lead to 
the minimum number of recombinants could be directly inferred. The algorithm for 
inferring the grandparent for each paternal or maternal allele can be described as 
follows. 

The Algorithm for Inferring the Grandparents 
Step 1: For each paternal or maternal allele that is not a Mendelian inconsistent 

allele and whose haplotype configuration in the associated parent’s locus is known 
heterozygous, perform step a or b below. 

a. For the paternal allele, if it is identical to the paternal allele of the 
father’s locus then set its grandparent to be ‘grandfather’ (with the value 1) otherwise if it 
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is identical to the maternal allele of the father’s locus then set its grandparent to be 
‘grandmother’ (with the value 2).  

b. For the maternal allele, if it is identical to the paternal allele of the 
mother’s locus then set its grandparent to be ‘grandfather’ (with the value 1) otherwise if 
it is identical to the maternal allele of the mother’s locus then set its grandparent to be 
‘grandmother’ (with the value 2). 

Step 2: Perform forward checking from the first locus to the last locus by 
considering only the alleles that have been specified; and are Mendelian inconsistent or 
their associated parents’ loci are homozygous. For each of these specified alleles, 
perform step a or b below. 

a. For the paternal allele, if the grandparent of the previous adjacent 
paternal allele has been specified, then set its grandparent to be the same as the 
grandparent of the previous adjacent paternal allele. 

b. For the maternal allele, if the grandparent of the previous adjacent 
maternal allele has been specified, then set its grandparent to be the same as the 
grandparent of the previous adjacent maternal allele. 

Step 3: Perform backward checking from the last locus to the first locus by 
considering only the alleles that have been specified; and are Mendelian inconsistent or 
their associated parents’ loci are homozygous. For each of these specified alleles, 
perform step a or b below. 

a. For the paternal allele, if the grandparent of the next adjacent paternal 
allele has been specified, then set its grandparent to be the same as the grandparent of 
the next adjacent paternal allele. 

b. For the maternal allele, if the grandparent of the next adjacent 
maternal allele has been specified, then set its grandparent to be the same as the 
grandparent of the next adjacent maternal allele. 

After performing local grandparent inference, some grandparents will be 
specified. There may be some haplotype vectors in which all alleles have been specified 
but all of their grandparents have not been specified. This case usually occurs for the 
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data that have much of homozygous loci. For each haplotype vector matching this case, 
all of the alleles in that haplotype vector will be assigned with one identical grandparent 
value (by setting all values to be only “grandfather” or “grandmother”).  

The algorithm for the local grandparent inference above has a specific 
point to be considered. By considering the pedigree haplotype configurations of all loci 
simultaneously, there may be many forms of the pedigree grandparent configurations of 
all loci that result in minimum number of recombinants (recombination points). This 
means that we can set the grandparents in many different ways in order to make the 
whole pedigree optimal in the number of recombinants. The processes in steps 2 and 3 
are performed as a heuristic method by immediately setting the grandparent with the 
value equal to the grandparent of the adjacent locus, in order to avoid the recombination 
event. 

There may be many possible optimal forms of the pedigree grandparent 
configuration for one particular pedigree haplotype configuration. Although this heuristic 
algorithm may neglect some of these possible forms, it does not exclude any pedigree 
haplotype configurations. 
 

5.8 Finding the Set of All Possible Pedigree Grandparent Configurations 

Each pedigree haplotype configuration can have many possible 
pedigree grandparent configurations corresponding to it (note that, each pedigree 
haplotype configuration or pedigree grandparent configuration referred to here, are the 
configurations of one locus). The pedigree grandparent configurations will be found 
after the set of pedigree haplotype configurations with minimum number of inconsistent 
alleles have been determined.  

5.8.1 Finding the Set of All Possible Family Grandparent Configurations 

The family grandparent configuration is the specification of both paternal 
and maternal grandparent on the specific locus of each offspring in the family. The 
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process of finding the set of all possible family grandparent configurations is performed 
at each family corresponding to each sub-rooted nodes. At each family, the set of all 
possible family grandparent configurations corresponding to each family haplotype 
configuration will be determined. Figure 5.10 shows the example of determining all 
possible family grandparent configurations corresponding to a particular family 
haplotype configuration. 
 

A B

(1|1)

(1|2)(1|1)

(1|2)

C D

gmgf or gm gf or gm gf  
 

Family Grandparent Configuration 
C D  

Paternal Maternal Paternal Maternal 
1 gf gm gf gf 
2 gf gm gm gf 
3 gm gm gf gf 
4 gm gm gm gf 

 
Figure 5.10  The example of possible family grandparent configurations corresponding 
to one family haplotype configuration (here, ‘gm’ = grandmother and ‘gf’ = grandfather). 
 

At each allele, the possible grandparents are determined by considering 
its parental locus. If the given allele is identical to the paternal allele of the parental 
locus, one possible grandparent could be a grandfather. And if the considered allele is 
identical to the maternal allele of the parental locus, one possible grandparent could be 
a grandmother. If the considering allele is not identical to both paternal and maternal 
allele of the parental locus, it mean that this allele is a Mendelian inconsistent allele. For 
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the case of a Mendelian inconsistent allele, the possible grandparent values will be both 
grandfather and grandmother. 

5.8.2 Enumerating All Possible Pedigree Grandparent Configurations 

The pedigree grandparent configuration refers to a specification of the 
family grandparent configurations for all sub-rooted nodes in the pedigree at one 
particular locus. From a particular pedigree grandparent configuration, we can specify 
all grandparent configurations for each member in the pedigree except those members 
that do not have parents (called founder). 

In the previous section, we have described the process of finding all 
pedigree haplotype configurations that have minimum number of inconsistent alleles. 
From these pedigree haplotype configurations, we need to enumerate all corresponding 
pedigree grandparent configurations to be used in the later inference process. Each 
pedigree haplotype configuration has the corresponding set of possible pedigree 
grandparent configurations. The process of enumerating all pedigree grandparent 
configurations will be performed by considering at each pedigree haplotype 
configuration and then merging all results together.  

At a particular pedigree haplotype configuration, assume that the sets of 
possible family grandparent configurations corresponding to the family haplotype 
configurations of each sub-rooted node are already determined. Each of the possible 
pedigree grandparent configurations corresponding to a particular pedigree haplotype 
configuration can be enumerated from each combination of the family grandparent 
configurations of all sub-rooted nodes. Figure 5.11 shows an example of this 
enumeration. 
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C D FE

G H I

J LK

{ 1, 2 }

{ 1, 4 }

{ 2 }

Set of the indices of possible
family grandparent configurations

 
 

 Pedigree Grandparent Configuration 
 A D H 

1 1 1 2 
2 1 4 2 
3 2 1 2 
4 2 4 2 

 
Figure 5.11  The example of possible pedigree grandparent configurations 

corresponding to one pedigree haplotype configuration in which the possible family 
grandparent configurations for each sub-rooted node are defined as in the figure. 

 

5.9 Finding the Grandparent Solutions with Minimum Number of Recombinants by a 
Dynamic Programming 

A particular grandparent solution refers to the specification of the 
pedigree grandparent configurations of all loci in which the number of recombinants is 
minimum. Determining all grandparent solutions is a combinatorial optimization problem. 
The method used to solve this problem is a dynamic programming. Using a dynamic 
programming, we solve the problem from a smallest subproblem and then gradually 
extend the size of the subproblem until reaching the original size of the problem. For the 
problem of finding the grandparent solutions, the size of the problem is determined by 
the number of loci (haplotype length). The set of all possible pedigree grandparent 
configurations for each locus will be used for the computation in a dynamic 

 



                                                                                                              
                                                                                                                                                              70 

 
programming. The dynamic programming algorithm for finding the grandparent 
solutions that have minimum number of recombinants is described as follows. 

The dynamic programming algorithm begins with the problem of two loci, 
the first and second loci (locus 1 and locus 2). Next, the computation between the locus 
2 and locus 3 will be performed using the result from the first step. Then, the next 
consecutive locus will be considered using the information from the previous step. The 
similar computation will continue on the other loci until reaching the last locus. The 
problem of finding grandparent solutions can be considered as a network form (similar 
to the shortest path problem described in Chapter 3) in which each node in the network 
represents the pedigree grandparent configuration of each locus. The equivalent 
network of this problem is shown in Figure 5.12. 
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Figure 5.12  The network representing the problem of finding grandparent solutions that 

have minimum number of recombinants. 
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The recurrent function of the dynamic programming algorithm, for the 

problem of finding grandparent solutions that have minimum number of recombinants, 
can be formulated as follows. 
 

