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CHAPTER  I 

Introduction 

1.1 Background and motivation 

According to World Health Organization reports [1], cancer is 
considered the second leading cause of death worldwide after cardiovascular disease. 
As the matter of fact, the total number of global cases is rapidly increasing, especially in 
developing countries. WHO estimates that the total number of the global deaths caused 
by cancer will have increased 45% in the next two decades, from 7.6 million to over 11 
million deaths. Fortunately, it is known that cancer cells have epigenetic characteristics 
different from normal cells. Therefore, better understanding of the differences between 
cancer cells and normal cells could assist biologists to discover effective methods to 
reduce this terrible death rate. 

DNA methylation is one of the best known epigenetic differences 
between cancer cells and normal cells. DNA methylation is a fundamental molecular 
characteristic for regulation of transcriptional process by attaching methyl groups (CH3) 
to DNA molecules. If the DNA methylation on gene promoter regions is altered, it may 
probably effect on gene expression or the quantity of messenger RNA (mRNA). 
Consequently, the effected cells  are likely to function aberrantly. 

In 1983, the important epigenetic abnormality in cancer cells was first 
discovered [2]. Such anomaly is that cancer cells are usually unmethylated at CpG 
islands, DNA regions that contain plenty of CG sequences and usually appear in gene 
promoter regions. It is well known that when these methylated islands become 
unmethylated, they often cause the activation of genes nearby. 

Recently, not only is gene-specific hypomethylation on promoter regions 
of gene identified in cancer cells, global hypomethylation is also found in cancers cells 
relative to their normal counterparts [2]. The loss of genome-wide DNA methylation is 
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found mostly on repetitive regions including LINE-1 or long interspersed nuclear 
element-1, in various types of cancer cells. Unlike the hypomethylation at CpG islands, 
the mechanism resulted from the global hypomethylation has been in doubt over these 
recent decades. Nevertheless, C. Aporntewan et al. [3] discovered that some of the 
genes with LINE-1 are significantly downregulated (see Table 1.1). The chi-square test 
shows that LINE-1 is associated with down regulation of the hosting genes at 
significance level of 0.01 resulted from chi-square test. 

Table 1.1 The association between the existence of LINE-1 in genes and gene 
expression in bladder cancer on the 2×2 contingency table [3] 

 Down (p-value < 0.01) Not down 

LINE-1 382 537 
No LINE-1 3377 8762 

 p-value = 9.83E-19 
 Odds = 1.85 

From Table 1.1, a gene with LINE-1 is denoted by “LINE-1” and a gene 
without LINE-1 is denoted by "No LINE-1". The down regulation of a gene determined by 
unpaired t-test (p-value < 0.01) is denoted by “Down”. The entries in the 2×2 
contingency table show the corresponding number of genes. The statistical values, both 
p-value resulted from chi-square test and odds ratio, is shown under the table. 

Genes with LINE-1 have the high risk to be downregulated almost twice 
as much as genes without LINE-1 (odds = 1.85). However, it should be noticed that not 
all of the genes with LINE-1 are downregulated (see Table 1.1). This observation implies 
that the existence of LINE-1 in genes is not enough to utterly describe down regulation 
of gene expression. Therefore, to help biologists understand gene expression regulated 
by LINE-1 in cancer, the study of LINE-1 characteristics is needed. 
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1.2 Objectives 

In this thesis, we determine LINE-1 characteristics which are significantly 
associated with the down-expression of the genes with LINE-1 in cancers. First, we 
examine a LINE-1 characteristic by using chi-square test. Second, to simultaneously 
analyze LINE-1 characteristics requires a large amount of computational power and time 
consuming; therefore, we apply data mining techniques to mine interesting sets of LINE-
1 characteristics from huge cancer data sets within given time. Here we choose 
classification association rules to represent the sets of LINE-1 characteristics which are 
significantly related to gene expression in cancers. In addition, we apply a decision tree 
algorithm to classify gene expression in cancers by LINE-1 characteristics. Finally, we 
compare the resulting rules and the derived tree. 

1.3 Scope 

In the beginning, we start by the experiment with parameters for data 
mining techniques on the gene expression data of bladder cancer. After that, we are 
applied the similar settings on the other gene expression data sets shown in Table 1.2. 

Table 1.2 The list of all gene expression data sets in cancer explored in the thesis 

Dataset ID Description 

GSE6631 head and neck squamous cell carcinoma vs normal oral epithelium. 

GSE9750 cervical cancer cells vs cervical cancer epithelium. 

GSE5816 lung adrenocarcinoma vs human bronchial epithelium. 

GSE14811 liver cancer vs normal liver. 

GSE1299 Breast Cancer cells vs Normal Breast Epithelium. 

GSE5764 ductal and lobular breast cancer vs normal breast. 

GSE3167 bladder carcinoma situ vs normal bladder epithelium. 

GSE13911 microsatellite instable gastric cancer vs normal stomach epithelium. 

GSE6919 metastasis prostate cancer. 

GSE9764 5-azadeoxycytidine treated vs untreated human mesenchymal stem cells. 

GSE5816 hBEC high dose vs human bronchial epithelium. 

GSE4246 HEK293T Ago2sh. 

GSE14537 AGO2IP vs Control. 

GSE14054 Importin8si-AGO2IP vs control-AGO2IP. 
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1.4 Contribution 

Since the possible combination of LINE-1 characteristics associated with 
gene expression in cancers will possibly produce a large number of candidates for 
testing hypotheses, this research helps biologists reduce the number of hypotheses 
using data mining techniques. With the small number of hypotheses, it is possible for 
biologists to test the hypotheses in their future experiments. 

1.5 Thesis Organization 

Next chapter of this thesis covers the biological concepts and 
computational techniques, both data mining and statistical concepts, used throughout 
this study. Besides, we explore the literatures related to this work. In chapter III, we 
demonstrate our methodology to mine the interesting classification rules with statistical 
testing. Later on, Chapter IV shows the results of our experiments. Finally, we discuss 
and compare all results in chapter V. 
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CHAPTER  II 

Literature Reviews 

In this chapter, we describe the fundamental biological and 
computational background. Next, we review the literatures related to the association 
rules mining on gene expression data and the studies of LINE-1 in cancers. 

2.1 Biological Background 

2.1.1 Gene expression 

Deoxyribonucleic acid (DNA) comprises four types of nucleotides with its 
bases: adenosine monophosphate (AMP) with adenine (A), guanosine monophosphate 
(GMP) with guanine (G), cytidine monophosphate (CMP), cytosine (C), and thymidine 
monophosphate (TMP), thymine (T). DNA locates in the nucleus and has responsibility 
to carry genetic information. The different information is made of the different order of 
these nucleotides. In human genome, there are about 3,300 millions base pairs (bp) 
distributed on 23 chromosomes. DNA consists of genes and non genes. A gene or a 
coding region, has three parts: promoter (5’) region, gene body (open reading frame) 
which contains exons (translated regions) and intron (untranslated regions) regions 
alternately, and terminator (3’) region. Any two genes are seperated by a non-coding 
region called intergenic DNA (see Figure 2.1). 

 

Figure 2.1 The structure of gene [4] 

Genes are expressed by generating ribonucleic acid (RNA) through 
transcriptional process as following steps (see Figure 2.2). The promoter is first 
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recognized by the enzyme RNA polymerase. Consequently, double helix DNA is locally 
separated to allow transcription. Next, the RNA polymerase produces primary transcript 
RNA (tRNA) by using one of DNA single strands as a template in the direction of 5’ 
(upstream) to 3’ (downstream). The RNA polymerase generates pre-mRNA until it meets 
the terminator. The signal to terminate is often consecutive sequences of adenine (A) 
bases called Poly-A tail. Finally, the intron regions of pre-mRNA are filtered by splicing 
process. Messenger RNA (mRNA) is the product of this process. Such mRNAs are 
responsible to transfer genetic information from nucleus to cytoplasm. These mRNAs are 
finally translated into proteins as the final gene products for running cells normally. The 
quantity of mRNA, or gene expression level, are able to be measured by microarray 
technology. 
 
 
 

          b) The transcriptional process 
 
 
a) The stage of converting gene to protein 

Figure 2.2 The process of decoding from gene to protein [4] 

2.1.2 DNA Methylation 

DNA methylation is an epigenetic process of attaching nucleotides with 
methyl (CH3) groups in genome. In human, the methylation is considered as a 
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mechanism to regulate gene expression. Principally, if CpG islands or promoter regions 
are methylated, such methyl groups control gene expression by silencing that gene (see 
Figure 2.3a). Since the methylated CpG islands are recognized by methylcytosine 
binding proteins and some other proteins, this mechanism impedes RNA polymerase to 
transcribe that methylated gene. As a result, the gene with methylation is finally 
silenced. Therefore, the methylation on promoter regions has the responsible for 
discriminating different cells in different organs by switching genes on and off. 

Due to its capability to regulate gene expression, the alteration of the 
DNA methylation level can effect the quantity of mRNA or gene expression level [4]. In 
cancer (see Figure 2.3b), it is well known that tumor suppressor gene (TSG), which 
plays an important role in suppressing the growth of tumor cells, is hypermethylated on 
its CpG islands or promoter regions. Consequently, the TSG gene cannot be accessible 
for transcription. When this TSG gene is silenced, the tumor cells are no longer 
suppressed and are likely to become cancer cells. This gene-specific hypermethylation 
is well described in many studies, appeared in [2]. 

 

 

 
 
 
 
 

                      b) DNA methylation in cancer 
 
a) Silencing gene by DNA methylation 

Figure 2.3 DNA methylation [2] 
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However, another significant methylation event in cancers is global 
hypomethylation, particularly on repetitive regions including LINE-1. This molecular 
phenomenon can result in genomic instability. Recently, the genome-wide 
hypomethylation in cancer is associated with gene expression level [3]. Nevertheless, 
the mechanism to regulate gene expression has not been elucidated yet. 

2.1.3 Biology behind LINE-1 

In addition to normal genes that contribute to our living, human genome 
consists of many DNA fragments called repetitive sequences [4]. It is believed that 
these fragments have been evolved from viruses in the past. Unlike the host genetic 
elements, these fragments can move around from site to site within host 
deoxyribonucleic acid (DNA) molecules; thus, they are called transposable elements or 
transposons. 

Mainly, 45% of human genome is transposable elements which are 
characterized into two main classes by the structures and the methods of transposition 
[5]. One of them is retrotransposons whose mobility relies on autonomous replicative 
transpositioin while in their ribonucleic acid (RNA) phase. In other words, the 
retrotransposons move around from place to place by converting their RNA transcripts 
back into DNA and inserting into the host genome. In this process, they use reverse 
transcriptase for their movement. However, the only active autonomous retrotransposons 
in the human genome is Long Interspersed Nuclear Element-1 (LINE-1, L1), a family of 
the retroelements which is a half of the entire transposons. Currently, L1s are widely 
spread in both intragenic and intergenic regions in human genome,  approximately 20% 
of the whole genome, due to their evolution and replication in mammals for over millions 
years [6]. 

The complete long interspersed nuclear element-1 (LINE-1, L1), 
approximately 6,000 bp in length, is composed of the 5’-untranslated region (5’-UTR) as 
an internal promoter for beginning transcription, separately two open reading frames 
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(ORF1 and ORF2) as coding regions, and 3’-untranslated region (3’-UTR) as a tail 
containing the signal for ending transcription (see Figure 2.4). As for their movement, 
L1s use RNA-binding protein encoded from ORF1 and another two proteins, 
endonuclease and reverse transcriptase, encoded from ORF2 for transpositional 
activity. In fact, their movement occurs mostly in the embryo phase [4]. Despite the 
inactive movement after embryo phase, some of L1s (even truncated) are still 
transcribed to messenger RNA (mRNA) [7]. 
 
 

 

Figure 2.4 The structure of LINE-1  

To sum up, since gene expression can be regulated by DNA 
methylation, the loss of genome-wide methylation on repetitive regions including L1s in 
various types of cancer cells may impact on gene expression level. This is the purpose 
to pursue this thesis. 

DNA 
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2.2 Computational Background 

2.2.1 Statistical methods 
2.2.1.1 Bonferroni correction 

The concept of the multiple testing correction is considerable when more than 
one hypotheses are tested in the similar data set, no matter whether they are 
independent or not. According to Bonferroni correction, the individual hypothesis should 
be tested at a significance level of α/n, where α is the critical p-value and n is the 
number of the hypotheses under study. 

2.2.1.2 Logistic regression [9] 
Logistic regression analysis uses a set of the independent variables to estimate 

the probability of the occurrence of the dependent variable Y, where Y is a binary 
variable. The advantage of this analysis is that it requires neither the normal distribution 
of the dependent variable nor the linear relationship between the explanatory and 
response variables. 

To estimate the probability that the event (Y) would occur, the logistic regression 
model uses the Equation (2.7) to describe the relationship between the independent 
variables and dependent variable in terms of the likelihood, where p is the probability 
that Y=1, 1-p is the probability that Y is the other value, and the ratio of both 
probabilities is known as the Odds value. In other words, the logistic regression model is 
defined by the log of the Odds of the dependent variable known as logit value. 

��( �
1 − �) = ��(	
) = � = �
 + ���� + ���� + ⋯ + ���� (2.7) 

where � = ����(� = 1) = 1
1 + 	�
 

 1 − � = ����(� = 0) = 1 − ����(� = 1) 

 � = �
 + ���� + ���� + ⋯ + ����  
 ���� = �

1 − �  

 Y = The dependent variable  Xi = The independent variable i  
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Statistically, the model must pass three criteria as follows. 

1. Test the goodness of fit of the proposed model by applying the maximum likelihood 
concept under the null hypothesis that all coefficients of the explanatory variables are 
zeroes. To verify this, it starts with calculating -2 times of log likelihood known as -2LL or 
deviance of both the null model, in which there is no independent variables, and the 
proposed model. The minimum value for the deviance is 0, which reflects a perfect fit 
model. Since the distribution of the deviance is like chi-square distribution, the 
significance of this proposed model is based on the chi-square test where chi-square 
value is the difference of both deviance and the degree of freedom is the number of the 
independent variables in the model. The more the reduction of deviance, the better the 
proposed model. 
2. Confirm that each coefficient of the independent variables in the model is statistically 
significant. The null hypothesis is that the coefficient βi of the explanatory variables is 
zero. The method to prove this hypothesis is similar to the approach described above; 
but, the other independent variables except βi are considered as constant values and 
the degree of freedom is always 1.  
3. In addition to the significance tests above, the capability of the proposed model to 
estimate the likelihood of the response variable from the set of the explanatory variables 
is indicated by R� !"#�  in the Equation (2.8), where the value of R� !"#�  is between 0 and 
1. If R� !"#�  value is 1, it indicates that the proposed model is perfect. However, the 
model must be verified by the significance tests as well. 

$%&'()� = −2++�,-- − (−2++.&/0-)
−2++�,--

 (2.8) 

where 
 -2LLnull = The deviance of the null model 
 -2LLmodel = The deviance of the proposed model 
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2.2.2 Data mining techniques 

Due to the advent of the high-throughput technology like microarray, 
data mining is considered as a powerful and essential approach for knowledge 
discovery. This technique learns the set of the data and constructs the output models to 
represent the knowledge. These models can be used for many purposes based on the 
kinds of knowledge mined such as clustering, association, and classification purpose. 

Generally, some databases are abound with the interesting information 
that can be used for describing the characteristics of the data under study in terms of 
category. Classification data mining is a tool to study the data in this purpose. This 
technique analyzes the collection of data and create a model for determining what 
features can be used as classifiers. 

The data prepared as an input of the classification model is a single two-
dimensional table (see Figure 2.5), where each row is a transaction or a tuple, each 
column is an item, an attribute, or a feature, and the last column is the class of each row. 
It is noticed that the class column must be non-numerical or categorical. The output 
model of the classification can be represented in form of rules. 
 
 

item1 item2 item3 item4 item5 item6 item7 … … class 
ID1          
ID2          
ID3          
ID4          
…          
…          

Figure 2.5 The input of the classification model 
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2.2.2.1 Decision tree [10] 
Decision tree mining is a popular classification algorithm due to its simplicity and 

fastness with little domain knowledge and no any parameter setting. This method uses a 
tree to represent the classification concept. The individual path belongs to a 
classification rule, where the inner nodes are the attributes with their values in the 
branches below and the leaf node is defined as a class. For example, Figure 2.6 
demonstrates the classification rules generated from a decision tree.  

 

A decision tree and rules for representing  
the classification of the customers who make decisions on purchasing houses. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 The example of decision tree with its generated rules 

2.2.2.1.1 C4.5 algorithm 
Of decision tree induction, C4.5 is a fundamental algorithm allowing both 

numeric and non-numeric data types as its input. This algorithm constructs trees by a 

Rule 1: age = young, salary ≤ 100,000 → buy house = no 

Rule 2: age = young, salary > 100,000 → buy house = yes 

Rule 3: age = middle-aged → buy house = yes 

Rule 4: age = senior, status = single → buy house = no 

Rule 5: age = senior, status = married → buy house = yes 

age 

salary status 

no yes no no 

yes 

young 
middle-aged 

senior 

married single 
>100,000 

≤100,000 
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top-down recursive divide-and-conquer manner based on a greedy approach. The C4.5 
algorithm is described in Figure 2.7. 