1, ,( , ) min ( ( 1, ) ( , ) ) , {1,2,..., }i s i t i
s

MinNum i t MinNum i s RecNum w w s k−= − + ∈  

where  denotes the locus index, i 2,...,i m= , and  is the number of all 
loci. t  and  denote the indices of the pedigree grandparent configuration regarding to 
each locus.  is the number of all possible pedigree grandparent configurations of 
locus . 

m

s

ik

i

( , )MinNum i t  is a function that returns the minimum number of 
recombinants that can possibly be for the problem of  loci (locus 1 to i ). Locus  is 
assigned with the pedigree grandparent configuration of index t . For the problem of 
one locus (only the first locus), we define 

i i

(1, ) 0MinNum t =  for all values of index t . 
 

A B

C D FE

G H I

J LK

(1|2)
(1|2)

(1|2)
(1|1)

(1|1)
(1|1)

(1|2)
(2|2)

(2|2)
(2|2)

(2|1)
(2|1)

(1|2)
(1|2)

(2|1)
(1|1)  

 
Figure 5.13  The pedigree with the assignment of grandparent configurations at two 

adjacent loci of each non-founder member. From these configurations, the number of 
recombination points is 3 as indicated by the arrows. 
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)1, ,( ,i s i tRecNum w w−  is a function that returns the number of 

recombinants (recombination points) between two pedigree grandparent configurations 
(  and ) of two adjacent loci, where  denotes the pedigree grandparent 
configuration of index  at locus i . An example for the computation of the function 

 is shown in Figure 5.13. 

1,i sw − ,i tw ,i tw

t

(...)RecNum

The possible grandparent solutions of this problem may be from only one 
solution to many million solutions, depending on the input pedigree data. To get the 
solutions, the function ( , )MinNum i t  will be computed for all nodes. After the 
computations for all nodes in the last locus have been performed, the optimal (minimal) 
number of recombinants for the solutions can be computed by the following equation. 
 

min ( ( , ) ) , {1,2,..., }m
s

MinRecNum MinNum m s s k= ∈  

where MinRecNum  is the optimal (minimal) number of recombinants 
(recombination points) for the solutions.  is the index of the last locus and  is the 
number of all possible pedigree grandparent configurations of the last locus.  

m mk

When the optimal nodes in the last locus are determined, the optimal 
paths in the network could be determined by the backtracking algorithm. One path 
represents one grandparent solution which is one specification of the pedigree 
grandparent configurations of all loci. 

Based on the network representation of this problem in Figure 5.12, the 
dynamic programming algorithm for determining all grandparent solutions can be 
described as follows. 

We denote some notations as follows. 
,i tL  denotes the list of nodes in locus 1i −  having the value of the term 

1, ,( 1, ) ( , )i s i tMinNum i s RecNum w w−− +  in the function ( , )MinNum i t  equal to value of 
( , )MinNum i t . 
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Y  denotes a grandparent solutions which keeps the specification of the 

pedigree grandparent configurations for all loci. 

The Algorithm for Finding the Grandparent Solutions 
Step 1: Initialize a bound number to be 0. 
Step 2: Perform the following steps (a and b) for each locus (with index i ), by 

beginning at the second locus and continue on the next locus until finishing at the last 
locus. 

a. For each node (a specific pedigree grandparent configuration with 
index ) of a specific locus i , compute t ( , )MinNum i t  and save the list of nodes in 
locus  that make the value of the term 1i − 1, ,( 1, ) ( , )i s i tMinNum i s RecNum w w−− +  in 
the function ( , )MinNum i t  equal to value of ( , )MinNum i t  (this list is denotes as ). ,i tL

b. Remove the nodes that have the value of ( , )MinNum i t  greater than 
the bound number. If all nodes have been removed then increment the bound number to 
be equal to the minimum value of ( , )MinNum i t  and go back to begin step 2 again. 

Step 3: Perform backtracking to get all optimal grandparent solutions. This 
backtracking process is the process of enumerating all optimal grandparent solutions by 
preorder traversing on each node in the network tree (here the direction of a network 
graph will be changed to be from the last locus to the first locus). At each node, the 
branching paths used for enumeration are generated from the list . The backtracking 
process begins by performing part A below.  

,i tL

Part A: At the last locus, initialize the grandparent solution Y  (now, there 
is no assignment in Y ) for each optimal node (the nodes with minimum value of 

). Then, perform part B for each of these optimal nodes. (...)MinNum

Part B: Consider a specific node  of a locus i  with a grandparent 
solution Y . Assign the pedigree grandparent configuration of index t  with the locus i  in 

. Then, perform step a or b below. 

t

Y

a. If i  is equal to 1, it means that each of all loci in Y  has already 
been assigned with a specific pedigree grandparent configuration. In this case, save 
this grandparent solution Y  to the list of grandparent solutions. 
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)

b. Otherwise, perform part B for each node in the list  (these 
nodes are in the locus ) with the current grandparent solution Y . 

,i tL

1i −

 

A dynamic programming is, in general, an algorithm that mainly reduces 
the redundancy of the computations. For this problem, it works quite well in reducing 
many of computations. But as from the characteristic of a computing time of this 
problem that increases exponentially, there is still a demand for reducing as much 
computing time as possible. By considering the algorithm above, there are still some 
redundancies in the computation process. Now, let’s consider the computation of the 
function 1, ,( ,i s i tRecNum w w− . To count the number of recombination points between 
two pedigree grandparent configurations of two adjacent loci, we must compare each 
two grandparent configuration from two loci on every member in a pedigree. Let’s 
consider the computation of the function  and 

. If the pedigree grandparent configuration  is nearly similar to 
 and assume that they are different by only one grandparent configuration, it should 

mean that the computation for  and  are nearly 
similar, and thus, there occur some redundancies of computation. So as from this point, 
we have developed the method that can reduce some of these redundancies. 

1,1 2,1( ,RecNum w w )

)

) )

)

1,2 2,1( ,RecNum w w 1,1w

1,2w

1,1 2,1( ,RecNum w w 1,2 2,1( ,RecNum w w

In our method, the function 1, ,( ,i s i tRecNum w w−  is computed by 
considering at each family grandparent configuration corresponding to a particular 
pedigree grandparent configuration. Counting the number of recombination points will 
be considered at a unit of family, not a unit of member. So we can compute the number 
of recombination points between two family grandparent configurations of two loci at 
first. To compute the function 1, ,( ,i s i t )RecNum w w− , we can used the pre-computed 
values so that many redundancies could be reduced. 
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5.10 Getting the Haplotype Solutions by Mapping from the Grandparent Solutions 

After the set of grandparent solutions with minimum number of 
recombinants are determined, the corresponding set of the haplotype solutions could be 
determined. A particular haplotype solution refers to the specification of the pedigree 
haplotype configurations of all loci in which the number of recombinants is minimum. 
One grandparent solution refers to the specification of pedigree grandparent 
configurations for all loci. At each locus, the pedigree grandparent configuration can be 
mapped back to its corresponding set of pedigree haplotype configurations (in the 
process of enumerating the pedigree grandparent configurations from the pedigree 
haplotype configurations in Section 5.8, each pedigree grandparent configuration has 
kept a list of its corresponding pedigree haplotype configurations). Therefore, each 
grandparent solution can be mapped to the haplotype solutions by enumerating from 
the combination of each corresponding pedigree haplotype configuration at each locus. 
One grandparent solution can be mapped to many haplotype solutions. Note that the 
number of resulted haplotype solutions may be very large, especially for the long 
haplotypes, due to the nature of a combinatorial problem. 

 

 



CHAPTER VI 
 

EXPERIMENTAL RESULTS 
 

For the problem of the occurrence of Mendelian inconsistent alleles, we 
have constituted the procedure to handle this problem based on the assumption which 
states that the preferable haplotype solutions should have minimum number of 
inconsistent alleles. In this work, we left the consideration of the reliability of our method 
for the problem of inconsistent alleles with only a concordance of this assumption. So, 
there is no explicit experiment concerning with the problem of inconsistent allele. 

Mainly, the experiment was conducted for examining the efficiency of 
this method with respect to the computing time and size of data. The efficiency of this 
method was compared with the dynamic programming method proposed by Doi, Li, and 
Jiang (2003). To compare our method with their method, we used their program called 
“PedPhase” which has two implementations of dynamic programming methods, the 
member-based and locus-based algorithms. The results from our implemented program 
and from PedPhase were compared in our experiment. 

Other than the efficiency testing, we also tested for the effect of each 
parameter to the computing time, the accuracy and the number of solutions. These tests 
do not mainly concern with our objective, but they are used to assess the correctness 
and also make some observations on our method. 

Since the scope of this work does not concern with the real data, the 
input pedigree data for our experiment were generated from our simulation program 
(see Appendix A). In the simulation program, the characteristic of the pedigree data can 
be controlled by particular genetic parameters. The simulation program can generate 
the pedigree with and without loops. We can specify all important parameters that were 
used in our experiment. The parameters used in our experiment are the number of 
generations, the number of members in a pedigree, the number of loci in a particular 
haplotype (haplotype length), the number of different alleles in each locus, the rate of 
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missing alleles, the number of recombination events, and the number of Mendelian 
inconsistent alleles. At each tested case, one parameter was used as the control 
parameter while the others were fixed with the specific values.  

Our experiment was performed on a Pentium IV PC with 2.4 GHz CPU 
and 256 MB RAM. Each result shown in our experiment was an average from 30 runs 
from different input data. All tested data in this experiment are the biallelic data (SNPs 
data) in which each locus has only two possible values of alleles. As for the reasons of 
time consuming and the limit number of memory (RAM), in some cases, we restricted to 
use the results from only those input data that are feasible to compute. The feasible 
input data are defined as the data that result in the number of limited parameters not 
exceed the maximum limit. Here, the limited parameters are the number of the possible 
pedigree haplotype configurations, the possible pedigree grandparent configurations, 
the computing cases in a dynamic programming module at the phase of finding optimal 
grandparent solutions (the multiply of the number of nodes between two adjacent loci), 
the grandparent solutions, and the haplotype solutions. The maximum limits of these 
parameters should be set by specific constants that appropriated to the testing PC. For 
our experiment, the default maximum values for the limited parameters at each locus 
were set as follows. The maximum number of the possible pedigree haplotype 
configurations, the possible pedigree grandparent configurations, and the grandparent 
solutions were set as 200,000. The maximum number of haplotype solutions was set as 
1,000,000. And the maximum number of the computing cases in a dynamic 
programming module at the phase of finding optimal grandparent solutions was set as 
150,000,000. 
 

6.1 Comparing the Computing Time with PedPhase 

PedPhase is a program that contains the functions for inferring 
haplotypes from genotypes for each member in a general pedigree. It was developed 
by Doi, Li, and Jiang (2003) and is used as the software for solving the minimum-
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recombinant haplotype configuration (MRHC) problem. There are five algorithms in 
PedPhase that can be used to solve MRHC problem. But we only interested in two of 
these algorithms, the member-based and locus-based dynamic programming 
algorithms.  

For the member-based dynamic programming algorithm, it assumes that 
the input pedigree is small and performs dynamic programming on the marker loci in 
each member of the pedigree simultaneously. The algorithm works for any input 
pedigree (without or with mating loops) and has a running time linear in the number of 
marker loci. It could be useful as a subroutine for solving MRHC on small pedigrees, 
nuclear families from a large input pedigree or independent nuclear families from a 
population data. 

For the locus-based dynamic programming algorithm, it assumes that 
the number of marker loci is bounded by a small constant and performs dynamic 
programming on the members of the input pedigree. It works only for pedigrees without 
mating loops. The algorithm takes advantage of the tree structure of the input pedigree 
and has a running time linear in the size of the pedigree. 

Both algorithms above also assume that the data do not contain missing 
alleles and all alleles are consistent with a Mendelian law. Thus, the input data for this 
test were generated so that there were no missing and inconsistent alleles. And also 
there is no loop in the input pedigree.  

These two algorithms were used for evaluating the efficiency in the 
computing time of our method, by comparing the computing time of our method with the 
time from these two algorithms. As for the simplicity, we will refer to the member-based 
method as the dynamic programming by locus (DP-by-Locus) and refer to the locus-
based method as the dynamic programming by member (DP-by-Member). Here, the 
number of members and the number of loci were used as parameters for examining the 
efficiency in the computing time. Since PedPhase returns only one solution for each 
input data, thus we excluded the time for enumerating all solutions from our method. We 
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just set our method to get only one solution in order to compare the computing time with 
these two algorithms of PedPhase. 

6.1.1 Comparing by the Number of Loci 

To compare the computing time by varying the number of loci (haplotype 
length), the number of members will be fixed. Since the DP-by-Locus of PedPhase can 
work with only a very small size pedigree (by our observation, not over 9 members), so 
we compared our method with two dynamic programming algorithms separately, using 
the different numbers of members. For the case of DP-by-Locus, we set the number of 
members as 7 from a pedigree with 3 generations. And for the case of DP-by-Member, 
we set the numbers of members from 3 different values as 15, 20, and 25 from a non-
looped pedigree with 3, 4, and 4 generations respectively. 

The other parameters were set as follows. There was no recombinant. 
And there were no missing and inconsistent alleles. Note that, to compare between two 
methods at each case, the same input data were used for both methods. The results are 
shown in Table 6.1, Figure 6.1, Table 6.2, and Figure 6.2. 

By comparing with the DP-by-Member, the results show that the 
computing time of our method quite linearly increases by the number of loci while the 
computing time of the DP-by-Member dramatically increases when the number of loci is 
above 15. These results show that the DP-by-Member is appropriated for only the data 
with small number of loci while our method still fairly works with more number of loci. 
And it can be inferred from these results when working with the moderate-size pedigree 
(15-25 members) and the haplotype length is more than 20 loci, our method clearly 
tends to outperform the DP-by-Member (has less computing time). 

By comparing with the DP-by-Locus, the computing times of our method 
are apparently less than those of the DP-by-Locus for all cases. And also, the computing 
times of our method for different numbers of loci seems to be constant. This is because 
when the number of members is small (in this case, we used only 7 members), the time 
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used in the dynamic programming process will be very small compared to the time used 
in other pre-processes which are not depend much on the number of loci. 
 
Table 6.1  The computing times varying by the number of loci between our proposed 
method and the DP-by-Member of PedPhase (by fixing the number of members as 15, 
20, and 25). 
 

Time (sec) #Loci 
5 10 13 15 17 18 19 20 

 
#Members = 15 

Proposed Method 0.40 1.17 1.33 1.60 3.47 4.45 6.61 6.87 
DP-by-Member 0.09 0.12 0.37 4.02 7.63 21.30 49.82 81.0 

 
#Members = 20 

Proposed Method 0.85 22.93 24.12 28.25 33.33 34.50 41.42 63.70 
DP-by-Member 0.10 0.13 0.46 17.43 41.05 74.42 201.0 349.8 

 
#Members = 25 

Proposed Method 13.32 39.77 53.87 91.67 97.66 116.7 121.6 127.3 
DP-by-Member 0.11 0.33 0.55 10.32 11.52 49.66 167.5 358.6 
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Figure 6.1  The computing times varying by the number of loci between our proposed 
method and the DP-by-Member of PedPhase (by fixing the number of members as 15, 

20, and 25). 
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Table 6.2  The computing times varying by the number of loci between our proposed 
method and the DP-by-Locus of PedPhase (#Members = 7). 
 

Time (sec) 
#Loci 

5 10 15 20 25 
Proposed Method 0.242 0.243 0.260 0.264 0.273 

DP-by-Locus 0.836 2.03 3.265 5.962 6.599 
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Figure 6.2  The computing times varying by the number of loci between our proposed 
method and the DP-by-Locus of PedPhase (#Members = 7). 

 

6.1.2 Comparing by the Number of Members 

In this case, the computing times were tested from different numbers of 
members. The parameters were set as follows. The pedigree had no loop. The number 
of loci was 10. There was no recombinant. There were no missing and inconsistent 
alleles. The number of generations was varied by the size of a pedigree. We used 2 
generations for the pedigrees with 5 and 6 members (only one family), 3 generations for 
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the pedigrees with 7-14 members, and 4 generations for the pedigree with 16-28 
members. The result is shown in Table 6.3 and Figure 6.3 below. 
 