C4.5 algorithm 

Input:  1.  A data partition D 
 2. The attribute list of D 
  3. The attribute selection method 
Output:  A decision tree 

 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 

C4.5 (D, attribute_list, attribute_selection_method) 
{ create a node N 
 if all tuples belong to the same class C 
 {return node N as a leaf node labeled with the class C } 
 if attribute_list is empty 
 { reture node N as a leaf node labeled with the majority class in D } 
 apply attribute_selection_method(D, attribute_list) 
 label node N with the splitting_criteriaon 
 If splitting_attribute is discrete-valued and multiway splits allowed 
 { Attribute_list = attribute_list – splitting_attribute } 
 for each outcome j of splitting_criterion 
 { let Dj be the set of data tuples in D satisfying outcome j 
  if Dj is empty 
   { attach a leaf labeled with the majority class in D to node N } 
  else { attach the node returned by generate_decision_tree(Dj,attribute_list) to node N } } 
 return node N } 

Figure 2.7 C4.5 algorithm [10] 

There are three parameters as the input of this algorithm, the data 
partition D, attribute_list as the list of attributes, and the attribute selection method which 
performs the heuristic function to choose the best attribute for branching. The C4.5 
algorithm is described as follows (see Figure 2.7). 
1. Create a node N (Line 1) and if the terminating criteria is not met (Line 2-5), apply 
the attribute selection method, which performs one of the attribute selection measure, 
either gain ratio or information gain. After its computation, this heuristic method returns 
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the splitting criterion which consists of the splitting attribute and perhaps a splitting point 
if the selected attribute is continuous-valued or numeric (Line 6). 
2. Label node N with the splitting attribute (Line 7). 
3. If the selected attribute is categorical or nominal, then remove the selected splitting 
attribute from the attribute list since it is not needed for future partitioning (Line 8-9).  
4. Split each branch from node N with each result of the splitting criterion (Line 10-11).  
5. Let Dj be the result of partitioning D with outcome j. Call the C4.5 function recursively 
until meeting the terminating conditions below (Line 14). 

− If all tuples in the partition Dj are in the same class (Line 2) or no attributes in the 
attribute list (Line 4), then assign the node N as the leaf node with the majority 
class in D (Line 3,5). 

− If the partition Dj has no tuples, then create the leaf node labeled with the 
majority class in D and attach it to node N (Line 13).  

2.2.2.1.2 Attribute selection measures 
To split branches in each level of the decision tree, the best attribute is 

chosen as a node to classify each tuple by computing one of the following attribute 
selection measures [10].  

2.2.2.1.2.1 Information gain 
The information gain applies the information theory to seek the 

suitable splitting attribute. By definition, the best splitting attribute is the attribute whose 
values partition the data into groups such that the sum of the purity in each group is 
maximized under this partitioning. The purity of the data group is evaluated by the 
similarity of the class labeled in each tuple. For example, if the tuples in a group have 
the same class label, the purity of this group is 100%. Indeed, the purity of the data in 
each group is measured by the entropy value where the purity is inversely proportional 
to the entropy. In other words, the purer the data, the less the entropy. According to the 
information theory, the entropy can be alluded as the expected information needed to 
classify a tuple in terms of the number of bits. Therefore, the expected information can 
be calculated in the Equation (2.9). 
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1�2�(3) = − 4(�(��5��()
.

(6�
 (2.9) 

Let node N have the tuples of partition D with m classes, pi is the 
ratio of class and the total number of tuples in D ( 78

9  ). When the data of Node N is 
divided into v groups by attribute A, the new expected information after partition is 

calculated in the Equation (2.10), where the term :9;:
9  plays as the weight of the j th 

partition. 

1�2�<(3) = 4 :3=:
|3| × 1�2�

@

=6�
(3=) (2.10) 

To select the best splitting attribute, the expected information 
before and after partitioning by every attribute is computed. Next, the difference of every 
couple of the expected information known as the information gain is calculated and 
compared (see Equation (2.11)).  

1�2��ABCD�� FBD�(G) = 1�2�(3) − 1�2�<(3) (2.11) 

Info(D) and InfoA(D) is the expected information before and 
after partitioning by attribute A, respectively. Finally, the attribute with the highest 
information gain is selected as the splitting attribute for branching. 

2.2.2.1.2.1 Gain ratio 
The gain ratio is an extension of the information gain by applying 

a normalization approach. Since the previous measure is sometimes biased by selecting 
the attribute with a lot of values but useless for classification purpose such as ID of the 
tuples, the gain ratio uses the split information value to normalize the information gain. 
The split information value is computed according to the Equation (2.12). 

H��DC 1�2�<(3) = − 4 :3=:
|3| ×

@

=6�
��5�(:3=:

|3| ) (2.12) 

The split information slightly differ from the information where it 
considers the total number of tuples in the jth partition instead of the number of tuples 
that respect to the class Ci. Next, the gain ratio is computed in the Equation (2.13). 
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FBD� $BCD�(G) = FBD�(G)
H��DC 1�2�(G) (2.13) 

Finally, like the information gain, the attribute with the highest 
gain ratio is chosen as the splitting attribute. 

2.2.2.2 Classification association rules 
Association rules mining is a searching technique for the frequent patterns in a 

given data. For classification purpose, this method uses a rule in form of X → Y, where 
X and Y are the set of items and a class label respectively, to represent the association 
between the items in the antecedent and the class in the consequence of the rule. 

2.2.2.2.1 The important definitions 
Let X and Y be any subsets of the items, then 

− Itemset or pattern is the nonempty subset of items in a given dataset. 

− Support(X) is the frequency of X appeared in a given dataset. 

− Support(X →→→→ Y) is the ratio of the frequency of X U Y appeared in the data and the 
total number of samples in a given dataset. 

− Confidence(X →→→→ Y) is the ratio of the support(X → Y) and the support(X) known as 
the probability of Y given X. 

− Minimum support is the threshold for finding frequent patterns. 

− Minimum confidence is the threshold for generating association rules. 

− Frequent itemset is the itemset that appear in the given data that has support bigger 
than or equal to the minimum support. 

2.2.2.2.2 The processes in rule mining 
In general, association rules mining can be divided into two steps. Firstly, 

this method finds the itemsets whose supports satisfy the minimum support. Such 
itemsets are known as frequent itemsets. Secondly, all rules are generated from all 
frequent itemsets. The rules which do not satisfy the minimum support and minimum 
confidence are pruned. 
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2.2.2.2.3 FP-growth 
FP-growth proposed in the previous work [11] is one of the efficient 

techniques to mine frequent patterns without candidate generation. This concept can 
reduce the memory usage even when the minimum support threshold is low, since it 
uses tree as its data structure to keep the frequent patterns instead of generating all 
candidates. 

The structure of the FP-tree begins with the null root node, each item 
collected as a child node, and a frequent-item-header table where each entry consists 
of the name of frequent item and the head of node-link pointing to the first node which 
carries the similar name. Each node comprises three values-, its name, its frequency, 
and its link for connecting the next node. To discover the frequent patterns, there are 
two algorithms used in this technique. One is to construct FP-tree (see Figure 2.8), the 
other is to generate the frequent patterns (see Figure 2.9). 

Figure 2.8 FP-tree construction algorithm [10] 

The algorithm to construct the FP-tree is performed as follows (see Figure 2.8). 

FP-tree construction algorithm 

Input: 1. A database D in form of a two-dimensional table   Output:  A FP-tree of the data 
           2. Minimum support threshold 

 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 

FP_tree(Database, Minimum_support) 
{ FP_tree = new tree(null) 
 F_List = new list(null) 
 Foreach Transaction in Database 
 { Item[i].frequency ++ } 
 Foreach itemi 
 { If(item[i].frequency > Minimum_support) 
 { F_List.add(item[i]) } 
 Sort(F_List, Support_descending) 
 Create_frequent_item_headertable(F_List) 
 Foreach Transaction in Database 
 { Insert([head|tail], FP_tree) }} 

(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 

 
 

Insert(Node,Tree) 
{ If(Tree.contain(Node)) 
 { Tree.increment(Node,1) } 
 Else 
 { 
  Initial_support = 1 
 Tree.add(Node,Initial_support) 
 } 
} 
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1. Create a tree with the null root node and a null frequent items list (Line 1 and 2). 
2. Scan all transaction in the database and compute the frequency of each item (Line 3 
and 4). 
3. Collect the frequent items, which appear in the database that passed the minimum 
support test, into F_List (Line 6 and 7). 
4. Sort the items in F_List by descending respect to the support (Line 8). 
5. Create the frequent-item-header from F_List (Line 9). 
6. For each transaction in the database, insert each frequent items in the transaction 
into the tree according to the order in the F_List one by one (Line 10 and 11). To insert 
any item i, the condition of the existence of the item i in the prefix path of the tree. If tree 
contains the node of item i, then increment the node i's frequency by 1; otherwise, 
create a new node where its initial frequency is set to 1 (Line 12-19) and the parent link 
connects to its parent and the node link points to the node carrying the similar name. 

FP-growth algorithm 

Input: FP-tree Output: The complete set of frequent patterns 
 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 

FP-growth(tree, α) 
{if Tree contains a single prefix path 
{let P be the single prefix-path part of Tree 
let Q be the multipath part with the top branching node replaced by a null root 
foreach combination (denoted as β) of the nodes in the path P  
{generate pattern β ∪ α with support = minimum support of nodes in β 
let frequent_pattern_set(P) be the set of patterns so generated} 
else { let Q be tree 
Foreach item ai in Q 
{generate pattern β = ai ∪ α with support = ai.support 
construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ 
if treeβ ≠ Ø 
{call FP-growth(treeβ, β) 

Let frequent_pattern_set(Q) be the set of patterns so generated 
return(frequent_pattern_set(P) ∪ frequent_pattern_set(Q) ∪ (frequent_pattern_set(P) × 
frequent_pattern_set(Q))) 

Figure 2.9 FP-growth algorithm [11] 
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The algorithm to generate the frequent patterns from FP-tree is divided 
into three portions (see Figure 2.9): the single prefix-path P (Line 3), the multiple path Q 
(Line 4), and their combinations (Line 15). Besides, this algorithm is considered in three 
conditions: 
1. If the FP-tree contains a single prefix-path, enumerate every combination patterns 
with the support being the minimum support of the nodes in the subpath (Line 1-5). 
2. If the FP-tree is the multiple path that does not contain the single path denoted as Q, 
construct the conditional pattern-based and for each item in the FP-tree (Line 8-11). 
3. The terminating condition checks if the FP-tree is empty (Line 11). Unless the 
stopping criteria is met, call the function FP-growth recursively. 

Lastly, this algorithm returns the complete set of frequent pattern sets in 
Line 15. 

2.3 Literature reviews 

2.3.1 Association rules mining on gene expression  

DNA microarray, a high-throughput biotechnology, can currently 
measure the expression levels of thousands of genes or even the entire genome under 
different experimental conditions at a single test. In general, the microarray generates 
gene expression data in form of M × N matrix, where M and N are the columns of genes 
under study and the rows of experimental conditions respectively. Due to the advent of 
the sophisticated technology, researchers has been changed the method to analyze 
gene expression data from gene-specific to genome-wide. 

Association rules mining is considered as a powerful methods for 
uncovering the relationship of gene expression data from microarray technology as a 
whole genome. For decades, many researchers have studied such relationship in 
different ways. Nonetheless, the analysis of gene expression data by using association 
rules mining can be divided into three primarily goals [12][13][14]: 
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1.) To examine the association between the set of genes. 
2.)  To discover co-expressed genes associated with certain biological conditions. 
3.)  To identify what genes in cancer are expressed differentially from normal cells. 

Principally, association rules mining on gene expression data is 
composed of five phases (see Figure 2.10) [13]: 
 
 

 
Pre-processing 

 
 
Processing 

 
 
Post-processing 

Figure 2.10 The five phases of mining association rules on gene expression data [13] 

  

1. Preparing data 

− Discretization 

− Feature selection 

− Including external biological data 

 
2. Finding frequent pattern 

− Support 

3. Generating rules 

− Support 

− Confidence 

− Experimetal constraints 

4. Rule pruning 

− Redundant 

− Statistical methods 

− Domain knowledge 

5. Biological evaluation 

− Biological databases 

− Literature 

− Experimental analysis 
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2.3.1.1 Preprocessing phase 
To mine association rules on gene expression data, discretization is an 

inevitable task in preprocessing phase. There are two strategies of discretization - 
supervised and unsupervised methods. U. M. Fayyad and K. B. Irani applied the 
supervised strategy based on information theory to discretize gene expression data 
[15]. They divided numeric values into a number of disjoint ranges by using recursive 
binary partition algorithm so as to minimize the entropy of each bin. As for the 
unsupervised strategy, the basic approach used in the previous work [16] is equal width 
partitioning. This method divides the measured features into k bins equally, where k is a 
parameter defined by the researcher. Another method is to use the thresholds from 
some prior knowledge in discretization process [17][18]. In most genetic studies, 
statistical approaches like t-test are applied to detect the gene expression mean 
difference in cancer cells and normal counterparts [3]. 

In addition, biological information other than gene expression data can be 
included in this process [14][18]. Similarly, if there are some correlations between items 
or there are too many attributes to mine, feature selection should be operated before 
mining phase. Finally, the input data must be prepared in form of a single two-
dimensional table before processing in the next phase. 

2.3.1.2 Frequent patterns (itemsets) mining phase 
This phase is considered as a bottle neck of association rules mining. Many 

researches prove that finding frequent patterns is NP-hard problem because memory 
space and time consumption are exponentially grew by the number of items in the data 
set. In the earlier, APRIORI proposed by J. F. Hair et al. is widely used [9]. This column-
enumeration-based algorithm is suitable when the frequent pattern is short; however, 
this method is impractical in case of mining long frequent patterns. Therefore, a new 
algorithm FP-Growth is an alternative [11]. The advantage of this algorithm is to use FP-
Tree data structure for keeping frequent patterns instead of generating all candidates 
like APRIORI. This structure uses less memory space than APRIORI. Another column-
enumeration algorithms rely on closed-based algorithms. The closed itemset is an 
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itemset which has no super sets with similar support. Thus, mining such itemsets can 
cope with redundant rules which will be generated in the next step. 

Microarray data has the number of columns (genes under study) much more 
than the number of rows (experiments or samples); therefore, the previous column-
enumeration-based methods might not be appropriate. Unlike the column-based 
methods, The row-enumeration-based algorithms discover itemsets in row space 
instead of column space [19][20]. Like column-enumeration-based techniques, there 
are many algorithms which solve a huge number of generated rules problem like closed 
itemsets mining techniques.  

However, both column and row enumeration approaches are support based. 
Therefore, no matter what techniques are applied, we may still uncover very rare 
itemsets with high confidence. In this case, confidence based method is a solution. This 
technique uses confidence threshold in finding frequent patterns phase instead of 
support threshold. This technique was proposed by T. Mcintosh and S. Chawla [21]. 

2.3.1.3 Association rules generation phase 
From all frequent itemsets, association rules are generated with support and 

confidence. Normally, a frequent itemset can generate 2k-2 rules, where k is the size of 
each itemset. Certain constraints are sometimes used in this phase, depending on the 
purposes of the study. For example, the size of the left-hand or right-hand side of the 
rule is fixed [17][22]. In addition, if the goal is to apply association rules as classification 
rules; therefore, they generated rules whose the right-hand side of the rules were one of 
the class labels [19][20][23]. 

2.3.1.4 Rules filtering 
In principal, the minimum support and confidence of the rule are primary 

parameters rules filtering. Besides, some studies [22] used Certainty factor (CF) as 
another filter to avoid some shortcomings of the support and confidence framework, 
since the certainty factor is calculated from both support and confidence. Furthermore, 
statistical methods such as chi-square test are also used in this process to determine 
which rules are statistically significant. Nevertheless, the number of generated rules is 
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still too tremendous to be interpreted in terms of biological information; therefore, 
redundant rules have to be eliminated. By definition, for classification purpose, a 
redundant rule is a rule whose left-hand side is a superset of another rule which has the 
similar class in the right-hand side. Some techniques such as top-K covering rule 
groups technique proposed by G. Cong require the less number of rules; therefore, not 
only are redundant rules pruned, low-rank rules are also filtered [20]. On the other hand, 
when the association rules are used as classification rules, the methods to filter rules are 
different. In this sense, an uninteresting rule is a rule whose antecedent is a superset of 
that in other rules but whose confidence is lower. 

2.3.1.5 Biological evaluation 
A rule is significant in biological point of view if and only if that rule is a 

significant set of genes which share some biological pathways. Therefore, the 
association rules must be evaluated in terms of biological perspective. To begin with, 
the consequent rules with the results from previous clustering methods on the similar 
gene expression data sets were compared [17][24]. Some rules confirmed the prior 
biological knowledge, others were considered as hypotheses for future investigation. It 
is noticed that the biological evaluation phase focused on rule by rule analysis not in the 
point of the entire rules investigation. 