Table 6.3  The computing times varying by the number of members between our 
proposed method and two dynamic programming algorithms of PedPhase.  
 

#Members DP-by-Locus DP-by-Member Proposed Method 
5 0.108 0.116 0.244 
6 1.340 0.090 0.255 
7 2.258 0.095 0.249 
8 35.206 0.149 0.270 
9 167.087 0.094 0.262 
10 - 0.123 0.322 
12 - 0.098 0.385 
14 - 0.104 1.247 
16 - 0.095 1.711 
18 - 0.119 7.583 
20 - 0.021 23.792 
24 - 0.163 60.594 
28 - 0.349 142.057 
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Figure 6.3  The computing times varying by the number of members between our 
proposed method and two dynamic programming algorithms of PedPhase.  
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Note that for the case of DP-by-Locus, the program PedPhase rejected 

all our input data that have number of members more than 9. Then there were no results 
from these cases. And for the case that the number of members is 9, the resulted time 
was an average from only 10 input data because most tested cases were rejected by 
PedPhase (not feasible to compute). The average computing time from these 10 feasible 
input data would be considered as an approximated lower bound of this case (the real 
average time would be very much more than this). 

From the result above, we can see that the computing time of the DP-by-
Locus dramatically increases when the number of members is more than 8. The 
computing time of our method is more than the DP-by-Member for all cases. And when 
the number of members is more than 20, our method seems to dramatically increase in 
the computing time. This apparently shows that the DP-by-Member performs better than 
our method when the size of pedigree is large. It is because the algorithm of DP-by-
Member, in general, has a computing time linear in the number of members while our 
method has a computing time exponential in the number of members. 
 

6.2 The Effect of each Parameter to the Computing Time 

To examine the effect of each parameter to the computing time, we set 
our program to enumerate only one solution in order to avoid the effect of a solution 
sizes. The number of solutions varies very much on different input data and when the 
number of solutions is very large, the phase of enumerating the solutions would 
consume very much more time than the optimization phase. Since the computing time 
that we are interested is only the time of the optimization phase then the time for 
enumerating all solutions should be ignored. 

6.2.1. Testing by the number of members 

In this case, our program was tested with different numbers of members. 
The parameters were set as follows. The number of loci was 10. There was no 
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recombinant. There were no missing and inconsistent alleles. The number of 
generations was varied by the number of members. We used 2 generations for the 
pedigrees with 5 members (only one family), 3 generations for the pedigrees with 10-15 
members, and 4 generations for the pedigree with 20-30 members. The result is shown 
in Table 6.4 and Figure 6.4. 
 
Table 6.4  The computing time varying by the number of members. 
 

#Members 5 10 15 20 25 30 
Time (sec) 0.016 0.061 5.320 17.076 56.577 110.615 
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Figure 6.4  The computing time varying by the number of members. 
 

Note that in the case of 30 members, it took very long time for the 
computation (could be many hours). Thus, we just used the average time from only the 
feasible input data which should be considered as an approximated lower bound of this 
case. The result apparently shows that the computing time exponentially increases by 
the number of members. 
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6.2.2 Testing by the number of loci 

In this case, our program was tested with different numbers of loci. The 
parameters were set as follows. The number of members was 15 from the pedigree with 
3 generations. There was no recombinant as well as no missing and inconsistent alleles. 
The result is shown in Table 6.5 and Figure 6.5. 
 
Table 6.5  The computing time varying by the number of loci. 
 

#Loci 5 10 20 40 80 
Time (sec) 0.179 1.307 3.099 6.801 19.063 
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Figure 6.5  The computing time varying by the number of loci. 
 

We can see from the result that the computing time increases quite 
linearly by the number of loci. This result corresponds to the concept of our method 
which perform dynamic programming by locus, thus, it should have a computation time 
linear in the number of loci. 
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6.2.3 Testing by the Rate of Missing Alleles 

In this case, our program was tested with different rate of missing alleles. 
The parameters were set as follows. The number of members was 15 from the pedigree 
with 3 generations. The number of loci was 10. There was no recombinant and no 
inconsistent allele. The result is shown in Table 6.6 and Figure 6.6. 
 
Table 6.6  The computing time varying by the rate of missing alleles. 
 

%Missing 0 5 10 15 20 
Time (sec) 0.778 33.832 77.346 163.064 394.119 
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Figure 6.6  The computing time varying by the rate of missing alleles. 
 

Note that in the case that the rate of missing alleles is 20%, it took very 
long time for the computation (could be many hours). Thus, we just used the average 
time from only the feasible input data which should be considered as an approximated 
lower bound. The result shows that the rate of missing alleles directly affects the 
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computing time. And as from the graph in Figure 6.6, we can see that the time 
exponentially increases by the rate of missing alleles. 
 

6.3 The Effect of each Parameter to the Accuracy 

Here, the accuracy refers to the percent of correct inferred alleles which 
can be computed by comparing the haplotype solution with the true haplotype data. As 
from the scope of our work, we ignore the direct testing for the accuracy of our method. 
This testing is just mainly used for considering the effect of each parameter to the 
accuracy. In most cases, solving the MRHC problem usually results in many solutions. 
The number of solutions may range from a few to many millions. Indeed, we aim our 
method to be just a pre-filtering process for the haplotype inference problem. And then, 
in this work, there is no considering about the selection of the best solution from all 
possible solutions. In order to examine the effect of each parameter to the accuracy, we 
will approximate the accuracy by averaging from all solutions. In this experiment, we 
limited the number of solutions used to compute for the accuracy as 100,000 solutions. 
This is because getting the large number of solutions is very time consuming and only 
100,000 solutions should be enough for approximating of the accuracy.  

For this experiment, the default settings for each parameter are set as 
follows. The number of members was 15 from the pedigree with 3 generations. The 
number of loci was 10. There was no recombinant as well as no missing and 
inconsistent alleles. In each tested case, the parameters were set from the default 
values excepted for one specific parameter that was a control parameter. The results 
from each tested case are described as follows. 

6.3.1 Testing for the Rate of Local-Inferred Alleles 

In the local inference phase, we perform direct inference according to 
the Mendelian law. During this process, some alleles could be directly inferred as the 
paternal or maternal alleles and also some missing alleles could be imputed. Here, we 

 



                                                                                                              
                                                                                                                                                              89 

 
will call these alleles as local-inferred alleles. The alleles directly inferred by this 
process, in general, are quite reliable. If all alleles in the input data can be directly 
inferred, the solution should be 100% correct. If there are more directly inferred alleles, 
there will be more reliable alleles and also there will be fewer alleles to be inferred in the 
optimization phase. So the number of the local-inferred alleles directly affects the 
accuracy of the final solutions.  

Normally, the rate of local-inferred alleles could vary by the number of 
homozygous loci and the structure of the pedigree. But in this experiment, we will not 
concern in more details of these factors. Here, the rate of local-inferred alleles would be 
considered for only the default case of parameter settings defined above, in order to use 
for analyzing the results from the accuracy testing below. From the experiment, we 
found that the rate of local-inferred alleles for the default case is about 79% (this is not 
the rate of exactly true alleles).  

6.3.2 Testing by the Number of Members 

In this case, the accuracy was tested by varying the number of 
members. We used 2 generations for the pedigrees with 5 members (only one family), 3 
generations for the pedigrees with 10-15 members, and 4 generations for the pedigree 
with 20-25 members. The result is shown in Table 6.7. This result shows that the 
accuracy seems to be higher for the pedigree with more number of members. This is 
because the more information on a pedigree could increase the degree of inference, 
and so, inferring on a pedigree with more number of members should have more 
accuracy than those with less number of members. However, there may be other factors 
that can affect the accuracy and can cause the decreasing of accuracy in a larger 
pedigree. One of these factors could be the structure of a pedigree which we ignored to 
consider here. Hence the result here may not consistent for all cases as can be seen at 
the case of 25 members. 
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Table 6.7  The accuracy varying by the number of members. 
 