In practical, since mining association rules is limited by some threshold 
such as minimum support threshold, minimum confidence threshold, and thresholds 
used in discretization procedure, varying these thresholds is a technique to find the 
proper threshold in a particular data set [24]. It is noted that the lower the support 
threshold is set, the more the number of rules is generated. Thus, if the support 
threshold is set too low, the algorithms are unable to extract the rules because of 
memory bloat. 

Although it is widely accepted that association rule mining is one of the 
efficient data mining techniques to disclose the intrinsic information in gene expression 
data, many thresholds in the mining association rules algorithms must be defined by 
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users, especially support and confidence threshold. The users should vary these 
thresholds until the result meet their satisfaction. Since most of the medical data sets 
naturally rare cases, the minimum support threshold may sometimes be set less than 
10% of data [18]. However, the suitable thresholds depend on the size and the 
complexity of the data set where the latter factor we cannot measure. 

2.3.2 The application of association rules on gene expression data 

Association rules can usually unveil the information in the data set even 
with little prior knowledge. In the beginning, the research of C. Creighton and S. Hanash 
[17] and the research of C. Becquet et al. [24] showed that the gene-expression 
association rules mining is a promising complementary technique of previous prevailing 
clustering algorithms. They cited that a gene may normally related to others genes more 
than one biological pathways. Hence, the clustering algorithm cannot cover this event. 
On the contrary, this phenomenon can be represented by association rules. In other 
words, a gene can exist in many rules but belong to only one cluster. Moreover, C. 
Creighton and S. Hanash [17] generated randomized data set to validate that the mined 
rules were not occurred by chance, since they found only a few rules relative to the real 
data set. 

The large number of generated rules is challenging issue; therefore, 
many following studies have developed the techniques in finding frequent patterns 
stage to alleviate the explosion of the rules. Those techniques are described in section 
2.3.1. 

Mostly, the purpose of mining gene expression association rules is to 
study how the expression of a gene is associated with those of other genes. Thus, the 

rules mined in many research works are always in the form of X → Y, where X and Y 
are the set of genes with their expression levels (over-expressed or under-expressed). 
Some of the researchers applied certain constraints in rules pruning phase (see section 
2.3.1). The examples of association rules in gene expression data are following: 



 
  

 

26 

− {ORT1} → {ADH5, ARG4, CTF13, …} [17] means that when gene ORT1 is over-
expressed, the set of genes in the right-hand side of the rule are over-regulated as 
well. 

− {ARO3} → {ARG1,ARG4,CTF13,HIS5,LYS1, …} [17] means that when gene ARO3 
is over-expressed, the set of genes in the right-hand side of the rule are over-
regulated as well. 

− {ESC8} → {IMD1, IMD2} [21] means that when gene ESC8 is under-expressed, the 
set of genes in the right-hand side of the rule are under-regulated as well. 

2.3.3 The application of association rules on gene expression data 
integrated with external biological information 

In the previous association rules mining on gene expression data 
analysis, biological information has been used only in the posterior procedure to 
evaluate the association of the expression levels among genes. Nevertheless, not only 
has gene expression data been collected nowadays, other molecular information such 
as biological process, cellular component, and molecular function has been also 
published by more than 300 journals [13]. Like gene expression databases, these 
biological data sources are accessible through online databases like Gene Ontology 
(GO) [26] database and many databases provided by National Center for Biotechnology 
Information (NCBI) [27]. Moreover, gene expression is theoretically related to other 
biological factors. Therefore, to fully understand molecular function, these external 
information should be integrated with gene expression data in mining association rules 
phase to analyze simultaneously. Besides, some experiments studied gene expression 
in various time points called temporal gene expression analysis or under biological 
conditions such as Heat shock, Sporulation, and Diauxic shift. These include many 
studies [18], [25] and [28]. However, such external information was selected from the 
literatures in the past. 
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There are two forms of rules. One is in form of biological features → 

gene expression, the other is gene expression → biological features. The examples of 
association rules in gene expression data are following: 

− {Citrate cycle (TCA cycle)} → {[+] T6, [+] T7} [18] means that genes involved in 
Citrate -cycle are overexpressed at time point 6 and 7. 

− {PIR3_up,  PIR1_up} → {(21 minutes) HTB2_up} [25] means that when PIR3 and 
PIR1 are over-expressed, HTB2 is subsequently over-regulated in 21 minutes. 

− {pr:RAP1, pr:FHL1} → {heat3↓} [28] means that genes controlled by regulators of 
ribosome pathways RAP1 and FHL1 are under-expressed in the heat shock process 
at time point 3 

− {heat3↓, heat4↓, heat5↓} → {go:0006412 (translation)} [28] means that down-
regulated genes under the heat shock process at time point 3, 4, and 5 are involved 
in translational process. 

2.3.4 The application of association rules on gene expression data in 
cancer 

It is widely know that the expression levels of some genes in cancer cells 
differ from those in normal adjacent cells. Thus, these genes are used as marker genes 
or signature genes to classify cancer cells from normal cells. When over-expressed or 
under-expressed genes are able to be located, this outcome can help biologists 
diagnose various types of cancer. 

The research works [19][20] developed the performance of association 

rules mining algorithm and generated the rules in form of X → C, where X was a set of 
genes with their expression level and C is a class label representing whether the cell 
was cancerous or not. Later on, they grouped rules for classification purpose. 

Furthermore, K. R. Seeja et al. [12] studied gene expression data in 

pancreas cancer cells by mining X → Y rules, where both X and Y are a set of genes 
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with their expression levels. These rules showed co-expressed signature genes in 
pancreas cancer cells. The usefulness of mining such rules is to improve better 
therapeutics. 

Recently, F. J. Lopez used heterogeneous sources in their analysis in 
breast cancer [22]. They integrated prognostic factors such as ki67 (proliferation rate), 
metastasis, and tumor stage with gene expression data in association rules mining 
stage. The goal of this work is to discover the relationship of these two types of data. 

The generated rules from this experiment are in form of X → Y, where X and Y are an 
attribute in either gene expression data or prognostic factors. Specifically, this study 
was interested in rules whose both sides contained only one item.  

The examples of association rules on gene expression data in cancers 
are following: 

− {IBRDC2 [+]} → {AASS [+], FLJ20160 [-], … } [12] means that when IBRDC2 is 
over-expressed, the group of genes in the right hand side of the rule is also 
regulated as shown, where [+], [-] is over-expressed and under-expressed 
respectively. 

− {GREB1 = under} → {ki67 = +} [22] means that while gene GREB1 is under-
regulated, the proliferation rate (ki67) is likely to increase. 

2.3.4 The studies of LINE-1 in cancer 

Both gene-specific hypermethylation and global hypomethylation are 
common and crucial epigenetic events in cancers. Unlike gene-specific 
hypermethylation, genome-wide hypomethylation has been unclear for years. Still, It is 
known that most of the loss of DNA methylation is found on repetitive sequences 
including LINE-1 [2]. Since LINE-1s are widely interspersed in human genome (about 
17% of the whole genome), LINE-1s are used to study genome-wide methylation in 
cancers [29]. K. Chalitchagorn et al. [30] analyzed the methylation levels on LINE-1 in 
many types of cancer: colon, bladder, head and neck, liver, lung, renal, prostate, breast, 
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esophagus, thyroid, and stomach cancer. They found that DNA methylation in cancer 
cells is significantly lower than that in normal cell counterparts (p-value < 0.01). 

Recently, C. Aporntewan et al. [3] analyzed gene expression data in a 
variety of malignant tumors of stomach, breast, liver, lung, cervix, head and neck 
squamous cells, prostrate, and bladder. The results showed that not only are genes with 
LINE-1 hypomethylated, but such genes are also likely to down-regulated and the 
degree of down-regulation based on the level of hypomethylation on LINE-1. However, 
the mechanism how LINE-1s control gene expression in cancer remains in question. 
Therefore, the questionable mechanism of LINE-1 to regulate gene expression is the 
motivation of this thesis. 
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CHAPTER  III 

Methodology 

This chapter describes the materials used in the experiments and 
demonstrates the methods applied in the analysis. 

3.1 Datasets 

Four data sources used in this study are following: 

3.1.1 Gene information database 

This data stores the general information of all genes in human genome. 
The important attributes used in this study are shown in the Table 3.1. 

Table 3.1 The important attributes from gene information database 

Attribute names Description 

GeneID The unique identifier for a gene 
Symbol The default symbol for the gene 

Chromosome The chromosome on which this gene is placed 

3.1.2 Gene reference sequence database 

This data stores the comprehensive information of all genes in human 
genome. The important attributes used in this study are shown in the Table 3.2. 

Table 3.2 The important attributes from gene reference sequence database 

Attribute names Description 

GeneID The unique identifier for a gene 
start_position_on_the_genomic_accession The start position of the gene  
end_position_on_the_genomic_accession The end position of the gene  

Orientation The orientation of the gene  
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3.1.3 Gene Expression Omnibus (GEO) datasets database 

GEO datasets stores many kinds of high-throughput functional genomic 
data submitted by the scientific community. From this database, two types of data were 
used in the study. One kind of data was microarray platforms data. This data defines a 
list of probes along with what set of genes may be detected by these probes. Each 
platform data is assigned by a unique identifier with a “GPL” prefix. For example, Table 
3.3 shows a part of the platform data GPL570. The first column presents probe 
identifiers (ID) and the second column presents the set of genes (Gene Symbol) 
detected by those probes in the first column belong. From the Table 3.3, probe ID 
“1552277_a_at” and “1552303_a_at” are corresponding to multiple genes, so these 
probes are called heterogeneous probes. On the contrary, probes which belongs to a 
single gene such as “1007_s_at”, “1552286_at”, and “1552289_a_at” are called 
homogeneous probes. 

Table 3.3 A part of microarray platform annotation data (GPL570) 

ID Gene Symbol 

1007_s_at DDR1 
1552277_a_at C9orf30 /// TMEFF1 
1552286_at ATP6V1E2 
1552289_a_at CILP2 
1552303_a_at FLJ77644 /// TMEM106A 
206432_at HAS2 
206433_s_at SPOCK3 
206434_at SPOCK3 

The other kind of data was gene expression series data. This data 
contains gene expression levels of samples made up for an experiment, where a gene 
expression level is corresponding to a reference probe in a reference platform. Each 
gene expression dataset is assigned by a unique identifier with a “GSE” prefix. For 



 
  

 

32 

example, Table 3.4 shows a part of the gene expression data of bladder cancer 
(GSE3167) generated by the GPL570 platform. The first row presents sample or subject 
identifiers which begin with “GSM” prefix, the first column presents probe identifiers 
(ID_REF) in the reference platform GPL570 and the valueij in the table is a gene 
expression level of the subject in jth column and probe in ith row. 

Table 3.4 A part of bladder cancer gene expression data (GSE3167) 

ID_REF GSM134899 GSM134901 GSM134902 GSM134904 GSM134906 

1007_s_at 2791.1 4428.5 2440.6 3178 3508.1 
1552277_a_at 1495.1 2840.6 1780.6 806 777 
1552286_at 346.4 565.8 238 297.8 332.2 
1552289_a_at 109.9 84 88.3 107.8 173.3 
1552303_a_at 48 56.1 40.9 19.9 52.1 
206432_at 17.2 36.9 31.1 299.9 220.3 
206433_s_at 16.2 18.4 24.3 4.6 18.7 
206434_at 16.5 11.8 12.8 18.3 22 

The GSE datasets, including the reference GPL data of each dataset, 
analyzed in the study with the lists of sample identifiers, where each is assigned by a 
unique identifier with a “GSM” prefix, used as controls and tests of each GSE dataset. 

3.1.4 LINE-1 characteristics database (L1Base) 

The L1Base database stores the characteristics of 11,901 putatively 
active human long interspersed nuclear element-1s (LINE-1s or L1s), which are 
categorized into three main types: intact in the two ORFs, full length L1s (FLI-L1s), L1s 
with intact ORF2 but disrupted ORF1 (ORF2-L1s), and full length (>6000bp) non-intact 
L1s (FLnI-L1s). The number of each category is shown in the Table 3.5. In addition, the 
description of each LINE-1 characteristics is the in Appendix A. 
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Table 3.5 LINE-1 classification 

LINE-1 classification (based on L1Base online database) The number of LINE-1s 

Human Full-Length, Intact LINE-1 Elements [FLI-L1] 145 
Human ORF2 Intact LINE-1 Elements [ORF2-L1] 103 
Human Full-Length >4500nt LINE-1 Elements [FLnI-L1] 11,653 

Total 11,901 

The four sources of each database described above are shown in the Table 3.6. 

Table 3.6 The references of the databases used in the study 

Types of database References 

Gene information  
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/ 
Mammalia/Homo_sapiens.gene_info.gz 

Gene reference sequence ftp://ftp.ncbi.nih.gov/gene/DATA/gene2refseq.gz 
GEO datasets http://www.ncbi.nlm.nih.gov/geo 
L1 characteristics http://l1base.molgen.mpg.de 

3.2 Computer specification and tools 

In this study, we performed the experiments on an operating system 
Windows 7 Professional 64-bit on a HP Z800 workstation with dual Intel Xeon E5520 2.26 
GHz and 16 GB of memory. For all codes, we implemented on C# programming 
language in Microsoft Visual Studio 2010, an integrated development environment (IDE). 
Besides, we utilized the following tools: 
 

− Microsoft SQL Database Server 2008 Express: A free database management 
system 

− R Statistics (version 2.12.0): A free statistical software 

− RapidMiner (64-bit, version 4.6): An open-source data mining software 
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3.3 The methods in classification association rules mining 

There were four main parts in this analysis: preprocessing, bivariate data 
analysis using statistical methods, multivariate data analysis where decision tree and 
classification association rules mining were applied. (see Figure 3.1). 
 
 

Preprocessing 

Constructing the table containing genes with LINE-1 
Discretizing gene expression level of each gene. 
Constructing the final two dimensional table 

Bivariate data analysis 

Nominal LINE-1 characteristics 
Chi-square test 

Numeric LINE-1 characteristics 
Bivariate logistic regression 

Decision tree mining 

C4.5 algorithm + 10 folds 

− Information gain 

− Gain ratio 

Classification association rules mining 

Discretization 
Binominal transformation 
Feature selection 

Frequent patterns mining (FP-growth) 
Rules generation 

Rules filtering 
Biological evaluation 

Figure 3.1 The overview of methodology in this study 

Pre-processing 

Processing 

Post-processing 
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3.3.1 Preprocessing 

In this phase, necessary data from various sources was downloaded 
from the four online databases as text files and imported to our own single database. 
Moreover, certain data values were transformed. Ultimately, the final output of this 
process was a single two dimensional table where its rows were a Cartesian product of 
a set from the multiplication of a set of experimental genes in GSE data set and a set of 
LINE-1s in genes and its columns comprised gene symbols, LINE-1 characteristics, and 
gene expression levels (either down-regulated or not down-regulated) as class labels 
(see Figure 3.2). It should be noted that some rows had the similar gene symbol 
because that gene contains multiple LINE-1s. Still, these rows with the similar gene 
symbol had the similar gene expression level. 
 
 
 

Gene Symbol         
Gene Expression level 
(“Down” or “Not down”) 

G1          
G2 1st LINE-1  
G2 2nd LINE-1  
G2 3rd LINE-1  
G3          
…          

Figure 3.2 The structure of the final table before performing analysis 

To obtain the final table, the following three steps were required: 
3.3.1.1 Constructing the table containing genes with LINE-1 

Due to a variety of the data sources and the intricacy to manage the data in text 
files, all relevant files (see Section 3.1) were first imported into the database 

LINE-1 characteristics 
Class label 

Genes with 
LINE-1 
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management system. To discover genes with LINE-1 on the entire genome, the start and 
end positions of each gene and each LINE-1 from gene reference sequence data and 
L1Base data respectively were compared because a gene with LINE-1must overlap at 
least a LINE-1. 

After what genes had LINE-1s was known, a table containing these genes was 
then constructed. In addition to gene symbols with their corresponding LINE-1 identifiers 
(LINE-1 IDs), the table consisted of the orientations of these genes which were derived 
from the gene reference sequence data. Table 3.7 shows the structure of such table. It 
is noticed that a gene may have multiple LINE-1s. Similarly, a LINE-1 may lie over 
multiple genes. 

Table 3.7 A part of the table containing genes with LINE-1 and gene orientations 

Gene Symbol Orientation of the gene LINE-1 ID 
LEPR + 831 
LEPR + 832 
CFH + 898 

COL24A1 - 828 
ST6GAL2 - 1484 
UGT1A3 + 1636 
UGT1A4 + 1636 

 
Next, this table was used as a reference table for every GSE data set to prepare 

the final two-dimensional table which comprised the symbols of genes having LINE-1, 
the characteristics of LINE-1s lying on those genes and the expression levels of those 
genes. 

3.3.1.2 Discretizing gene expression level of each gene 
Before determining whether a gene is either down-regulated or not, gene 

expression levels of all probes in each GSE data set was first categorized. To discretize 
gene expression level of each probe, the statistical method t-test was performed to 
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compare the difference of means between the control groups and the experimental 
groups of each GSE data set. The controls and tests of each GSE data sets are relied on 
the earlier work [3]. For any probe, if the means of both groups were significantly 
different and the mean of the experimental group was less than that of the control group, 
the gene expression of such probe was considered down-expressed or down-regulated. 
Otherwise, its gene expression was treated as not down-regulated. 

After the discretization of gene expression had been achieved in each probe, 
what genes were down-regulated or not was addressed. Since a probe can measure 
gene expression belonging to multiple genes, the counting technique called simple 
count was performed. By definition, a gene is down-regulated if and only if it has at least 
a unique probe, a probe belongs to a single gene, is significantly down-regulated or at 
least two homology probes are significantly down-regulated; otherwise, the gene is 
considered not down-regulated. Here, the expression levels of each gene in every GSE 
dataset were already discretized into only two values: down-regulated and not down-
regulated. 

3.3.1.3 Constructing the final two dimensional table 
In this stage, the final two dimensional table of each GSE dataset was created 

by integrating the following data. Firstly, the table containing genes having LINE-1s and 
gene orientations from section 3.3.1.1. Secondly, the GSE dataset containing gene 
expression levels (GE level), which had been discretized from 3.3.1.2. Finally, the LINE-
1 characteristics data from L1Base. Every column in the three data sources was merged 
by matching corresponding gene symbols for the first two data sources and 
corresponding LINE-1 identifiers (LINE-1 ID) for the last two data sources. During 
constructing the final table, a couple of LINE-1 characteristics, the number of LINE-1 
and the orientation of each gene, were included. Figure 3.3 is an integration diagram of 
these three data sources, GSE3167, genes having LINE-1s and their orientations table, 
and L1Base, to make the final table of GSE3167 (see Table 3.8). It was noted that gene 
symbols “ST6GAL2” , “COL24A1”, and “ZZZ3” were not included in the final table, since 
these genes were not in GSE3167 or did not contain any LINE-1. Similarly, LINE-1 
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identifiers “508”, “509”, and “512” were not included in the final. Lastly, the final table of 
every GSE dataset had 57 columns including gene expression level. The total number of 
rows, nevertheless, was varied by GSE datasets. 
Genes and gene 

expression of 

GSE3167  

Genes having LINE-1s and 

gene orientations  L1Base 

Gene 

symbol 

GE 

level 
 

Gene 

symbol 

Orientation 

of gene 

LINE-

1 

ID 

 
LINE-

1 ID 

LINE-1 

characteristics 

ESRRA Down  ST6GAL2 - 1484  508  
LEPR Down  COL24A1 - 828  509  

CFH 
Not 

Down 
 ZZZ3 - 524  512  

LEPR + 831 831  

UGT1A3 
Not 

Down 
 LEPR + 832  832  

CFH - 898 898  

UGT1A4 
Not 

Down 
 UGT1A3 + 1636  1636  

UGT1A4 + 1636 831  
             

Figure 3.3 The diagram to combine three data sources to make the final table 

Table 3.8 A part of the final two dimensional table of bladder cancer dataset (GSE3167) 

Gene 

symbol 
LINE-1 ID 

LINE-1 

characteristics 

Orientation 

of gene 

The number 

of LINE-1 
GE level 

LEPR 831 … + 2 Down 

LEPR 832 … + 2 Not Down 

CFH 898 … - 1 Not Down 

UGT1A3 1636 … + 1 Not Down 

UGT1A4 1636 … + 1 Not Down 
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3.3.2 Bivariate data analysis 

After the final table had been completed, the analysis of the association 
between gene expression data and LINE-1 characteristics is performed. In this stage, 
only a LINE-1 characteristic was analyzed at a time. First, the distribution of every LINE-
1 characteristic was observed. Next, chi-square test was applied for every nominal 
LINE-1 characteristic. Table 3.9 shows the contingency table created to perform chi-
square test. Each entry in the contingency table was the number of corresponding 
records in the final table built from Section 3.3.1. 

Table 3.9 The structure of a contingency table of the association between each nominal 
LINE-1 characteristic and gene expression (either down regulation or not) 

 A LINE-1 characteristic 
 Value 1 Value 2 … Value n 
Down     

Not down     

For every numeric LINE-1 characteristic, bivariate logistic regression was 
employed. Finally, p-values derived from the statistical tests were considered whether 
the association between gene expression and any LINE-1 characteristic was statistically 
significant or not. 

3.3.3 Multivariate data analysis by decision tree mining 

For multivariate data analysis, in the beginning, we analyzed LINE-1 
characteristics by applying a basic decision tree mining technique, C4.5 algorithm. We 
performed a couple of experiments with different attribute selection measures. We used 
information gain for one experiment and gain ratio for the other experiment. In both 
experiments, ten-fold cross validation was applied. Then, we compared the results from 
both attribute selection measures. 
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3.3.4 Multivariate data analysis by classification association rules 
mining 

This phase was the core of the thesis. We performed classification 
association rules mining to search the association between LINE-1 characteristics and 
down regulation of genes containing LINE-1. 

To begin with, further data preparations such as discretization, 
transformation, and feature selection were required in this stage despite data 
preprocessing in Section 3.3.1. Next, frequent patterns were mined by using FP-Growth 
algorithm and classification association rules were generated. After that, redundant rules 
were filtered out. Finally, LINE-1 characteristics were scored and biological evaluation 
was discussed. The following sections below describe each step in details. 

3.3.4.1 Discretization 
We applied two methods to discretize the numeric L1 characteristics. One was 

equal frequency bins where we used the median of the attribute as a threshold to 
divides its tuples into two groups. In this sense, we presumed that the down-regulation 
may be relevant the values either more or less than the median with equal probability. 

3.3.4.2 Binominal transformation 
Due to the data structure of FP-tree, every attributes needs to have only two 

values or binominal. Therefore, each LINE-1 characteristic with more than two values 
was transformed by using both characteristic’s name and its value to form a new 
characteristic. For example, Type, one of LINE-1 characteristics, has three values: 
FLnI_L1, FLI_L1, and ORF2_L1. This characteristic would be transformed to three 
characteristics, Type= FLnI_L1, Type=FLI_L1, and ORF2_L1. Each new characteristic 
has only two values, true and false. 

3.3.4.3 Feature selection 
Sometimes, interesting patterns or rules are rarely appear in database. In this 

sense, these patterns or rules have low support but high confidence. Therefore, In 
association rules mining, whether these rare rules are discovered or not depends on 
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minimum support threshold. Supposed that the minimum support threshold is set to 
zero, every possible pattern including rare patterns will completely be found. However, 
the minimum support threshold cannot be set to zero in a huge data because of the 
constraint of time and memory space. The more the attributes there are in association 
rule mining, the more the time and space are consumed. Thus, to minimize support 
threshold, some features or attributes need to be cut off. However, it should be trade-off 
between how low support threshold should be set and how many attributes there should 
be remained in frequent patterns mining. 

In this study, logistic regression method was performed to select some LINE-1 
characteristics to be used in the next frequent patterns mining stage. This statistical 
method satisfied the data in this study, since it could predict the probability of a 
binominal dependent variable like whether gene expression would be down or not. 
Therefore, the statistical model formed in logistic regression were composed of all LINE-
1 characteristics as independent variables and gene expression data as a dependent 
variable. However, logistic regression only works on metric independent variables. 
Therefore, all of the nominal LINE-1 characteristics must have been dummy coded. In 
dummy coding task, we created new metric n+1 characteristics whose values were 
either 0 or 1, from any characteristic with n values. For example, Type, one of LINE-1 
characteristics, has three values: FLnI_L1, FLI_L1, and ORF2_L1. We built new four 
characteristics as shown in the Table 3.10. 

Table 3.10 An example of dummy coding of “Type”, one of nominal LINE-1 
characteristics 

Original characteristic New characteristics after dummy coding 

Type Type1 Type2 
FLnI_L1 1 0 
FLI_L1 0 1 

ORF2_L1 0 0 
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Here, we used R Statistics to perform logistic regression. This tool showed the 
outcome model with the coefficient of each LINE-1 characteristic and its p-value. Then 
we ranked these characteristics by their p-values and used p-value of 0.5 as a 
threshold. So, if the p-values any LINE-1 characteristics coefficients were lower than 0.5, 
these characteristics were deleted. Finally, only the remained LINE-1 characteristics 
were analyzed in the next stage. 

3.3.4.4 Frequent patterns mining 

In this stage, RapidMiner version 4.6 was employed to mine frequent 
patterns by performing FP-growth algorithm. The minimum support threshold was set as 
low as possible. Although FP-growth algorithm used a compact tree data structure to 
keep all frequent patterns, the minimum support threshold could not be set low enough 
for creating rules with high confidence because of the limitation of memory space. 
Therefore, another way to minimize the overall minimum support threshold used in this 
analysis was to find local frequent patterns. Specifically, only records having down 
regulation were mined for frequent patterns. 

To prove that this method could minimize the minimum support 
threshold, let n is the number of records having down regulation and N is the number of 
the total records. If we set the local minimum support threshold to s, the actual minimum 
support threshold is (s × n) / N. Since, in this study, the number of records with down 
regulation (n) was much smaller than a half of the total number of records (N) in every 
dataset, the actual minimum support threshold could be dramatically minimized. With 
this advantage, only down regulation records were mined for generating local frequent 
patterns in this stage. In addition, “gene expression level” column would be dropped 
before mining local frequent patterns, since every record had the similar gene 
expression value (Down). Nonetheless, it is noted that not every local frequent patterns 
is frequent with respect to the entire data. Therefore, the whole data, both down and not 
down regulation records, were considered together when computing actual support and 
confidence of rules in rules generation stage. 
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3.3.4.5 Rules generation 
After all of the frequent patterns were acquired, every possible classification 

association rule with LINE-1 characteristics on the left-hand side and only a gene 
expression level that was down regulation (Down) on the right-hand side of the rule were 
generated (see Figure 3.4).  

 

C1 = V1 and C2 = V2 and C3 = V3 and … and Cn = Vn → Down 
where  Ci is the i th LINE-1 characteristic’s name 
  Vi is the i th LINE-1 characteristic’s value 

Figure 3.4 The structure of generated rules 

Next, actual support and confidence of each rule were calculated from a given 
entire dataset. In addition, the 2×2 contingency table showing the association between 
antecedence and consequence of rule was built (see Table 3.11). Each entries were the 
number of the corresponding records in a given final table. With the 2×2 contingency 
table, chi-square test was applied on every rule. Finally, p-value of each rule from chi-
square test was adjusted by Bonferroni and Yate’s correction method. Besides, odds 
ratio of each rule was computed from the 2×2 contingency table. 

Table 3.11 The structure of a 2×2 contingency table of the association the antecedence 
and the consequence of a rule 

 Consistent to LHS Contradictory to LHS 

Down   

Not down   

 
3.3.4.6 Rules filtering 

Rules with p-values from chi-square test less than 0.05 or rules with confidence 
lower than 50% were removed in this stage. It is noted that if there is at least one 
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expected value in the 2×2 contingency table is less than 5, we would adjust p-value by 
Yate’s correction. In addition, some rules generated from the previous section were 
regarded as redundant rules. By definition, a rule Xi → Y is a redundant rule if and only 
if there is a rule Xj → Y, where Xj is a subset of Xi and the confidence of the rule Xj → Y 
is no less than the confidence of the rule Xi → Y. Therefore, these redundant rules were 
detected and deleted in this stage. 

Yet, the number of the remaining rules was too large to be explored rule by rule. 
Therefore, we would select certain rules based on genes they support, considering 
three factors, high confidence, high support and small size of LINE-1 characteristics 
used in the left hand side of rule. By this manner, we can better understand the biology 
represented by rules without the loss of the overall support. 

To begin with, we categorized rules based on genes that they supported. In 
case of gene with a unique rule, we keep such rule. 

Turning to consider genes with multiple rules, we would select the rules with the 
highest confidence percentage. Next, we focused on both support percentage and the 
number of terms in the left hand side of rule. For each rule A in the same group, if there 
is a rule B which satisfies either of the following two conditions (see Figure 3.5), then we 
leave rule A out of our consideration. Finally, we would have a smaller group of 
representative rules from each gene to analyze in terms of biology. 

 
If there is rule B in the same group such that  
 - support(rule B) > support(rule A) and LHS(rule B) ≤ LHS(rule A)  
     or 
 - support(rule B) = support(rule A) and LHS(rule B) < LHS(rule A) 
where  
 support(rule) = the percentage of support of rule 
 LHS(rule) = the number of terms or L1 characteristics in the left hand side of rule 

Figure 3.5 The conditions of rule selecting for biological purpose 
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3.3.4.7 Biological evaluation 
After we had obtained all classification association rules of every GSE dataset 

and clusters of each set of rules had been created, we interpreted these rules from 
biological point of view on how they supported the literature or introduced new 
hypotheses. 
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CHAPTER  IV 

Results and Discussion 

After analysis on LINE-1 characteristics that mediate gene expression in 
many kinds of cancer, chi-square test pointed that some LINE-1 characteristics were 
significantly down-regulated gene expression at p-value = 0.05. Moreover, C4.5 
produced such a large tree of each type of cancer that was hard to interpreted. Finally, 
classification association rules mined from five datasets, prostate, bladder, head and 
neck, and liver cancer, including 5-AZA data supported the mechanism how LINE-1s 
regulate gene expression in cancer cells by LINE-1 transcripts [3]. In addition, some 
rules could be used as new hypotheses of down regulation. 

In this chapter, the results from three parts of data analysis, bivariate 
statistical testing, decision tree mining, and classification association rules mining, are 
demonstrated and discussed in details. Besides, the interesting LINE-1 characteristics 
in rules are explored in terms of basic biological point of view. 

4.1 The statistical results from bivariate data analysis 

Before bivariate data analysis, we observed each data set by creating 
the 2×2 contingency table to roughly understand the association between the existence 
of LINE-1 in genes and gene expression (see Table 4.1). Even though some datasets 
whose the association between having LINE-1 in genes and gene expression are not 
statistically significant at p-value 0.05, we still performed data mining on those datasets. 
In other words, having LINE-1 might not enough to indicate the associated gene 
expression but LINE-1 characteristics were still likely to be statistically associated with 
gene expression. However, GSE14054 (si-AGO2IP) had not been analyzed since the 
number of down-regulated genes was not enough for statistical test or mining.  

For bivariate data analysis, after performing the statistical tests on each 
LINE-1 characteristic described in the previous chapter, we found that certain LINE-1 
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characteristics were statistically significant (p-value < 0.05). Different data sets had 
different significant characteristics (see Table 4.2 and Table 4.4) 

Table 4.1 The association between the existence of LINE-1 in genes and gene 
expression in each dataset on the 2×2 contingency table 

   Gene Expression    
 Dataset  Down Not Down Total p-value Odds 

C
an

ce
rs

 

GSE6919 
Prostate 

L1 94 566 660 
0.9853 0.9979 No L1 1,182 7,102 8,284 

Total 1,276 7,668 8,944 

GSE3167 
Bladder 

L1 377 572 949 
1.08E-14 1.7007 No L1 3,382 8,727 12,109 

Total 3,759 9,299 13,058 

GSE5816 
Lung 

L1 121 1,366 1,487 
0.0002 1.4517 No L1 1,086 17,798 18,884 

Total 1,207 19,164 20,371 

GSE6631 
Head & neck 

L1 46 614 687 
0.1027 1.2981 No L1 452 7,832 8,284 

Total 498 8,473 8,971 

GSE13911 
Stomach 

L1 359 1,128 1,487 
3.56E-12 1.5517 No L1 3,214 15,670 18,884 

Total 3,573 16,798 20,371 

GSE14811 
Liver 

L1 51 303 354 
0.5326 1.1020 No L1 857 5,611 6,468 

Total 908 5,914 6,822 

GSE1299 
Breast 

L1 66 773 839 
4.95E-05 1.7376 No L1 427 8,240 8,667 

Total 493 9,013 9,506 
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Table 4.1 (Continued)  

   Gene Expression    
 Dataset  Down Not Down Total p-value Odds 

C
an

ce
r 

GSE9750 
Cervical 

L1 257 692 949 
8.14E-16 1.8439 No L1 2,030 10,079 12,109 

Total 2,287 10,771 13,058 

GSE5764 
Breast 

L1 12 1,475 1,487 
0.3652 1.3163 No L1 116 18,768 18,884 

Total 128 20,243 20,371 

5-
A
za

 

GSE9764 
5-Aza 

L1 65 1,422 1,487 
9.18E-06 1.8066 No L1 466 18,418 18,884 

Total 531 19,840 20,371 

GSE5816 
hBEC (Lung) 

L1 15 1,472 1,487 
0.6393 1.1352 No L1 168 18,716 18,884 

Total 183 20,188 20,371 

A
G

O
2 

GSE4246 
AGO2sh 

L1 90 760 850 
0.5229 0.9289 No L1 1,222 9,585 10,807 

Total 1,312 10,345 11,657 

GSE14537 
AGO2IP 

L1 67 1,420 1,487 
0.6133 1.0680 No L1 799 18,085 18,884 

Total 866 19,505 20,371 

GSE14054 
si-AGO2IP 

L1 2 1,485 1,487 

0.4237 1.8153 No L1 14 18,870 18,884 

Total 16 20,355 20,371 
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Table 4.2 The p-value from chi-square test with the odds ratio  
(The bold entry indicates that the characteristic in the consistent row is significant at p-value = 0.05) 