#Members 5 10 15 20 25 
%Correct 89.3 90.6 91.6 93.0 91.4 

 

6.3.3 Testing by the Number of loci 

In this case, the accuracy was tested by varying the number of loci. The 
result apparently shows that the number of loci has no effect on the accuracy (see Table 
6.8). 
 
Table 6.8  The accuracy varying by the number of loci. 
 

#Loci 5 10 20 40 
%Correct 91.3 90.5 91.7 91.9 

 

6.3.4 Testing by the Rate of Missing Alleles 

In this case, the accuracy was tested by varying the rate of missing 
alleles. The result apparently shows that the rate of missing alleles decreases the 
accuracy by a linear manner (see Table 6.9 and Figure 6.7). 
 
Table 6.9  The accuracy varying by the rate of missing alleles. 
 

%Missing 0 5 10 15 20 
%Correct 91.3 87.7 84.6 81.0 77.5 
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Figure 6.7  The accuracy varying by the rate of missing alleles. 
 

6.3.5 Testing by the Number of Recombination Points 

In this case, the accuracy was tested by varying the number of 
recombination points. From the result (see Table 6.10), the number of recombination 
points do not show any effect on the accuracy. 
 
Table 6.10  The accuracy varying by the number of recombination points. 
 

#Recombination 0 1 2 4 8 16 
%Correct 91.6 92.2 91.3 91.5 91.6 91.1 

 

6.3.6 Testing by the Rate of Homozygous Loci 

In this case, the accuracy was tested by varying the rate of homozygous 
loci. The locus that is homozygous can be directly inferred without any consideration. So 
if there are many homozygous loci, the rest alleles to be inferred will be less, and thus 
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result in high accurate solutions. This is corresponding to our experimental result as 
shown in Table 6.11. 
 
Table 6.11  The accuracy varying by the rate of homozygous loci 
 

%Homozygous Default 
(Avg. 55.8%) 

41-60% 
(Avg. 50.7%) 

61-80% 
(Avg. 70.2%) 

81-100% 
(Avg. 91.7%) 

%Correct 92.1 90.6 94.1 98.2 
* Note that for the case of Default, it refers to the case that all parameters are set 

as the default setting. The rate of homozygous loci for the default setting is about 56%. 
 

6.4 The Effect of Each Parameter to the Number of Solutions 

Indeed, the solution should be represented by the haplotype 
configurations with their corresponding grandparent configurations. One haplotype 
solution usually has many corresponding grandparent configurations that result in the 
minimum number of recombinants. But for the reason of simplicity and limitation of 
memory, the solutions here will just refer to only the haplotype solutions. Although it is 
not difficult to determine all corresponding optimal grandparent configurations for a 
particular known haplotype solution, selecting the best grandparent configurations is out 
of the scope of this work. Thus, we will ignore these corresponding optimal grandparent 
configurations. 

For the cases that there are a large number of solutions, there may not 
be enough memory to keep all solutions. In our experiment, we set the maximum 
number of haplotype solutions as 1,000,000. This maximum number is sufficient for 
examining the effect of each parameter to the number of solutions. 

The default settings for each parameter are set as follows. The number of 
members was 15 from the pedigree with 3 generations. The number of loci was 10. 
There was no recombinant as well as no missing and inconsistent alleles. In each tested 
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case, the parameters were set from the default values excepted for one specific 
parameter that was a control parameter. The results from each tested case are 
described as follows. 

6.4.1 Testing by the Number of Members 

In this case, the number of solutions was tested by varying the number of 
members. We used 2 generations for the pedigrees with 5 members (only one family), 3 
generations for the pedigrees with 10-15 members, and 4 generations for the pedigree 
with 20 members. The result is shown in Table 6.12 and Figure 6.8. This result shows 
that the number of solutions exponentially increases by the number of members. 
 
Table 6.12  The number of solutions varying by the number of members. 
 

#Members 5 10 15 20 
#Solutions 19 4,280 22,963 113,283 
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Figure 6.8  The number of solutions varying by the number of members. 
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6.4.2 Testing by the Number of loci 

In this case, the number of solutions was tested by varying the number of 
loci. We used only 3 different numbers of loci with the maximum as 15 loci. Here, we 
must ignore the other higher numbers of loci because there was not enough memory to 
compute. For the case of 15 loci, there were many cases that result in the number of 
solutions exceeding the maximum limit. So, the result of this case would be considered 
as the lower bound, not a real average value. As from the result shown in Table 6.13 and 
Figure 6.9, we can roughly conclude that the number of solutions exponentially 
increases by the number of loci. 
 
Table 6.13  The number of solutions varying by the number of loci. 
 

#Loci 5 10 15 
#Solutions 14,693 27,788 93,046 
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Figure 6.9  The number of solutions varying by the number of loci. 
 
 
 

 



                                                                                                              
                                                                                                                                                              95 

 
6.4.3 Testing by the Rate of Missing Alleles 

In this case, the number of solutions was tested by varying the rate of 
missing alleles. For the case of 10%, there were many cases that result in the number of 
solutions exceeding the maximum limit. So, we used only the feasible input data and the 
result of this case would be considered as the lower bound, not a real average value. 
The result is shown in Table 6.14 and Figure 6.10. This result shows that the number of 
solution increases when the rate of missing alleles increases. 
 
Table 6.14  The number of solutions varying by the rate of missing alleles. 
 

%Missing 0 5 10 
#Solutions 23,591 82,589 167,101 
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Figure 6.10  The number of solutions varying by the rate of missing alleles. 
 

6.5 Evaluation 

The efficiency has been tested by comparing our method with 
PedPhase. Comparing our method with the DP-by-Locus of PedPhase, we found that 
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our method used less computing time, and also, the DP-by-Locus could not work with 
the pedigree with a number of members more than 9 while our method could fairly work 
for all cases. Comparing with the DP-by-Member of PedPhase, our method used more 
computing time when the number of loci is small. But with more number of loci (upper 
than 15), the computing time of the DP-by-Member apparently increased exponentially. 
In contrast, the computing time of our method still linearly increased by the number of 
loci. At the number of loci upper than 20, our method used very less computing time 
than the DP-by-Member methods. We can clearly conclude from this testing that when 
the number of members is about 15-25 and the number of loci is more than 20, our 
method will outperform both dynamic programming algorithms in PedPhase. 

In the inference process, the main procedure that consumes most of 
computation time is the phase of finding the minimum-recombinant haplotype 
configuration. Note that, in our method, all of the phases before the phase of finding 
minimum-recombinant pedigree grandparent configurations uses the computing time 
less than a second. The optimization procedure for finding minimum-recombinant 
haplotype configuration has been proved to be NP hard problem (Li and Jiang, 2003), 
which means that the computing time should exponentially increase by the size of data. 
But, by using a dynamic programming by locus, solving this optimization procedure 
could conceptually have a computing time linear in the number of loci but still 
exponential by the number of members. Our method, which used a dynamic 
programming by locus in this procedure, has shown the corresponding result with this 
concept. Thus, this shows the consistent of our implementation to the concept of the 
method we used.  

The rate of missing alleles apparently shows the effect to the computing 
time, the accuracy, and the number of solutions. The results show that the occurrence of 
missing alleles would increase the computing time, decrease the accuracy, and 
increase the number of solutions. The reason is that the occurrence of missing alleles 
produces more number of possible haplotype configurations to be processed, and thus, 
require more computing time. And also it could result in more possible cases of the 
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optimal haplotype solution, and thus, lead to higher possibility for the occurrence of 
incorrect haplotype configurations.  

By considering our inference process, we can see that the parameters 
that affect the number of possible haplotype or grandparent configurations directly 
affect the number of solutions. The results from the experiment clearly show the effects 
of the number of members, the number of loci, and the rate of missing alleles on the 
number of solutions. Increasing in the values of these parameters would lead to the 
increasing of the number of solutions. Since all of these parameters directly relate to the 
number of possible haplotype or grandparent configurations in the inference process, 
thus, these results infer the correctness of our implementation for the aspect of the 
solution number. 

Due to the fact that the problem of minimum-recombinant haplotype 
inference is NP-hard which mean that the computing time is exponential in the size of 
data, thus, our method could be used for limit size of data. Our method should be 
practical used for the pedigree of size not over than 25-30 members. And although our 
method has computing time linearly in the number of loci, there is still a limitation in the 
number of loci. From the experiment, we have seen that the number of solutions 
exponentially increase by the number of loci. When there are large number of solutions 
(about a million up), the memory would be insufficient for keeping the solutions. And so, 
this will cause the limitation on the number of loci.  