LINE-1 

PART 

LINE-1 

Characteristics 

Cancers 

GSE6919 

prostate 

GSE3167 

bladder 

GSE5816 

lung 

GSE6631 

Head&neck 

GSE13911 

stomach 

GSE14811 

liver 

GSE1299 

breast 

GSE5764 

breast 

GSE9750 

cervical 

Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value 

5’ UTR 

Runx3 Site 0.915 0.659 1.112 0.363 0.987 0.940 0.979 0.941 1.099 0.377 0.436 0.017 1.473 0.098 1.976 0.181 0.978 0.863 
Runx3 ASP 0.950 0.783 0.960 0.711 0.727 0.074 0.784 0.397 1.201 0.067 0.475 0.015 1.365 0.165 2.556 0.053 1.078 0.540 
SRY Site1 1.153 0.417 1.020 0.847 0.910 0.536 0.844 0.502 1.051 0.596 0.795 0.350 0.905 0.644 1.469 0.474 0.890 0.304 
SRY Site2 0.813 0.237 1.227 0.046 1.043 0.788 0.982 0.942 0.928 0.432 0.691 0.156 1.418 0.103 1.671 0.301 1.036 0.753 

YY1 BoxA+BoxA 1.013 0.952 1.035 0.780 1.209 0.289 0.947 0.863 0.964 0.748 0.436 0.017 1.350 0.222 1.321 0.630 1.098 0.494 
TF nkx-2.5 1.229 0.253 1.135 0.222 1.075 0.642 1.255 0.400 1.020 0.838 0.647 0.076 1.021 0.924 1.836 0.286 1.089 0.459 

TF nkx-2.5B 1.061 0.841 1.284 0.166 0.547 0.080 0.821 0.678 0.888 0.491 0.566 0.285 2.212 0.007 1.633 0.514 1.189 0.376 

ORF1 
REKG235 1.103 0.595 0.961 0.711 1.243 0.185 1.048 0.863 0.986 0.883 0.756 0.273 0.911 0.678 1.578 0.427 0.970 0.795 
ARR260 1.629 0.043 0.998 0.989 1.530 0.039 1.011 0.973 1.035 0.758 0.771 0.364 1.737 0.078 1.163 0.814 1.095 0.514 

YPAKLS282 1.406 0.065 0.976 0.812 1.152 0.371 0.934 0.791 0.959 0.654 0.877 0.599 1.728 0.023 1.785 0.310 1.041 0.725 
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Table 4.2 (Continued)  

LINE-1 

PART 

LINE-1 

Characteristics 

Cancers 

GSE6919 

prostate 

GSE3167 

bladder 

GSE5816 

lung 

GSE6631 

head&neck 

GSE13911 

stomach 

GSE14811 

liver 

GSE1299 

breast 

GSE5764 

breast 

GSE9750 

cervical 

Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value 

ORF2 

N14 1.201 0.584 0.938 0.740 1.385 0.307 0.717 0.421 1.174 0.369 1.750 0.359 0.819 0.584 NA 0.247 1.210 0.387 
E43 0.943 0.841 1.042 0.822 0.864 0.571 0.528 0.072 0.808 0.176 1.244 0.657 3.990 0.038 -1.000 0.225 0.665 0.030 

Y115 1.017 0.951 0.947 0.740 1.117 0.665 0.872 0.724 1.187 0.271 0.443 0.026 1.523 0.292 0.500 0.272 0.657 0.013 

D145 1.201 0.493 0.940 0.688 1.441 0.172 1.874 0.178 1.195 0.232 0.944 0.893 0.676 0.208 0.559 0.359 0.800 0.173 
N147 1.592 0.195 0.848 0.370 1.599 0.137 1.422 0.502 1.370 0.070 0.614 0.238 1.784 0.211 1.436 0.725 1.323 0.198 
T192 1.997 0.063 1.304 0.145 1.085 0.763 0.976 0.956 0.954 0.767 0.403 0.006 1.377 0.458 1.491 0.698 1.524 0.053 
D205 1.500 0.168 1.108 0.520 0.770 0.220 1.398 0.443 1.210 0.193 1.050 0.909 1.151 0.684 0.950 0.947 1.079 0.668 

SDH228 1.212 0.363 0.993 0.950 0.962 0.826 1.109 0.738 1.147 0.217 1.446 0.251 0.918 0.736 4.517 0.110 0.973 0.837 
R363 1.038 0.854 0.864 0.217 1.400 0.074 0.794 0.417 1.067 0.545 0.553 0.027 1.279 0.351 2.326 0.251 1.006 0.964 

FADD700 1.069 0.723 0.843 0.118 1.499 0.022 1.363 0.290 1.121 0.258 0.953 0.860 2.116 0.006 1.321 0.629 0.923 0.508 
HMKK1091 0.889 0.494 1.079 0.463 1.000 0.999 0.894 0.661 1.015 0.876 0.657 0.086 2.140 0.002 1.836 0.286 1.179 0.155 
SSS1096 1.103 0.568 0.903 0.313 1.070 0.657 0.947 0.829 0.977 0.799 0.803 0.370 1.178 0.450 1.321 0.590 0.979 0.850 

I1220 1.243 0.314 0.882 0.295 1.277 0.188 0.870 0.636 1.106 0.351 0.656 0.131 1.233 0.429 2.279 0.263 1.100 0.477 
S1259 1.061 0.806 1.126 0.390 1.124 0.577 0.888 0.728 1.072 0.573 0.796 0.455 1.547 0.181 3.025 0.260 1.241 0.170 
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Table 4.2 (Continued)  

LINE-1 

PART 

LINE-1 

Characteristics 

Cancers 

GSE6919 

prostate 

GSE3167 

bladder 

GSE5816 

lung 

GSE6631 

head&neck 

GSE13911 

stomach 

GSE14811 

liver 

GSE1299 

breast 

GSE5764 

breast 

GSE9750 

cervical 

Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value Odds p-value 

3’ UTR PolyA Signal 1.119 0.518 0.916 0.405 0.790 0.155 1.054 0.840 0.976 0.804 0.864 0.574 1.100 0.671 0.919 0.875 0.779 0.037 

ALL 

ORF StartStop - 0.017 - 0.818 - 0.125 - 0.036 - 0.971 - 0.132 - 0.387 - 0.054 - 0.801 
Type - 0.867 - 0.973 - 0.158 - 0.374 - 0.415 - 0.650 - 0.808 - 0.355 - 0.029 

Strand 0.886 0.473 1.044 0.669 1.100 0.527 1.468 0.131 0.981 0.837 1.424 0.148 1.143 0.531 0.588 0.300 0.895 0.316 
L1M/L1PA 

Discrimination 
0.409 0.050 1.331 0.155 0.360 0.021 0.646 0.466 1.178 0.351 2.009 0.181 0.953 0.912 0.000 0.275 1.292 0.234 

orientation 1.192 0.299 1.247 0.028 1.001 0.995 3.113 0.000 1.223 0.028 0.946 0.819 0.798 0.292 1.373 0.529 0.848 0.139 
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Table 4.2 (Continued) 

LINE-1 

PART 

LINE-1 

Characteristics 

5-aza AGO2 

GSE9764 

5-aza 

GSE5816 

hBEC (Lung) 

GSE4246 

AGO2sh 

GSE14537 

AGO2IP 

Odds p-value Odds p-value Odds p-value Odds p-value 

5’ UTR 

Runx3 Site 1.123 0.592 1.647 0.247 0.755 0.201 0.962 0.868 
Runx3 ASP 0.782 0.264 1.273 0.579 0.856 0.436 1.194 0.397 
SRY Site1 0.753 0.133 2.550 0.054 0.647 0.013 1.388 0.112 
SRY Site2 1.193 0.357 1.414 0.398 0.860 0.410 1.030 0.882 

YY1 BoxA+BoxA 1.124 0.608 1.041 0.936 0.670 0.089 1.171 0.497 
TF nkx-2.5 0.953 0.802 1.222 0.644 0.773 0.151 1.116 0.591 

TF nkx-2.5B 0.709 0.382 1.036 0.963 0.850 0.622 0.889 0.753 

ORF1 
REKG235 1.051 0.803 1.277 0.587 0.656 0.019 1.130 0.560 
ARR260 1.315 0.273 1.885 0.298 0.893 0.610 2.766 0.002 

YPAKLS282 0.816 0.287 2.269 0.095 0.789 0.185 1.342 0.161 

ORF2 

N14 1.153 0.703 1.925 0.515 0.807 0.504 1.464 0.368 
E43 1.113 0.763 0.637 0.464 0.594 0.068 2.489 0.067 

Y115 0.587 0.038 2.685 0.315 0.502 0.005 1.167 0.647 
D145 1.150 0.652 1.428 0.629 0.977 0.937 2.302 0.043 

N147 1.165 0.667 2.209 0.427 1.270 0.506 1.424 0.371 
T192 1.894 0.126 1.092 0.905 1.533 0.230 1.277 0.512 
D205 1.009 0.975 3.145 0.237 0.559 0.022 1.232 0.518 

SDH228 0.873 0.529 0.897 0.819 0.734 0.124 1.796 0.031 

R363 0.846 0.425 1.260 0.646 0.938 0.759 1.422 0.152 
FADD700 0.886 0.545 1.069 0.883 0.765 0.153 1.797 0.014 

HMKK1091 0.953 0.802 0.853 0.702 0.942 0.743 1.322 0.180 
SSS1096 0.871 0.462 1.322 0.508 0.881 0.473 0.984 0.936 

I1220 1.283 0.284 0.973 0.953 0.793 0.257 1.311 0.264 
S1259 0.924 0.748 1.409 0.578 0.954 0.843 1.669 0.095 

3’ UTR PolyA Signal 0.846 0.418 0.831 0.681 1.127 0.517 0.861 0.481 
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Table 4.2 (Continued)  

LINE-1 

PART 

LINE-1 

Characteristics 

5-aza AGO2 

GSE9764 

5-aza 

GSE5816 

hBEC 

GSE4246 

AGO2sh 

GSE14537 

AGO2IP 

Odds p-value Odds p-value Odds p-value Odds p-value 

ALL 

ORF StartStop - 0.242 - 0.267 - 0.075 - 0.432 
Type - 0.214 - 0.739 - 0.507 - 0.524 

Strand 1.018 0.924 0.489 0.093 0.764 0.126 0.752 0.146 
L1M/L1PA 

Discrimination 
0.476 0.140 0.613 0.629 1.442 0.277 0.640 0.333 

orientation 0.775 0.180 0.436 0.058 0.963 0.832 0.673 0.046 

 

The bold values are significant at p-value = 0.05. In addition, we provides odds 
ratio for any LINE-1 characteristic with two values (conserved or mutated). If odds ratio is more 
than one, it means that conserved sequence have more effect on down-regulations of genes 
than mutated ones; on the contrary, if odds ratio is less than one, it means that mutated 
sequence have more effect on down-regulations of genes than conserved ones (see Table 4.3). 

Table 4.3 The example of 2×2 contingency table of LINE-1 characteristics which are two-value 
sequences 

 A LINE-1 characteristic (Sequences) 
 Conserved Mutated 

Down A B 
Not Down C D 

 Odds = AD/BC 
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Table 4.4 The p-value from logistic regression  
(The bold entry indicates that the characteristic in the corresponding row is significant at p-value = 0.05) 

LINE-1 

Part 

LINE-1 

Characteristics 

Cancers 5-aza AGO2 

GSE6919 

prostate 

GSE3167 

bladder 

GSE5816 

lung 

GSE6631 

Head&neck 

GSE13911 

Stomach 

GSE14811 

Liver 

GSE1299 

breast 

GSE5764 

breast 

GSE9750 

cervical 

GSE9764 

5-aza 

GSE5816 

hBEC Lung 

GSE4246 

AGO2sh 

GSE14537 

AGO2IP 

ORF1 

ORF1 Gaps 0.006 0.592 0.115 0.789 0.227 0.972 0.943 0.221 0.867 0.427 0.911 0.625 0.868 
ORF1 Frameshifts 0.259 0.234 0.337 0.578 0.358 0.247 0.098 0.034 0.679 0.146 0.981 0.646 0.048 

ORF1 Stops 0.192 0.285 0.089 0.558 0.754 0.639 0.231 0.165 0.434 0.339 0.309 0.068 0.402 
ORF1 %A 0.150 0.031 0.101 0.438 0.778 0.893 0.541 0.199 0.564 0.287 0.524 0.155 0.582 
ORF1 %T 0.073 0.127 0.015 0.500 0.435 0.080 0.298 0.071 0.530 0.664 0.440 0.041 0.014 

ORF1 CAI 0.053 0.484 0.145 0.602 0.643 0.912 0.234 0.035 0.096 0.957 0.291 0.762 0.774 

ORF2 

ORF2 Gaps 0.459 0.724 1.000 0.594 0.773 0.831 0.494 0.081 0.816 0.514 0.592 0.429 0.690 
ORF2 Frameshifts 0.127 0.267 0.282 0.944 0.722 0.105 0.489 0.186 0.257 0.479 0.369 0.335 0.235 

ORF2 Stops 0.101 0.260 0.047 0.878 0.387 0.186 0.338 0.035 0.410 0.324 0.444 0.087 0.031 

ORF2 %A 0.079 0.047 0.089 0.821 0.571 0.242 0.449 0.106 0.894 0.519 0.544 0.068 0.125 
ORF2 %T 0.046 0.108 0.008 0.719 0.670 0.337 0.459 0.122 0.101 0.249 0.618 0.014 0.003 

ORF2 CAI 0.241 0.121 0.030 0.823 0.888 0.700 0.757 0.122 0.269 0.354 0.085 0.442 0.172 
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Table 4.4 (Continued) 

LINE-1 

Part 

LINE-1 

Characteristics 

Cancers 5-aza AGO2 

GSE6919 

prostate 

GSE3167 

bladder 

GSE5816 

lung 

GSE6631 

head&neck 

GSE13911 

stomach 

GSE14811 

Liver 

GSE1299 

breast 

GSE5764 

breast 

GSE9750 

cervical 

GSE9764 

5-aza 

GSE5816 

hBEC Lung 

GSE4246 

AGO2sh 

GSE14537 

AGO2IP 

ORF 
ORF1&2 %A 0.059 0.046 0.083 0.997 0.546 0.340 0.320 0.146 0.982 0.415 0.581 0.066 0.198 
ORF1&2 %T 0.016 0.090 0.011 0.767 0.554 0.868 0.235 0.087 0.338 0.511 0.464 0.007 0.006 

3’ UTR 
Poly-A pure 0.383 0.101 0.298 0.507 0.217 0.705 0.062 0.760 0.267 0.602 0.973 0.624 0.260 
Poly-A est 0.759 0.531 0.200 0.845 0.230 0.077 0.785 0.703 0.646 0.095 0.363 0.946 0.316 

ALL 

Find TSDs 0.138 0.857 0.235 0.636 0.786 0.779 0.335 0.805 0.031 0.181 0.420 0.404 0.147 
G-C Content 0.123 0.217 0.002 0.945 0.854 0.815 0.308 0.060 0.486 0.356 0.717 0.011 0.076 
CPG Islands 0.835 0.806 0.525 0.357 0.777 0.012 0.248 0.086 0.313 0.995 0.358 0.484 0.460 

Intactness score 0.256 0.865 0.311 0.945 0.421 0.026 0.050 0.126 0.996 0.785 0.260 0.045 0.032 

Number of L1 0.590 0.000 0.001 0.018 0.030 0.202 0.000 0.080 0.220 0.656 0.181 0.331 0.019 
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To discuss the results from statistical tests of each LINE-1 characteristic, 
we categorize those datasets into three main groups – cancers, 5-AZA, and AGO2.  

For cancers group (see Table 4.2 and Table 4.4), the most frequent 
significant LINE-1 characteristics are the number of LINE-1s in a hosting gene which is 
significant in five datasets out of nine datasets and the orientation of gene which is 
significant in three datasets out of nine datasets. According to biological literature, the 
result that the number of LINE-1 elements is a significant characteristic supports the 
hypothesis of the earlier work [3], asserting that LINE-1 may repress gene expression by 
LINE-1 transcript. Therefore, the number of LINE-1 is obviously related to the opportunity 
of transcription. 

For 5-AZA group (see Table 4.2 and Table 4.4), it is found that only one 
LINE-1 characteristics are significant, that is, the sequence “Y115” in ORF2 related to 
retrotranspositional activity of LINE-1. The odds ratio of this characteristic is 0.5872, 
indicating that genes possessing LINE-1 with mutated Y115 will be down-regulated 
approximately 1.7 times as much as genes with conserved Y115 LINE-1. 

For AGO2 group (see Table 4.2 and Table 4.4), the most frequent 
significant LINE-1 characteristics are the percentage of base “T” only in ORF1 (“ORF1 
%T”), the percentage of base T in both ORF1 and ORF2 (“ORF1&2 %T”), and intactness 
score of LINE-1 element (“Intactness score”). 

However, we also tried to perform data mining to find the association 
between multiple LINE-1 characteristics and down-regulated gene expression. The next 
two sections are the results from data mining techniques. 
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4.2 The results from decision tree mining 

This section demonstrates the result from C4.5 algorithm to create a tree 
model of LINE-1 characteristics for gene expression classification (see Table 4.5). 

Table 4.5 The summary table of each dataset resulted from C4.5.  

 
Data set % Overall Accuracy 

% Recall Class 

[Gene expression = ‘Down’] 

 
 

Information 

Gain 
Gain Ratio 

Information 

Gain 
Gain Ratio 

C
an

ce
rs

 

GSE6919 Prostate 73.35% 72.55% 15.44% 18.46% 
GSE3167 Bladder 50.96% 51.57% 46.70% 47.69% 
GSE5816 Lung 86.02% 85.60% 13.38% 12.91% 
GSE6631 
Head & neck 

87.82% 88.27% 8.84% 10.61% 

GSE13911 Stomach 61.69% 63.15% 23.26% 27.81% 
GSE14811 Liver 76.36% 75.45% 15.84% 26.55% 
GSE1299 Breast 87.69% 86.99% 11.18% 9.16% 
GSE5764 Breast 98.63% 98.86% 0.00% 0.00% 
GSE9750 Cervical 62.62% 59.53% 31.68% 34.01% 

5-
A
Z
A
 GSE9764 5-Aza 90.52% 89.91% 4.22% 6.50% 

GSE5816  
hBEC (Lung) 

97.79% 97.56% 3.33% 3.33% 

A
G

O
2 GSE4246 AGO2sh 81.20% 79.68% 19.11% 17.95% 

GSE14537 AGO2IP 91.58% 91.05% 4.52% 8.13% 
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It is noticed that most of the datasets are imbalanced data, that is, [Gene 
expression = ‘Not down’] class are always larger than [Gene expression = ‘Down’] 
class. This difference in a greater degree of the number of samples in both class 
explains why the overall accuracy is high but the recall gene expression = ‘Down’ class 
percentage is quite low (see Table 4.5). Therefore, this method could not obviously 
classify down-regulated genes. 
In addition, all of the output trees are too large to understand (see  

Figure 4.1). Specifically, more than 15 LINE-1 characteristics were often 
used in the tree path to indicate a few down-regulated genes. In short, the more LINE-1 
characteristics, the harder the interpretation. Therefore, we tried to apply association 
rules mining to find rules with less LINE-1 characteristics. 
  

 

Figure 4.1 The part of the derived tree of GSE3167 (Bladder cancer) from C4.5 
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4.3 The results from rules mining 

In this section, we summarize the data after preprocessing as the final 
input for rules mining. Moreover, we demonstrate the parameter settings which has been 
used in the experiment. In addition, we show and discuss mined classification 
association rules of each dataset including descriptive biological evaluation. 

4.3.1 Data after preprocessing 
Due to memory space limitation in classification association rules mining for rare events, 
we not only mined frequent patterns of “Down” to lower minimum support threshold for 
obtaining as many patterns as possible but also applied logistic regression method to 
decrease the number of LINE-1 characteristics to be performed in rules mining. 
Executing logistic regression, we set p-value threshold at significance level 0.5 of each 
LINE-1 characteristic’s coefficient for every data set. Those insignificant coefficients of 
LINE-1 characteristics at such level were dropped. Approximately, a half of the total 
number of LINE-1 characteristics was remained in the rules mining. Consequently, we 
could set minimum support threshold much lower. 

Table 4.6 exhibits the details of the final input of each dataset before 
mining rules: the number of LINE-1 characteristics after performing logistic regression, 
the total number of records, the number of records containing down regulation in gene 
expression level (“Down”) including its percentage, and the actual minimum support 
threshold that was set before and after performing feature selection by logistic 
regression. It is noticed that GSE14054 (Importin8si-AGO2IP vs control-AGO2IP) was 
not applied by rules mining analysis because there was too few records containing 
down regulation in gene expression level (only 2 “Down” records out of the total 2626 
records); thus, logistic regression was not performed on this dataset as well. In addition, 
GSE5764 (ductal and lobular breast cancer vs normal breast) still had all LINE-1 
characteristics for rules mining because it was not converged when logistic regression 
was executing. 
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Table 4.6 The summary table of LINE1 characteristics in each dataset before mining 
association rules 

 

Datasets 

The number of L1 

characteristics using in 

rules mining (out of 51) 

The number of 

“Down” records 

The number of 

total records 

C
an

ce
rs

 

GSE6919 Prostate 27 164 (14.47%) 1133 
GSE3167 Bladder 24 719 (44.30%) 1623 
GSE5816_1 Lung 28 190 (7.24%) 2626 
GSE6631 Head & neck 28 68 (6.00%) 1134 
GSE13911 Stomach 26 630 (24.11%) 2613 
GSE14811 Liver 21 80 (14.55%) 550 
GSE1299 Breast 28 94 (6.61%) 1422 
GSE5764 Breast 56 16 (0.61%) 2626 
GSE9750 Cervical 31 447 (27.12%) 1648 

5-
A
Z
A
 GSE9764 5-Aza 26 118 (4.49%) 2626 

GSE5816_2 hBEC 
(Lung) 

25 24 (0.91%) 2626 

A
G

O
2 

GSE4246 AGO2sh 26 145 (10.48%) 1383 
GSE14537 AGO2IP 24 110 (4.19%) 2626 
GSE14054 si-AGO2I - 2 (0.08%) 2626 
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4.3.2 Generated classification association rules 

After preprocessing, local frequent patterns or only the frequent patterns 
in “Down” regulation are mined. We set minimum local support threshold parameter as 
low as possible for each dataset. Therefore, different datasets were set by different 
actual minimum support thresholds. Next, classification association rules were 
generated by considering only “Down” class. These outcome rules were filtered by the 
confidence threshold at 50% and adjusted p-value from chi-square test at significance 
level 0.05.  

Since we designated low support threshold (50%), we obtained a great 
number of rules at the first stage. After we filtered redundant rules out, we could 
manually study the rules in GSE14811 (Liver) dataset since it had only six rules (see Table 
4.7). However, other datasets still had too many rules to observe completely. Therefore, we 
put some rules out of our consideration by pruning some rules which does not effect the 
overall supports and maximum confidence. The number of rules in each stage of filtering rules 

is shown in Table 4.7. 

Table 4.8 summarizes the important details of the set of rules for each 
dataset: the actual minimum support threshold, the number of rules which were 
generated and pruned, the number of LINE-1 characteristics before mining and after 
mining and maximum-minimum support and confidence percentage. Only five datasets : 
GSE3167 (bladder carcinoma situ vs normal bladder epithelium), GSE5812 (hBEC high 
dose vs human bronchial epithelium), GSE6631 (head and neck squamous cell 
carcinoma vs normal oral epithelium), GSE6919 (metastasis prostate cancer), and 
GSE14811 (liver cancer vs normal liver), have been discovered classification 
association rules under the constraints mentioned above. 
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Table 4.7 The number of rules in each stage of pruning rules 

 

Datasets The number of 
significant rules 

The number of 
rules after pruning 
redundant rules 

The number of 
rules after pruning 

rules in the final 
stage 

C
an

ce
rs

 

GSE6919 Prostate 828 23 16 
GSE3167 Bladder 133 79 15 
GSE5816 Lung 0 0 0 
GSE6631 Head & neck 8524 374 23 
GSE13911 Stomach 0 0 0 
GSE14811 Liver 156 6 6 
GSE1299 Breast 0 0 0 
GSE5764 Breast 0 0 0 
GSE9750 Cervical 0 0 0 

5-
A
Z
A
 GSE9764 5-Aza 0 0 0 

GSE5816 hBEC (Lung) 48,560 495 24 

A
G

O
2 GSE4246 AGO2sh 0 0 0 

GSE14537 AGO2IP 0 0 0 

Almost all of the rules with high confidence have low support percentage 
(see Table 4.8). For example, GSE6919 (Prostate), GSE14811 (Liver), and GSE5816 hBEC 
(Lung) have rules with 100% confidence but these rules have very low support, less than 1%.  
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Table 4.8 The summary of the output rules in each dataset 

 Datasets 
Actual minimum 

support threshold (%) 
# L1 characteristics 
for mining (out of 51) 

The number 
of final rules 

#L1 characteristics 
used in each rule 

Max-min 
support (%) 

Max-min 
confidence (%) 

C
an

ce
rs

 

GSE6919 Prostate 0.50 27 16 7-9 0.53 - 0.97 100 - 64.71 
GSE3167 Bladder 3.99 24 15 3-7 11.15 - 4.74 71.96 – 59.54 
GSE5816 Lung 0.94 28 0 - - - 
GSE6631 Head & neck 0.40 28 23 7-12 0.62 – 0.44 75 - 53.85 
GSE13911 Stomach 2.17 26 0 - - - 
GSE14811 Liver 0.44 21 6 5-9 1.45 - 1.09 100 - 80 
GSE1299 Breast 1.19 28 0 - - - 
GSE5764 Breast 0.43 51 0 - - - 
GSE9750 Cervical 3.25 31 0 - - - 

5-
A
Z
A
 GSE9764 5-Aza 0.36 26 0 - - - 

GSE5816 hBEC (Lung) 0.07 25 24 7-11 0.11 - 0.08 100 – 66.67 

A
G

O
2 GSE4246 AGO2sh 0.94 26 0 - - - 

GSE14537 AGO2IP 0.29 24 0 - - - 

     63 



 
 

 

64

4.3.3 Results and discussion on classification association rules 

Each rule generated from the association rules mining technique may be 
used as a biological hypothesis that LINE-1 characteristics in the rule are associated 
with gene expression in cancers; however, there are too many rules to explore manually. 
To analyze or interpret such a number of classification association rules, filtering 
approach played an important role. Furthermore, in this study, we choose only rules in a 
group of the highest confidence to discuss in terms of biology.  

Before biological discussion in each dataset, here is basic knowledge of 
the function of LINE-1 characteristics. As mentioned in the literature review, the structure 
of LINE-1 is divided into four parts (see Figure 4.2). The characteristics in each part has 
different function as the following: 
 

5’ UTR is involved with transcriptional activities like normal genes. 

ORF1 is not exactly known about its function; nevertheless, it is  about assisting 
retrotranspositional activities. 

ORF2 has the function related to retrotranspositional activities. 

3’ UTR may be engaged in transcriptional activities of the next LINE-1 element. 
 
 

 

Figure 4.2 The structure of LINE-1 

  

DNA 
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In the following subsections, the classification association rules in each 
dataset are demonstrated and discussed. According to the biological literature, so far, 
the association of LINE-1 and gene expression in cancers are focused on four parts of 
LINE-1 element instead of specific characteristics in these parts, the number of LINE-1, 
and the orientation of hosting gene; therefore, we will mainly discuss on these factors 
and leave complete rules as possible hypotheses for future discussions or experiments. 
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GSE3167 (Bladder carcinoma situ vs normal bladder epithelium) 

This dataset represents bladder carcinoma situ vs normal bladder 
epithelium dataset. In this data set, there are, after pruning, 15 final rules (see Appendix 
B). Here, top four rules are discussed. All LINE-1 characteristics used in these four rules 
and their measurements are shown in Figure 4.3 and Table 4.9. However, It is noted that 
the number of LINE-1 is used in every of the 15 rules, supporting my previous work [31]. 

Table 4.9 The summary of the top four rules of GSE3167 (Bladder) 

Rule 
No. 

Confidence Support 
Consistent to rule Not consistent to rule 

Odds p-value 
Down Not down Down Not down 

1 71.96% 4.74% 77 30 642 874 3.49 2.52E-09 
2 71.17% 4.87% 79 32 640 872 3.36 3.54E-09 
3 70.59% 5.18% 84 35 635 869 3.28 2.01E-09 
4 70.49% 5.30% 86 36 633 868 3.28 1.40E-09 

 

It is noted that rule 2 is very similar to rule 3 but [Runx3 ASP] = 'mut' 
added in rule 2, but the confidence percentage of rule 2 is trivially increased when 
compared to rule 3. So, it can be deduced that [Runx3 ASP] = 'mut' does not play an 
important role to down regulate hosting gene if the other common four LINE-1 
characteristics in rule 2 and rule 3 are concerned. Thus, we will not consider rule 2 in 
later discussion. Furthermore, in this bladder cancer dataset, all three rules (rule 1,3, 
and 4) have no LINE-1 characteristics on 5’ UTR. In addition, the rules in the highest 
confidence of this dataset have the most support percentage compared to the rest of 
datasets. In other words, the rules would explain what LINE-1 characteristics are 
associated gene expression in more hosting genes. 
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Figure 4.3 LINE-1 characteristics used in each rule of GSE3167 (Bladder), mapped to 
each position of LINE-1 

  

 

 
 

(a) Rule 1 
 

 
 

(b) Rule 3 
 

 
 
 

(c) Rule 4 
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Discussion the rules of GSE3167 (Bladder) in terms of biology 

The conspicuous remark is that every rule contains the characteristics 
namely “[number of L1] > 2.500” similar to our previous work [31], suggesting that the 
more the LINE-1 elements in genes, the more risky for those genes to be repressed in 
bladder cancer. This result strongly supports the hypothesis of the recent work [3], 
asserting that genes may be lowly expressed in cancers because of LINE-1 transcripts. 
According to the mechanism proposed in this research [3], when LINE-1 elements are 
hypomethylated, found in many types of cancer cells, they would be frequently 
transcribed and LINE-1 RNA level is finally increased. Generally, retrotransposon RNAs 
or transcripts including LINE-1 elements form dsRNA (double-strand RNA) structures 
which trigger RISC (RNA-induced silencing complex) assembly to curtail these dsRNAs 
to siRNA (small interference RNA) elements which are then combined with RISC, called 
RISC complex. Next, the RISC complex elements are recognized by Argonaute 2 
(AGO2) proteins. Finally, RISC containging LINE-1 transcript and attached to RNA of its 
hosting genes will often be destroyed, resulting in down regulation. In short, intragenic 
LINE-1 can produce LINE-1 RNAs or transcripts when being hypomethylated in cancer 
cells, and the hosting gene is consequently down-regulated when AGO2 exists [3]. 
Therefore, the outcome rules suggest that if a gene contains many LINE-1 elements 
(more than two LINE-1s), it may be, as explained above, down-regulated with high 
possibility to the max of 71%. 
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GSE14811 (Liver cancer vs normal liver) 

This dataset represents liver cancer vs normal liver dataset. In this data 
set, there are, after pruning, 6 final rules (see Appendix B). Moreover, there are three 
rules with 100% confidence. All LINE-1 characteristics used in these three rules and 
their measurements are shown in Figure 4.4 and Table 4.10. 

Table 4.10 The summary of the top four rules of GSE14811 (Liver) 

Rule 
No. 

Confidence Support 
Consistent to rule Not consistent to rule 

Odds 
Adjusted 
p-value Down Not down Down Not down 

1 100.00% 1.09% 6 0 7 470 NA 7.14E-8 
2 100.00% 1.09% 6 0 7 470 NA 7.14E-8 
3 100.00% 1.09% 6 0 7 470 NA 7.14E-8 

It is noticed that while rule 3 uses only LINE-1 characteristics on ORF 
(both ORF1 and ORF2), rule 1 and rule 2 use LINE-1 characteristics in 5’ UTR, 3’ UTR, 
and ORF2. However, all of the three rules have the same confidence and support 
percentage. 
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Figure 4.4 LINE-1 characteristics used in each rule of GSE14811 (Liver), mapped to 
each position of LINE-1 

  

 

 
(a) Rule 1 

 

 
 

(b) Rule 2 

 
 
 

(c) Rule 3 
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Discussion the rules of GSE14811 (Liver) in terms of biology 

This liver cancer dataset is another one to support the hypothesis of the 
recent study [3]. Like the outcome rules in the prostate cancer dataset (GSE6919) both 
rule 1 and rule 2, two out of three rules with 100% confidence, consist of the 
characteristic SRY Site2 in 5’ UTR. However, instead of mutated, the sequences of SRY 
Site2 are conserved ([SRY Site2] = ‘cons’), resulting the counter consequence. Again, 
both of SRY binding sites (SRY Site1 and SRY Site2) have the sequence AACAAA and 
interact with the DNA-binding domain of SRY [34]. Binding of the SRY sites in the LINE-1 
5’ UTR can drive transcription of the LINE-1 promoter. Briefly, if the sequences of SRY 
Site2 are not mutated, they will probably function normally, promoting LINE-1 
transcriptional activity. By this manner, the LINE-1 RNA level is increased as well as the 
mechanism upon the number of LINE-1 in bladder cancer dataset (GSE3167). 
Consequently, the hosting genes with conserved SRY Site2 can also be down-regulated 
according to the hypothesis proposed by the recent work [3]. In addition, SRY Sites are 
the sequences on chromosome Y; thus, the derived rules support the fact that liver 
cancer is found mostly in males. In other words, this type of cancer may partly be 
controlled through SRY Site2. 