Although the computing time which is one of the limitations of this 
method exponentially increases by the size of data, but it does not cause any critical 
breaks of the program. In contrast, the requirement of memory for keeping the possible 
cases of the haplotype and grandparent configurations during the computation process 
can cause a critical break of the program when the use of memory exceed the maximum 
limit. The size of pedigree, the number of loci and the rate of missing alleles are the main 
parameters that relate exponentially to the required size of the memory. Thus, for a 
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particular input data, these parameters should be considered before running the 
program in order to avoid the problem of insufficient memory. 

 

 



CHAPTER VII 
 

CONCLUSION 

 

7.1 Conclusion 

This work mainly intends to improve the current dynamic programming 
method for the minimum-recombinant haplotype inference problem so that it works 
efficiently with respect to the computing time and size of data (to use for long 
haplotypes), and also, able to work with the data containing some missing alleles or a 
few of Mendelian inconsistent alleles. This improvement is an extending of the limitations 
in the current methods in order to make the computational methods for the problem of 
haplotype inference on a pedigree more practical in the real-life usages.  

We have solved the problem of the Mendelian inconsistent alleles by 
assume that the optimal haplotype configurations must have minimum number of 
inconsistent alleles. We have organized the local inference rules so that it can be able to 
cope with inconsistent genotypes. And also, we have developed the method for 
enumerating the possible haplotype configurations that have minimum number of 
inconsistent alleles. The imputation of missing alleles is also incorporated with these 
local inference rules and the process of enumerating the possible haplotype 
configurations. 

For the phase of finding the minimum-recombinant haplotype 
configurations, the current algorithm used the pedigree haplotype/grandparent 
configuration (one configuration represent by a pedigree haplotype configuration with 
one of its corresponding pedigree grandparent configurations) as a computing case in a 
dynamic programming procedure. But in our algorithm, we have made an improvement 
by using the pedigree grandparent configuration instead. In our observation, this can 
reduce the number of computing cases by about 40%. We have reduced some 
redundant computations in this dynamic programming phase by perform pre-
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computation for the computing of the recombination points in each family. And also, we 
have used the bounding technique to exclude some invalid nodes in the dynamic 
programming process. As from the experimental results, we can clearly conclude that 
these improvements cause our method to outperform both dynamic programming 
algorithms in PedPhase for a case of inferring long haplotypes (more than 20 loci) in a 
moderate-size pedigree (15-25 members). 

Other than the efficiency testing, we also tested for the effect of each 
parameter to the computing time, the accuracy, and the number of solutions. Most of 
these testing apparently show the reasonable results which indicate the correctness of 
our method. 

 

7.2 Summary of Contributions 

Our method can be extended the current methods of haplotype 
inference based on minimum recombination principle to be able to work efficiently with 
long haplotypes (more than 20 loci) in a moderate-size pedigree (15-25 members) and 
be able to handle the data that contain some missing alleles or a few of Mendelian 
inconsistent alleles. We have made some improvements that can reduce the computing 
time in the phase of finding the minimum-recombinant haplotype configuration 
compared with the original work proposed by Li and Jiang (2003). And also, this 
extension could be considered as the relaxation from the strictly consistent inference to 
be a maximum consistent inference, which is useful for the case that there are a few of 
inconsistent alleles occur in the pedigree data.  

 

7.3 Further Works 

Although our method can be fairly used with some practical sizes of the 
input data (with long haplotypes and moderate size of pedigrees); however, it is 
occasionally very time consuming and often faces the problem of insufficient memory. 
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Also, inferring haplotype using only the assumption of minimum recombinants often 
results in very large number solutions. So, it is clearly that we need more additional 
criterions or hypotheses that can exclude more invalid cases of haplotype or 
grandparent configurations during the computation process, and also, can reduce the 
number of solutions. And the intensive consideration of how to set the maximum limit for 
each parameter in the computational process in order to avoid the problem of 
insufficient memory is also necessary for further investigation. Furthermore, we have 
seen in the experimental results that the DP-by-Member algorithm can work very well for 
any practical pedigree size with a haplotype length not over than 20 loci. Since the long 
haplotypes in practical data may not be much longer than 20 loci, thus, it would be 
interesting if we can improve the DP-by-Member algorithm so that it can work with the 
haplotypes of about 20-30 loci in length. 

Finding the haplotype configurations with minimum number of 
recombinants can also be very useful for detecting the presence of genotyping errors in 
pedigrees. Generally, the genotyping errors are detected by checking for the 
occurrence of genotypes that is not consistent with Mendelian inheritance. And for the 
errors that do not cause inconsistencies in Mendelian inheritance, the technique that is 
typically used is to detect the presence of an excess of recombination events among 
closely spaced markers. By applying any particular algorithm used for solving the 
MRHC problem, if no zero-recombinant pedigree haplotype configuration exists, the 
algorithm can find pedigree haplotype configurations with the smallest number of 
recombinants and identify any haplotypes that contain obligate double recombinants. If 
there are any double recombinants occurring in a data, it means there must be some 
genotyping errors. However, identifying for a particular allele that is exactly an error 
allele (for both consistent and inconsistent errors) is still a difficult task. In this work, we 
have developed an inference algorithm which allows the occurrence of a few 
inconsistent alleles that may caused from the genotyping errors. But our algorithm does 
not directly investigate in the detection of the error alleles. So it would be interesting to 
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take more investigation in applying our method for detecting the exact error alleles in the 
genotyping data. 

 

7.4 Recommendation 

From the experiment, the characteristic of input data have great 
significant effect on the computing time, the memory usage, the accuracy, and the 
number of solutions. The investigation of the natural characteristic of real data is 
important for measuring the reliability and the feasibility of our method for the real-life 
usages. But in the scope of this work, we only perform experiment on the simulated data 
because it hardly to collect many of the real pedigree data. So, if possible, it is highly 
recommend for testing this method with the real data. The experimental results from the 
real data should be better used to evaluate the truly feasibility of this method than 
testing on only the simulated data. 
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APPENDIX A 

 
SIMULATING THE PEDIGREE DATA 

 

The data used in this work is in the form of a pedigree with the genotype 
and haplotype information for each individual. For this work, it is not feasible to collect a 
real data so that they are adequate to our experiment. So we have to use a simulated 
data instead. In order to simulate the pedigree data, we must concern with the concept 
of population genetics. We just use a simple population genetic model based on the 
basic principle of the Mendelian genetics to construct a genealogy with the genotype 
and haplotype information. And after a large genealogy of many generations has been 
created, the pedigree of any interested size could be sampled from this genealogy. 

In our simulation model, we assume that the population evolves from 
generation to generation in a discrete time. Firstly, the initial generation will be created 
with a specific population size. Then the mating will occur randomly in a population and 
the offspring would be randomly created from each couple. During the creation of each 
offspring, the haplotype information of the parents is transferred to the offspring. In the 
transferring process, the point mutations and recombination events could possibly 
occur, which will cause the variation of the haplotypes. After all offspring of a current 
generation has been created, these offspring will be considered as a new population for 
a successive generation. The details for each parameter used in this simulation model 
are described as follows. 

The Parameters for Simulating a Genealogy 
1. Initial Size of the Population (size of the first generation) 
2. Sex Rate – a ratio between the males and the females (used at the creation of 

the offspring) 
3. Mating Rate – a ratio between the mating couples and the singles  
4. Breeding Rate – the frequency of each number of the offspring in each family  
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5. Number of Alleles – the number of different alleles per locus 
5. Haplotype Length – the number of loci per haplotype 
6. Mutation Rate – the rate that one point mutation can occur per locus 
7. Recombination Rate – the rate that one or more recombination events can 

occur per locus 

The Parameters for Creating a Pedigree 
1. Loop – used for selecting whether the pedigree has loop or not 
2. Number of generations – the number of generations in a pedigree 
3. Number of members – the number of members in a pedigree 
4. Missing Rate – the rate of missing alleles in the genotype data (the alleles that 

have not been specified) 
5. Number of Inconsistent Alleles – the number of inconsistent alleles in a 

genotype data which will be randomly set by the specific number 

Using above parameters, we can control various characteristics of the 
input data which will be used in the experiment. The simulated pedigree data from the 
simulation program will have both genotype and haplotype information. The genotype 
data will be used as the input data and the haplotype data will be used for checking the 
accuracy. The example of the pedigree data generated from our program can be seen 
in Figure 4.5 and Figure 4.6 in Chapter 4 (the diagram pictures are manually created). 