As for rule 3, instead of [SRY Site2] = ‘cons’, there is [find TSDs] < 
11.500. TSD is target site duplications and [find TSDs] is the number of TSDs. 
According to the previous study [32], these target site duplications are caused by the 
host DNA repairing mechanism when LINE-1 insertion occurs. Specifically, the host DNA 
repairs itself by filling the cleavage break, caused by Endonuclease Enzyme, with short 
direct repeats known as target site duplications. Therefore, if less TSDs exist, then it can 
be deduced that the host DNA repairing mechanism may not be successful. As a result, 
the hosting gene inclines to be repressed because of its broken part. 
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GSE6919 (Metastasis prostate cancer) 

This dataset represents metastasis prostate cancer dataset. In this data 
set, there are, after pruning, 16 final rules (see Appendix B). Moreover, there are four 
rules with 100% confidence. All LINE-1 characteristics used in these four rules and their 
measurements are shown in Figure 4.5 and Table 4.11. 

Table 4.11 The summary of the top four rules of GSE6919 (Prostate) 

Rule 
No. 

Confidence Support 
Consistent to rule Not consistent to rule 

Odds 
Adjusted 
p-value Down Not down Down Not down 

1 100.00% 0.53% 6 0 158 969 NA 2.37E-09 
2 100.00% 0.53% 6 0 158 969 NA 2.37E-09 
3 100.00% 0.53% 6 0 158 969 NA 2.37E-09 
4 100.00% 0.53% 6 0 158 969 NA 2.37E-09 

The common characteristics used in all of the four rules are the positive 
orientation of hosting gene is positive, the mutated sequence of “SSS1096” in ORF2, 
and the number of stops in ORF1 which is less than 2.5 ([ORF1 Stops] < 2.500). In 
addition, it is noticed that all four rules are involved with ORF1 and ORF2 of LINE-1 
elements. 
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Figure 4.5 LINE-1 characteristics used in each rule of GSE6919 (Prostate), mapped to each position of LINE-1  

 
 
 
 
 
 

(a) Rule 1 

 
 
 
 
 

 
(b) Rule 2 

 
 
 
 
 
 

(c) Rule 3 

 
 
 
 
 

 
(d) Rule 4 
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Discussion the rules of GSE6919 (Prostate) in terms of biology 

All of the four rules are involved the conserved sequence in ORF2 and 
ORF1, representing that LINE-1 retrotranspositional activities. According to the 
fundamental molecular knowledge [4], the retrotranspositional activities include 
transcription, RNA stability and processing, translation, DNA restriction, reverse 
transcription and insertion. However, it has not been reported how retrotranspositional 
activities of LINE-1 are associated with gene expressions in cancer cells. Thus, we 
hypothesized that these characteristics may be also related to LINE-1 transcriptional 
process like other cancers but different method. 

The obvious difference of rule 3 from the rest of the rules is that rule 3 
has mutated sequences of SRY (Sex-determining Region Y) Site 2 in 5’ UTR pertaining 
to transcriptional activity. Specifically, SRY Site2 mutations are able to prevent 
transcription by eliminating SOX protein binding [32]. Normally, human L1s contain two 
functional binding sites for transcription factors of the SRY family (SRY Site1 and SRY 
Site2), namely SOX factors. These binding sites are responsible for efficient trans-
activation of the L1 promoter by the SOX family [34]. Principally, SRY Sites in the LINE-1 
5’ UTR can drive transcription of the LINE-1 promoter. On the contrary, when the 
sequences of SRY Site2 are mutated, resulting in SOX protein binding is abolished. So, 
this characteristic is able to impede LINE-1 transcriptional process, indicating that lowly 
expressed genes in prostate cancer may be caused by different mechanisms from 
bladder and liver cancer whose down-regulated genes are influenced by LINE-1 
transcript. Besides, prostate cancer only occurs in males, the SRY Sites existing on 
chromosome Y is not responsible for down regulating genes. Unlike liver cancer mostly 
found in males, therefore, the conserved sequences of SRY Site1 may not be required to 
suppress genes but the conserved sequences on ORF1 and/or ORF2, instead. 
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GSE6631 (Head and neck squamous cell carcinoma vs normal oral 

epithelium) 

This dataset represents head and neck squamous cell carcinoma vs 
normal oral epithel dataset. In this data set, there are, after pruning, 23 final rules (see 
Appendix B). Here, three top rules are discussed. All LINE-1 characteristics used in 
these three rules and their measurements are shown in Figure 4.6 and Table 4.12. 

Table 4.12 The summary of the top three rules of GSE6631 (Head & Neck) 

Rule 
No. 

Confidence Support 
Consistent to rule Not consistent to rule 

Odds 
Adjusted 
p-value Down Not down Down Not down 

1 75.00% 0.53% 6 2 62 1064 51.48 1.59E-16 
2 75.00% 0.53% 6 2 62 1064 51.48 1.59E-16 
3 75.00% 0.53% 6 2 62 1064 51.48 1.59E-16 

From all three rules, it is noticed that all three rules have no LINE-1 
characteristics on 3’ UTR. Besides, LINE-1 characteristics used in these three rules in 
this dataset, especially the sequences, are on 5’ UTR. Furthermore, The characteristic 
[number of L1] < 2.500 in rule 1 and rule 2 conflicts with the rules in GSE3167 (Bladder), 
using [number of L1] > 2.500 and The characteristic [orientation] = '-' in all three rules 
contradicts to the rules in GSE6919 (Prostate), using [orientation] = '+'. 
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Figure 4.6 LINE-1 characteristics used in each rule of GSE6631 (Head and Neck), 
mapped to each position of LINE-1 

 
  

 

 
(a) Rule 1 

 

 
(b) Rule 2 

 

 
(c) Rule 3 
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Discussion the rules of GSE6631 (Head and Neck) in terms of biology 

It should be noticed that all three rules used in head and neck cancer 
cells contain either [Runx3 Site] = 'mut' or [Runx3 ASP] = 'mut' in 5’ UTR. While Runx3 
Site is responsible for the sense strand LINE-1, Runx3 ASP is involved with the other (the 
antisense strand LINE-1). Sense or antisense of LINE-1 is relied on the orientation of 
LINE-1 and its hosting gene. If the strand of LINE-1 is similar to the orientation of its 
hosting gene, then it is known as sense strand LINE-1. On the other hand, if the 
orientation of LINE-1 conflicts with the transcriptional direction of its hosting gene, then it 
is so-called antisense strand LINE-1. Having reviewed the literature [32], mutations in 
Runx sites, no matter in the sense or antisense strand, are capable to decrease 
retrotranspositional activity where a single nucleotide mutation (84G>A) decreases 
retrotranspositional activities by 85% [35]. Besides, the description of the 
retrotranspositional obstruction due to these mutated sequences of Runx3 binding sites 
is supported by the fact that conserved sequences in ORF2 are hardly discovered in the 
rules. This evidence points out that the possible mechanism to regulate gene expression 
by LINE-1 interference may not be involved with retrotranspostional activity. Rather, it is 
plausible to repress genes by the presence of the conserved sequences at transcription 
factor binding sites in 5’ UTR. Noticeably, every rule with the highest confidence 
percentage (75%) contains the LINE-1 characteristic called “[TF nkx-2.5] = 'cons'”. 
Therefore, we hypothesized that the conserved sequences of transcription factor nkx2.5 
can related to LINE-1 transcriptional activity to repress the expression of the hosting 
gene. 
  



 
 

 

78

GSE5816 (hBEC high dose vs human bronchial epithelium) 

This dataset represents hBEC high dose vs human bronchial epithelium 
dataset which is in the 5-AZA group dataset. In this data set, there are, after pruning, 24 
final rules (see Appendix B). Moreover, there are 11 rules with 100% confidence. All 
LINE-1 characteristics used in these 11 rules and their measurements are shown in and 
Table 4.13.  

Table 4.13 The summary of the top 11 rules of GSE5816 (hBEC Lung) 

Rule 
No. 

Confidence Support 
Consistent to rule Not consistent to rule 

Odds 
Adjusted 
p-value Down Not down Down Not down 

1 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
2 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
3 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
4 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
5 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
6 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
7 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
8 100.00% 0.11% 3 0 21 2602 NA 6.34E-51 
9 100.00% 0.08% 2 0 22 2602 NA 3.26E-28 

10 100.00% 0.08% 2 0 22 2602 NA 3.26E-28 
11 100.00% 0.08% 2 0 22 2602 NA 3.26E-28 
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Figure 4.7 LINE-1 characteristics used in each rule of GSE5816 (hBEC Lung), mapped 
to each position of LINE-1 

 Rule 1 

 
(b) Rule 2 

 

 
(c) Rule 3 

 

(d) Rule 4 
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Figure 4.7 (Continued) 

 

(e) Rule 5 
 

(f) Rule 6 
 

(g) Rule 7 
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Figure 4.7 (Continued)  

 
(h) Rule 8 

 
(i) Rule 9 

 
(j) Rule 10 

 
(k) Rule 11 
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Discussion the rules of GSE5816 (hBEC Lung) in terms of biology 

It is noticed that almost every rule (9 out of 11 rules) with the highest 
confidence percentage (100%) contains the characteristic [SRY Site1] = 'cons'. Even 
though in the hBEC Lung dataset the conserved sequences are on SRY Site1 instead of 
SRY Site2, the importance of this characteristic is the same as the conserved SRY Site2 
used in rules of the liver cancer dataset (GSE14811), promoting LINE-1 transcriptional 
activity because both sites of SRY are responsible for efficient trans-activation of the 
LINE-1 promoter. Once more, the hosting genes with this characteristic may also be 
down-regulated, according to the hypothesis proposed by the prior work [3]. 

Besides, rule 1, 2, 3, and 5 comprise the characteristics both 
[orientation] = '+' and [Strand] = '-1'. It was hypothesized that both sense and antisense 
LINE-1 element can regulate gene expression. According to the assumption that genes 
in cancer cells may be down-regulated by LINE-1 transcript, whereas sense LINE-1 
element suppresses its hosting gene by promoting LINE-1 transcription in the normal 
direction (5’ to 3’), antisense LINE-1 represses the neighboring gene by using the anti-
promoter on 3’ as the starting point of transcription. To sum up, this derived rules 
suggest that no matter what kinds of orientation of LINE-1, the expression of genes in 
cancer cells can probably be controlled by transcriptional activity of LINE-1. 
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Chapter  V 

Conclusion 

According to the previous work [3], it has been found that some genes 
with LINE-1 are significantly down regulated in many kinds of cancer. To contribute 
biologists to understand the function of LINE-1 characteristics associated with gene 
expression in cancers, therefore, the aim of this study was to find LINE-1 characteristics 
mediating gene expression in cancers. We applied three main approaches, statistical 
method for bivariate data analysis, C4.5 tree and association rules mining based on 
classification purpose for multivariate data analysis. The result from bivariate analysis 
pointed out the significant LINE-1 characteristics, especially the number of LINE-1, 
individually associated with gene expression. In addition, the result from rules mining 
informed the interactions of LINE-1 characteristics associated with down-regulated 
genes as follows. 

In cancer datsets, each type of cancer has distinct rules. This result may 
be due to different in hypomethylation mechanisms or different in LINE-1 transcription or 
post transcription mechanisms. In this research, the derived rules support the 
hypothesis that down-regulated genes in cancer cells may be controlled by LINE-1 
transcripts [3]. However, it is found that different cancer may have different transcription 
factors of LINE-1s. First of all, the derived rules from bladder cancer suggest that if the 
number of LINE-1s is greater than 2, LINE-1 transcription is likely to be promoted. 
Consequently, the hosting gene might be repressed. Secondly, LINE-1 with conserved 
sequences of SRY Site2 in most of the rules in liver cancer mostly found in males might 
be responsible for down regulation of its hosting gene through LINE-1 transcriptional 
mechanism. Thirdly, in prostate cancer found only in males, SRY Site1 may not be 
required to regulate genes. Instead, LINE-1 with conserved sequences on ORF1 and/or 
ORF2 are possible to suppress genes in prostate cancer cells, even though the 
mechanism has still been questionable. Finally, the rules from head and neck cancer 
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imply that the conserved sequences of TF-nkx-2.5 in 5’ UTR of LINE-1 are associated 
with lowly expressed genes, but the mechanism is unknown either.  

Likewise, the rules derived from hBEC Lung dataset in 5-AZA group 
concur with the assumption proposed by C. Aporntewan, et al [3]. The LINE-1 
transcription is driven by the conserved sequences of SRY Site1. Besides, sense and 
antisense LINE-1 can probably control the expression of genes by either directions of 
LINE-1 transcription. 

Recommendation 

This study should be improved in feature selection stage which is 
important to effect the outcome rules. For example, we performed logistic regression by 
putting all LINE-1 characteristics to create the model. This method might be developed 
by using backward or forward concept to delete or add LINE-1 characteristics in the 
model to find the better model. However, this approach is based on greedy concept. In 
other words, it cannot ensure that the result model is the best one. Otherwise, it should 
be tried to apply other methods for feature selection. Similarly, it is not known that the 
selected features should be chosen until rules mining is performed. 

Future work 

− Those rules should be supported by further biological literatures and proved in 
biological experiments. 

− The demonstrated rules should be scrutinized in depth on biological perspectives 
and other significant rules should be also considered. 

− Those rules should be validated in other datasets by applying the same data mining 
settings and comparing the derived rules. For example, to prove the assumption of 
down regulation by the protein named AGO2, association between LINE-1 
characteristics and up-regulated gene expression should be performed.  
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LINE-1 characteristics description from L1Base [7] 
 

Nominal characteristics   
L1 characteristics L1 part Description 

Type 

All Type of L1  
 FLnI L1 : Full length non-intact L1  
 FLI L1 : Full length intact L1 (intact both   
                         ORF1&2) 
 ORF2 L1 : intact ORF2 but disruptedORF1 

Strand 
All The strand of L1 element 

 -1 : Transcription from 5’UTR to 3’ UTR 
 +1 : Transcription from 3’UTR to 5’ UTR 

L1M/L1PA Discrimination 
All The family of L1 element 

 Mammalian L1M 
 Primate L1PA 

PolyA Signal 3’ UTR The intactness of sequence of PolyA Signal 

Runx3 Site 
5’ UTR The intactness of presence of RUNX3 binding motif in the 

5' UTR 

Runx3 ASP 
5’ UTR The intactness of presence of RUNX3 Anti-Sense-

Promoter binding motif in the 5' UTR 

SRY Site1 
5’ UTR The intactness of presence of first SRY1 binding motif in 

the 5' UTR 

SRY Site2 
5’ UTR The intactness of presence of second SRY1 binding motif 

in the 5' UTR 

YY1 BoxA+BoxA 
5’ UTR The intactness of presence of YY1 binding motif at the 

very beginning of the L1 Element 

TF nkx-2.5 
5’ UTR The intactness of sequence of the first putative nkx2-5 

site 

TF nkx-2.5B 
5’ UTR The intactness of sequence of the second putative nkx2-

5 site 
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L1 characteristics L1 part Description 

REKG235 ORF1 The intactness of sequence of REKG235 
ARR260 ORF1 The intactness of sequence of ARR260 

YPAKLS282 ORF1 The intactness of sequence of YPAKLS282 
N14 ORF2 The intactness of sequence of N14 
E43 ORF2 The intactness of sequence of E43 

Y115 ORF2 The intactness of sequence of Y115 
D145 ORF2 The intactness of sequence of D145 
N147 ORF2 The intactness of sequence of N147 
T192 ORF2 The intactness of sequence of T192 
D205 ORF2 The intactness of sequence of D205 

SDH228 ORF2 The intactness of sequence of SDH228 
R363 ORF2 The intactness of sequence of R363 

FADD700 ORF2 The intactness of sequence of FADD700 
HMKK1091 ORF2 The intactness of sequence of HMKK1091 
SSS1096 ORF2 The intactness of sequence of SSS1096 

I1220 ORF2 The intactness of sequence of I1220 
S1259 ORF2 The intactness of sequence of S1259 

ORF StartStop 

ORF The presence of valid methionine start codons and stop 
codons of the ORFs of the L1 
 mut :   mutate 
 cons : conserved on ORF1 and ORF2 
 ORF1 cons: conserved on ORF1 
 ORF2 cons: conserved on ORF2 

Orientation 
All 

 
The orientation of hosting gene 
 + : Transcription from 5’UTR to 3’ UTR  
  - : Transcription from 3’UTR to 5’ UTR  

 
The LINE-1 characteristics, that are not specified their values in the table above, have to values, 
“cons” and “mut”, which refer to conserved and mutated sequence, respectively. 
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Numeric charateristics   

L1 characteristics L1 part Description 

ORF1 Gaps ORF1 The number of gaps in ORF1 
ORF1 Frameshifts ORF1 The number of frameshifts in ORF1 

ORF1 Stops ORF1 The number of stops in ORF1 
ORF2 Gaps ORF2 The number of gaps in ORF2 