There are some parameters that were set with the constant values 
throughout the experiment. These parameters are set as follows. 

1. The Initial size of the population is set as 100. 
2. The sex rate is set as 0.5 (rate of the male offspring equal to the female 

offspring). 
3. The mating rate is set as 0.8 (there are about 20% of population that do not 

have mates). 
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4. The breeding rate is set as follow. The possible numbers of the offspring that 
each couple can breed are 0, 1, 2, 3, and 4. The probabilities for each number of the 
offspring are set by the frequency ratio as 1:4:12:10:8 respectively.  

To create a pedigree from p  generations, we will simulate the 
genealogy with 10 generations at first. Next, we will simulate p  successive generations. 
The specific pedigree will be created by sampling one couple in generation 11 and 
getting all of its successors (and also some of the parents of these successors). This 
method will result in the pedigree with a random size of members. To create a pedigree 
with a specific size of members, we will repeat the creation of the pedigree as described 
above until we have a pedigree with a specific size of members. 

In the experiment, there is the case that uses the rate of homozygous loci 
as a control parameter. We control the rate of homozygous loci by varying the mutation 
rate. The haplotypes in the initial generation will be set with the same values for all 
members and the successive generations will be generated with the occurrence of the 
mutation events corresponding to the specific mutation rate. The resulted pedigree will 
have a number of homozygous loci related to the mutation rate. 
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APPENDIX B 

 
USING THE PROGRAMS 

 

In this work, we developed two programs to implement our proposed 
method. One is used for simulating a pedigree data and another one is used for solving 
the MRHC problem. These two programs can be executed using a command prompt in 
a DOS mode on Windows. The parameters for each program can be adjusted by editing 
the configuration file. The details of these two programs are described as follows. 

1. The Program for Simulating a Pedigree Data 

This program is used to create the pedigree data using the method 
described in an appendix A. Each parameter can be specified by editing the value in 
the configuration file (“config.txt”). One can simulate the pedigree data by typing the 
command “simulate” in the current directory that contains the program “simulate.exe” 
and the configuration file “config.txt”. The pedigree data generated from this program 
have three different file formats as follows. 

1. ped<x>.dat – a binary file that keeps a pedigree data in our specific data 
structure. 

2. ped<x>.txt – a text file that represents a pedigree data in our specific 
representation. 

3. pedphase<x>.txt – a text file that represents a pedigree data in the format 
similar to the input file of the program PedPhase. 

Note that, <x> represents the number (ID) of a pedigree. An example of 
the pedigree data that consists of 15 members in 3 generations in a file format 
“ped<x>.txt” is shown below. 
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An Example of the Pedigree Data File 
 
#Members : 15 
 
 
Generation : 1 
 
 
Gen 1 : 1) 
ID : 1   Father : 0   Mother : 0   Mate : 2 
Offspring : 5, 6, 7, 8,  
Father Grand  : 2222222222 
Father Hap   : 2121211212 
Mother Hap  : 1222121122 
Mother Grand : 1111111111 
 
Gen 1 : 2) 
ID : 2   Father : 0   Mother : 0   Mate : 1 
Offspring : 5, 6, 7, 8,  
Father Grand  : 2222222222 
Father Hap   : 2112211222 
Mother Hap  : 2212111212 
Mother Grand : 1111111111 
 
 
Generation : 2 
 
 
Gen 2 : 1) 
ID : 3   Father : 0   Mother : 0   Mate : 7 
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Offspring : 12, 13, 14, 15,  
Father Grand  : 2222222222 
Father Hap   : 1121222112 
Mother Hap  : 2112211222 
Mother Grand : 1111111111 
 
Gen 2 : 2) 
ID : 4   Father : 0   Mother : 0   Mate : 5 
Offspring : 9, 10, 11,  
Father Grand  : 1111111222 
Father Hap   : 1222121112 
Mother Hap  : 2112211211 
Mother Grand : 2222222222 
 
Gen 2 : 3) 
ID : 5   Father : 2   Mother : 1   Mate : 4 
Offspring : 9, 10, 11,  
Father Grand  : 2222222222 
Father Hap   : 2212111212 
Mother Hap  : 2121211212 
Mother Grand : 1111111112 
 
Gen 2 : 4) 
ID : 6   Father : 2   Mother : 1   Mate : 0 
Offspring :  
Father Grand  : 1111111111 
Father Hap   : 2112211222 
Mother Hap  : 1222121122 
Mother Grand : 2222222222 
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Gen 2 : 5) 
ID : 7   Father : 2   Mother : 1   Mate : 3 
Offspring : 12, 13, 14, 15,  
Father Grand  : 2222222222 
Father Hap   : 2212111212 
Mother Hap  : 1222121122 
Mother Grand : 2222222222 
 
Gen 2 : 6) 
ID : 8   Father : 2   Mother : 1   Mate : 0 
Offspring :  
Father Grand  : 1111111111 
Father Hap   : 2112211222 
Mother Hap  : 2121211212 
Mother Grand : 1111111111 
 
 
Generation : 3 
 
 
Gen 3 : 1) 
ID : 9   Father : 4   Mother : 5   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 2112211211 
Mother Hap  : 2212111212 
Mother Grand : 1111111111 
 
Gen 3 : 2) 
ID : 10   Father : 4   Mother : 5   Mate : 0 
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Offspring :  
Father Grand  : 1111111222 
Father Hap   : 1222121211 
Mother Hap  : 2121211212 
Mother Grand : 2222222222 
 
Gen 3 : 3) 
ID : 11   Father : 4   Mother : 5   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 2112211211 
Mother Hap  : 2122111212 
Mother Grand : 2221111111 
 
Gen 3 : 4) 
ID : 12   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 1222121122 
Mother Hap  : 1121222112 
Mother Grand : 1111111112 
 
Gen 3 : 5) 
ID : 13   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 1111111111 
Father Hap   : 2212111212 
Mother Hap  : 2112211222 
Mother Grand : 2222222222 
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Gen 3 : 6) 
ID : 14   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 1222121122 
Mother Hap  : 2112211222 
Mother Grand : 2222222222 
 
Gen 3 : 7) 
ID : 15   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 1111111111 
Father Hap   : 2212111212 
Mother Hap  : 1121222112 
Mother Grand : 1111111111 
 

2. The Program for Solving the MRHC Problem 

This program is used for finding the haplotype solutions from the input 
pedigree data. Each parameter can be specified by editing the value in the 
configuration file (“config.txt”). One can execute this program by typing the command 
“mrhc <InputFile>” in the current directory that contains the program “mrhc.exe” and the 
configuration file “config.txt”. Note that, this program will generate the output file of only 
one solution. The output solution will be kept in the file “solution.txt” and “result.log”. 

The input file for this program is in a format similar to the input file format 
of the program PedPhase. The input file can be prepared by using any file editors such 
as Notepad on Windows. The structure of the input file is simple. Each line represents 
one member. Different fields are separated using Tab. Each line consists of the following 
fields: 
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FamilyID MemberID FatherID MotherID Gender AffectionStatus LiabilityClass 
Allele11 Allele12 Allele21 Allele22.... 

FamilyID and MemberID are natural numbers (in our program, FamilyID 
is ignored). FatherID and MotherID are the current member’s parents’ MemberID and 
are set to 0 if the current member does not have parent information available in the 
pedigree. For Gender, 1 stands for male and 2 stands for female. AffectionStatus and 
LiabilityClass are reserved fields and are ignored in our program. Allele numbers 
(Allele11 Allele12 Allele21 Allele22 ...) are non-negative integers where 0 stands for 
missing value. 

Note that, in our program, each member that has a mate must have the 
offspring and each offspring must have both father and mother. The order of MemberIDs 
must be ascending by the generation (from the first generation to the last generation). 
An example of the input file and the corresponding output files are shown below. 

An Example of the Input File 
 
0 1 0 0 2 0 0 2 1 1 2 2
 2 1 2 2 1 1 2 1 1 2 1
 1 2 2 2 
0 2 0 0 1 0 0 2 2 1 2 1
 1 2 2 2 1 1 1 1 1 2 2
 2 1 2 2 
0 3 0 0 2 0 0 1 2 1 1 2
 1 1 2 2 2 2 1 2 1 1 2
 1 2 2 2 
0 4 0 0 1 0 0 1 2 2 1 2
 1 2 2 1 2 2 1 1 1 1 2
 1 1 2 1 
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0 5 2 1 2 0 0 2 2 2 1 1
 2 2 1 1 2 1 1 1 1 2 2
 1 1 2 2 
0 6 2 1 1 0 0 2 1 1 2 1
 2 2 2 2 1 1 2 1 1 2 1
 2 2 2 2 
0 7 2 1 1 0 0 2 1 2 2 1
 2 2 2 1 1 1 2 1 1 2 1
 1 2 2 2 
0 8 2 1 1 0 0 2 2 1 1 1
 2 2 1 2 2 1 1 1 1 2 2
 2 1 2 2 
0 9 4 5 2 0 0 2 2 1 2 1
 1 2 2 2 1 1 1 1 1 2 2
 1 1 1 2 
0 10 4 5 1 0 0 1 2 2 1 2
 2 2 1 1 2 2 1 1 1 2 2
 1 1 1 2 
0 11 4 5 2 0 0 2 2 1 1 1
 2 2 2 2 1 1 1 1 1 2 2
 1 1 1 2 
0 12 7 3 2 0 0 1 1 2 1 2
 2 2 1 1 2 2 2 1 2 1 1
 2 1 2 2 
0 13 7 3 1 0 0 2 2 2 1 1
 1 2 2 1 2 1 1 1 1 2 2
 1 2 2 2 
0 14 7 3 1 0 0 1 2 2 1 2
 1 2 2 1 2 2 1 1 1 1 2
 2 2 2 2 
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0 15 7 3 1 0 0 2 1 2 1 1
 2 2 1 1 2 1 2 1 2 2 1
 1 1 2 2 
 

An Example of the Output File 
 
#Members : 15 
 
 
Generation : 1 
 
 
Gen 1 : 1) 
ID : 1   Father : 0   Mother : 0   Mate : 2 
Offspring : 5, 6, 7, 8,  
Father Grand  : 0000000000 
Father Hap   : 2121211212 
Mother Hap  : 1222121122 
Mother Grand : 0000000000 
 
Gen 1 : 2) 
ID : 2   Father : 0   Mother : 0   Mate : 1 
Offspring : 5, 6, 7, 8,  
Father Grand  : 0000000000 
Father Hap   : 2212111212 
Mother Hap  : 2112211222 
Mother Grand : 0000000000 
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Generation : 2 
 
 
Gen 2 : 1) 
ID : 3   Father : 0   Mother : 0   Mate : 7 
Offspring : 12, 13, 14, 15,  
Father Grand  : 0000000000 
Father Hap   : 1121222112 
Mother Hap  : 2112211222 
Mother Grand : 0000000000 
 
Gen 2 : 2) 
ID : 4   Father : 0   Mother : 0   Mate : 5 
Offspring : 9, 10, 11,  
Father Grand  : 0000000000 
Father Hap   : 1222121112 
Mother Hap  : 2112211211 
Mother Grand : 0000000000 
 
Gen 2 : 3) 
ID : 5   Father : 2   Mother : 1   Mate : 4 
Offspring : 9, 10, 11,  
Father Grand  : 1111111111 
Father Hap   : 2212111212 
Mother Hap  : 2121211212 
Mother Grand : 1111111111 
 
Gen 2 : 4) 
ID : 6   Father : 2   Mother : 1   Mate : 0 
Offspring :  
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Father Grand  : 2222222222 
Father Hap   : 2112211222 
Mother Hap  : 1222121122 
Mother Grand : 2222222222 
 
Gen 2 : 5) 
ID : 7   Father : 2   Mother : 1   Mate : 3 
Offspring : 12, 13, 14, 15,  
Father Grand  : 1111111111 
Father Hap   : 2212111212 
Mother Hap  : 1222121122 
Mother Grand : 2222222222 
 
Gen 2 : 6) 
ID : 8   Father : 2   Mother : 1   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 2112211222 
Mother Hap  : 2121211212 
Mother Grand : 1111111111 
 
 
Generation : 3 
 
 
Gen 3 : 1) 
ID : 9   Father : 4   Mother : 5   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 2112211211 
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Mother Hap  : 2212111212 
Mother Grand : 1111111111 
 
Gen 3 : 2) 
ID : 10   Father : 4   Mother : 5   Mate : 0 
Offspring :  
Father Grand  : 1111111222 
Father Hap   : 1222121211 
Mother Hap  : 2121211212 
Mother Grand : 2222222222 
 
Gen 3 : 3) 
ID : 11   Father : 4   Mother : 5   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 2112211211 
Mother Hap  : 2122111212 
Mother Grand : 2221111111 
 
Gen 3 : 4) 
ID : 12   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 1222121122 
Mother Hap  : 1121222112 
Mother Grand : 1111111111 
 
Gen 3 : 5) 
ID : 13   Father : 7   Mother : 3   Mate : 0 
Offspring :  
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Father Grand  : 1111111111 
Father Hap   : 2212111212 
Mother Hap  : 2112211222 
Mother Grand : 2222222222 
 
Gen 3 : 6) 
ID : 14   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 2222222222 
Father Hap   : 1222121122 
Mother Hap  : 2112211222 
Mother Grand : 2222222222 
 
Gen 3 : 7) 
ID : 15   Father : 7   Mother : 3   Mate : 0 
Offspring :  
Father Grand  : 1111111111 
Father Hap   : 2212111212 
Mother Hap  : 1121222112 
Mother Grand : 1111111111 
 

An Example of the Output File from the Program PedPhase 

 
0 1 0 0 2 0 0 2|1 1|2 2|2 1|2 2|1
 1|2 1|1 2|1 1|2 2|2 0000000000 0000000000 
0 2 0 0 1 0 0 2|2 1|2 1|1 2|2 2|1
 1|1 1|1 2|2 2|1 2|2 0000000000 0000000000 
0 3 0 0 2 0 0 1|2 1|1 2|1 1|2 2|2
 2|1 2|1 1|2 1|2 2|2 0000000000 0000000000 
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0 4 0 0 1 0 0 1|2 2|1 2|1 2|2 1|2
 2|1 1|1 1|2 1|1 2|1 0000000000 0000000000 
0 5 2 1 2 0 0 2|2 2|1 1|2 2|1 1|2
 1|1 1|1 2|2 1|1 2|2 1111111111 0000000000 
0 6 2 1 1 0 0 2|1 1|2 1|2 2|2 2|1
 1|2 1|1 2|1 2|2 2|2 0000000000 1111111111 
0 7 2 1 1 0 0 2|1 2|2 1|2 2|2 1|1
 1|2 1|1 2|1 1|2 2|2 1111111111 1111111111 
0 8 2 1 1 0 0 2|2 1|1 1|2 2|1 2|2
 1|1 1|1 2|2 2|1 2|2 0000000000 0000000000 
0 9 4 5 2 0 0 2|2 1|2 1|1 2|2 2|1
 1|1 1|1 2|2 1|1 1|2 1111111111 0000000000 
0 10 4 5 1 0 0 1|2 2|1 2|2 2|1 1|2
 2|1 1|1 2|2 1|1 1|2 0000000111 1111111111 
0 11 4 5 2 0 0 2|2 1|1 1|2 2|2 2|1
 1|1 1|1 2|2 1|1 1|2 1111111111 1110000000 
0 12 7 3 2 0 0 1|1 2|1 2|2 2|1 1|2
 2|2 1|2 1|1 2|1 2|2 1111111111 0000000000 
0 13 7 3 1 0 0 2|2 2|1 1|1 2|2 1|2
 1|1 1|1 2|2 1|2 2|2 0000000000 1111111111 
0 14 7 3 1 0 0 1|2 2|1 2|1 2|2 1|2
 2|1 1|1 1|2 2|2 2|2 1111111111 1111111111 
0 15 7 3 1 0 0 2|1 2|1 1|2 2|1 1|2
 1|2 1|2 2|1 1|1 2|2 0000000000 0000000000 
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