ORF2 Frameshifts ORF2 The number of frameshifts in ORF2 
ORF2 Stops ORF2 The number of stops in ORF2 
Poly-A pure 3’ UTR the length of the pure Poly-A tail 

Poly-A est 
3’ UTR the length of an estimated Poly-A Tail (containing 

mutations) 

Find TSDs 
All The number of Target-Site-Duplications flanking the L1 

Element 
G.C.Content All The percentage of base pair ‘G-C’ of L1 

ORF1 %A ORF1 The percentage of base ‘A’ found in ORF1 of L1 
ORF1 %T ORF1 The percentage of base ‘T’ found in ORF2 of L1 
ORF2 %A ORF2 The percentage of base ‘A’ found in ORF2 of L1 
ORF2 %T ORF2 The percentage of base ‘T’ found in ORF2 of L1 

ORF1&2 %A 
ORF The percentage of base ‘A’ found in ORF1 and ORF2 of 

L1 

ORF1&2 %T 
ORF The percentage of base ‘T’ found in ORF1 and ORF2 of 

L1 
CPG Islands All The number of GpG Islands found in L1 
ORF1 CAI ORF1 The codon adaptation index of ORF1 
ORF2 CAI ORF2 The codon adaptation index of ORF2 

Intactness score All The score determining the intactness of L1 elements 
Number of L1 All The number of L1 elements found in the host gene 
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Final rules from classification association rules mining 

GSE3167 Bladder cancer 

 
Rule 1 Rule 2 Rule 3 Rule 4 

Support 4.74% Support 4.87% Support 5.18% Support 5.30% 

Confidence 71.96% Confidence 71.17% Confidence 70.59% Confidence 70.49% 

Odds ratio 3.49 Odds ratio 3.36 Odds ratio 3.28 Odds ratio 3.28 
p-value 2.52E-09 p-value 3.54E-09 p-value 2.01E-09 p-value 1.40E-09 

L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[number of L1] > 2.500 ALL [number of L1] > 2.500 ALL [number of L1] > 2.500 ALL [number of L1] > 2.500 ALL 
[D205] = 'cons' ORF2 [S1259] = 'cons' ORF2 [S1259] = 'cons' ORF2 [D205] = 'cons' ORF2 
[ORF1 Frameshifts] > 1.500 ORF1 [ORF1 %A] > 0.405 ORF1 [ORF1 %A] > 0.405 ORF1 [ORF1 Frameshifts] > 1.500 ORF1 

[ORF1 %T] > 0.182 ORF1 [REKG235] = 'mut' ORF1 [REKG235] = 'mut' ORF1 [Poly-A pure] < 2.500 3’ UTR 
[ORF2 %T] > 0.205 ORF2 [Runx3 ASP] = 'mut' 5’ UTR   [G-C Content] < 40.475 ALL 
[ORF2 CAI] < 0.634 ORF2       
[ORF1&2 %T] > 0.200 ORF1&2       
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GSE3167 Bladder cancer (continued) 

 
Rule 5 Rule 6 Rule 7 Rule 8 

Support 5.42% Support 5.79% Support 5.79% Support 5.98% 
Confidence 69.29% Confidence 68.12% Confidence 68.12% Confidence 67.83% 
Odds ratio 3.09 Odds ratio 2.94 Odds ratio 2.94 Odds ratio 2.91 
p-value 3.52E-09 p-value 3.91E-09 p-value 3.91E-09 p-value 2.99E-09 

L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[D205] = 'cons' ORF 2 [D205] = 'cons' ORF 2 [T192] = 'cons' ORF 2 [D205] = 'cons' ORF 2 

[Runx3 ASP] = 'mut' 5’ UTR [ORF2 %A] > 0.411 ORF 2 [Runx3 ASP] = 'mut' 5’ UTR [ORF1&2 %A] > 0.411 ORF 

[ORF1&2 %A] > 0.411 ORF [ORF1&2 %T] > 0.200 ORF [ORF1&2 %A] > 0.411 ORF [ORF2 %A] > 0.411 ORF 2 

[ORF2 %A] > 0.411 ORF 2 [ORF1 %T] > 0.182 ORF 1 [ORF2 %A] > 0.411 ORF 2 [ORF1&2 %T] > 0.200 ORF 

[G-C Content] < 40.475 ALL [number of L1] > 2.500 ALL [G-C Content] < 40.475 ALL [number of L1] > 2.500 ALL 

[number of L1] > 2.500 ALL [ORF1 Frameshifts] > 1.500 ORF 1 [number of L1] > 2.500 ALL [ORF1 Frameshifts] > 1.500 ORF 1 

[ORF1 Frameshifts] > 1.500 ORF1   [ORF1 Frameshifts] > 1.500 ORF 1   
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GSE3167 Bladder cancer (continued) 

 
Rule 9 Rule 10 Rule 11 Rule 12 

Support 6.04% Support 7.21% Support 7.83% Support 8.44% 

Confidence 67.59% Confidence 65.00% Confidence 64.14% Confidence 62.84% 
Odds ratio 2.88 Odds ratio 2.59 Odds ratio 2.52 Odds ratio 2.39 
p-value 3.32E-09 p-value 3.05E-09 p-value 2.00E-09 p-value 3.14E-09 

L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[D205] = 'cons' ORF 2 [D205] = 'cons' ORF 2 [TF nkx-2.5B] = 'mut' 5’ UTR [T192] = 'cons' ORF 2 

[ORF2 CAI] < 0.634 ORF 2 [Runx3 ASP] = 'mut' 5’ UTR [S1259] = 'cons' ORF 2 [D205] = 'cons' ORF 2 

[number of L1] > 2.500 ALL [ORF1 %A] > 0.405 ORF 1 [Runx3 ASP] = 'mut' 5’ UTR [Runx3 ASP] = 'mut' 5’ UTR 
[ORF1 Frameshifts] > 
1.500 

ORF 1 [number of L1] > 2.500 ALL [ORF1&2 %A] > 0.411 ORF [ORF1&2 %A] > 0.411 ORF 

    [number of L1] > 2.500 ALL [number of L1] > 2.500 ALL 
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GSE3167 Bladder cancer (continued) 

 
Rule 13 Rule 14 Rule 15 

Support 8.75% Support 10.91% Support 11.15% 
Confidence 62.56% Confidence 59.80% Confidence 59.54% 

Odds ratio 2.37 Odds ratio 2.15 Odds ratio 2.14 

p-value 2.37E-09 p-value 2.92E-09 p-value 2.97E-09 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[TF nkx-2.5B] = 'mut' 5’ UTR [D205] = 'cons' ORF 2 [TF nkx-2.5B] = 'mut' 5’ UTR 
[S1259] = 'cons' ORF 2 [ORF2 %A] > 0.411 ORF 2 [S1259] = 'cons' ORF 2 

[ORF1&2 %A] > 0.411 ORF [number of L1] > 2.500 ALL [Poly-A pure] < 2.500 3’ UTR 
[number of L1] > 2.500 ALL   [number of L1] > 2.500 ALL 

 
  

  98 
 



99 
 

 

GSE14811 Liver cancer 

 
Rule 1 Rule 2 Rule 3 Rule 4 

Support 1.09% Support 1.09% Support 1.09% Support 1.27% 
Confidence 100.00% Confidence 100.00% Confidence 100.00% Confidence 87.50% 

Odds ratio NA Odds ratio NA Odds ratio NA Odds ratio 44.9726 

p-value 7.14E-08 p-value 7.14E-08 p-value 7.14E-08 p-value 7.02E-08 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[Y115] = 'cons' ORF 2 [Y115] = 'cons' ORF 2 [D205] = 'cons' ORF 2 [Y115] = 'cons' ORF 2 
[ORF2 Stops] > 5.500 ORF 2 [R363] = 'cons' ORF 2 [ORF1 Frameshifts] > 1.500 ORF 1 [SDH228] = 'cons' ORF 2 

[G-C Content] > 40.585 ALL [ORF2 Stops] > 5.500 ORF 2 [find TSDs] < 11.500 ALL [ORF2 Stops] > 5.500 ORF 2 
[ORF2 %T] < 0.204 ORF 2 [ORF2 %T] < 0.204 ORF 2 [ORF2 %T] < 0.204 ORF 2 [G-C Content] > 40.585 ALL 
[Poly-A est] > 15.500 3’ UTR [Poly-A est] > 15.500 3’ UTR [ORF StartStop] = 'mut' ORF [ORF2 %T] < 0.204 ORF 2 
[SRY Site 2] = 'cons' 5’ UTR [SRY Site 2] = 'cons' 5’ UTR   [SRY Site 2] = 'cons' 5’ UTR 
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GSE14811 Liver cancer (continued) 

 
Rule 5 Rule 6 

Support 1.45% Support 1.45% 
Confidence 80.00% Confidence 80.00% 

Odds ratio 26.00 Odds ratio 26.00 

p-value 4.44E-08 p-value 4.44E-08 
L1 characteristics L1 part L1 characteristics L1 part 

[N14] = 'cons' ORF 2 [CPG Islands] < 0.500 ALL 
[YY1 BoxA+BoxA] = 'mut' 5’ UTR [YY1 BoxA+BoxA] = 'mut' 5’ UTR 

[Y115] = 'cons' ORF 2 [Y115] = 'cons' ORF 2 
[SDH228] = 'cons' ORF 2 [SDH228] = 'cons' ORF 2 
[Runx3 ASP] = 'mut' 5’ UTR [Runx3 ASP] = 'mut' 5’ UTR 
[ORF1 Frameshifts] > 1.500 ORF 1 [ORF1 Frameshifts] > 1.500 ORF 1 

[G-C Content] > 40.585 ALL [G-C Content] > 40.585 ALL 
[find TSDs] > 11.500 ALL [find TSDs] > 11.500 ALL 
[ORF2 Stops] < 5.500 ORF 2 [ORF2 Stops] < 5.500 ORF 2 
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GSE6919 Prostate cancer 

 
Rule 1 Rule 2 Rule 3 Rule 4 

Support 0.53% Support 0.53% Support 0.53% Support 0.53% 
Confidence 100.00% Confidence 100.00% Confidence 100.00% Confidence 100.00% 

Odds ratio NA p-value NA Odds ratio NA Odds ratio NA 

p-value 7.12E-08 Odds ratio 7.12E-08 p-value 7.12E-08 p-value 7.12E-08 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[T192] = 'cons' ORF 2 [T192] = 'cons' ORF 2 [R363] = 'cons' ORF 2 [ARR260] = 'cons' ORF 1 
[S1259] = 'cons' ORF 2 [N147] = 'cons' ORF 2 [orientation] = '+' ALL [R363] = 'cons' ORF 2 

[YPAKLS282] = 'cons' ORF 1 [YPAKLS282] = 'cons' ORF 1 [HMKK1091] = 'cons' ORF 2 [orientation] = '+' ALL 
[orientation] = '+' ALL [orientation] = '+' ALL [SRY Site 2] = 'mut' 5’ UTR [HMKK1091] = 'cons' ORF 2 
[ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 
[ORF2 CAI] < 0.634 ORF 2 [ORF2 CAI] < 0.634 ORF 2 [Poly-A pure] > 2.500 3’ UTR [Poly-A pure] > 2.500 3’ UTR 

[ORF1 CAI] < 0.668 ORF 1 [ORF1 CAI] < 0.668 ORF 1 [SSS1096] = 'mut' ORF 2 [SSS1096] = 'mut' ORF 2 
[SSS1096] = 'mut' ORF 2 [SSS1096] = 'mut' ORF 2 [ORF2 Stops] > 5.500 ORF 2 [ORF2 Stops] > 5.500 ORF 2 
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GSE6919 Prostate cancer (Continued) 

 
Rule 5 Rule 6 Rule 7 Rule 8 

Support 0.62% Support 0.62% Support 0.71% Support 0.71% 
Confidence 87.50% Confidence 87.50% Confidence 80.00% Confidence 80.00% 

Odds ratio 43.16 Odds ratio 43.15924 Odds ratio 24.80 Odds ratio 24.80 

p-value 7.17E-08 p-value 7.17E-08 p-value 4.66E-08 p-value 4.66E-08 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[T192] = 'cons' ORF 2 [ARR260] = 'cons' ORF 1 [S1259] = 'cons' ORF 2 [ORF1&2 %T] < 0.200 ORF 
[N147] = 'cons' ORF 2 [ORF2 Stops] < 5.500 ORF 2 [ORF1&2 %T] < 0.200 ORF [HMKK1091] = 'cons' ORF 2 

[S1259] = 'cons' ORF 2 [Strand] = '-1' ALL [Strand] = '-1' ALL [Strand] = '-1' ALL 
[ARR260] = 'cons' ORF 1 [ORF1 CAI] > 0.668 ORF 1 [ORF1 CAI] > 0.668 ORF 1 [ORF1 CAI] > 0.668 ORF 1 
[Strand] = '-1' ALL [find TSDs] > 11.500 ALL [find TSDs] > 11.500 ALL [find TSDs] > 11.500 ALL 
[ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] > 2.500 ORF 1 [ORF1 Stops] > 2.500 ORF 1 [ORF1 Stops] > 2.500 ORF 1 

[ORF2 CAI] < 0.634 ORF 2 [SRY Site 2] = 'cons' 5’ UTR [SRY Site 2] = 'cons' 5’ UTR [SRY Site 2] = 'cons' 5’ UTR 
[ORF1 CAI] < 0.668 ORF 1       
[SSS1096] = 'mut' ORF 2       
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GSE6919 Prostate cancer (Continued) 

 
Rule 9 Rule 10 Rule 11 Rule 12 

Support 0.71% Support 0.71% Support 0.71% Support 0.71% 
Confidence 80.00% Confidence 80.00% Confidence 80.00% Confidence 80.00% 

Odds ratio 24.80 Odds ratio 24.80 Odds ratio 24.80 Odds ratio 24.80 

p-value 4.66E-08 p-value 4.66E-08 p-value 4.66E-08 p-value 4.66E-08 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[ORF1&2 %T] < 0.200 ORF [ARR260] = 'cons' ORF 1 [T192] = 'cons' ORF 2 [ARR260] = 'cons' ORF 1 
[Strand] = '-1' ALL [HMKK1091] = 'cons' ORF 2 [ARR260] = 'cons' ORF 1 [ORF1 Gaps] < 1.500 ORF 1 

[ORF1 CAI] > 0.668 ORF 1 [Strand] = '-1' ALL [Strand] = '-1' ALL [Strand] = '-1' ALL 
[find TSDs] > 11.500 ALL [ORF1 CAI] > 0.668 ORF 1 [ORF1 CAI] > 0.668 ORF 1 [ORF1 CAI] > 0.668 ORF 1 
[Intactness score] > 17.500 ALL [find TSDs] > 11.500 ALL [find TSDs] > 11.500 ALL [find TSDs] > 11.500 ALL 
[ORF1 Stops] > 2.500 ORF 1 [ORF1 Stops] > 2.500 ORF 1 [ORF1 Stops] > 2.500 ORF 1 [ORF1 Stops] > 2.500 ORF 1 

[SRY Site 2] = 'cons' 5’ UTR [SRY Site 2] = 'cons' 5’ UTR [SRY Site 2] = 'cons' 5’ UTR [SRY Site 2] = 'cons' 5’ UTR 
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GSE6919 Prostate cancer (Continued) 

 
Rule 13 Rule 14 Rule 15 Rule 16 

Support 0.71% Support 0.79% Support 0.79% Support 0.97% 
Confidence 80.00% Confidence 75.00% Confidence 75.00% Confidence 64.71% 

Odds ratio 24.79 Odds ratio 18.70 Odds ratio 18.70 Odds ratio 11.54 

p-value 4.66E-08 p-value 3.03E-08 p-value 3.03E-08 p-value 3.03E-08 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[ARR260] = 'cons' ORF 1 [T192] = 'cons' ORF 2 [YPAKLS282] = 'cons' ORF 1 
[L1M/L1PA Discrimination] = 
'Primate L1PA' 

ALL 

[ORF1&2 %T] < 0.200 ORF [ARR260] = 'cons' ORF 1 [R363] = 'cons' ORF 2 [T192] = 'cons' ORF 2 
[Strand] = '-1' ALL [YPAKLS282] = 'cons' ORF 1 [ORF1 Gaps] < 1.500 ORF 1 [S1259] = 'cons' ORF 2 
[ORF1 CAI] > 0.668 ORF 1 [Strand] = '-1' ALL [ORF1&2 %T] < 0.200 ORF [ARR260] = 'cons' ORF 1 
[find TSDs] > 11.500 ALL [ORF1 CAI] > 0.668 ORF 1 [ORF2 Stops] < 5.500 ORF 2 [ORF1 Gaps] < 1.500 ORF 1 

[ORF1 Stops] > 2.500 ORF 1 [number of L1] < 2.500 ALL [SRY Site 2] = 'mut' 5’ UTR [ORF1 Stops] > 2.500 ORF 1 
[SRY Site 2] = 'cons' 5’ UTR [ORF StartStop] = 'cons' ORF [ORF1&2 %A] < 0.411 ORF [number of L1] > 2.500 ALL 
  [ORF1 Stops] > 2.500 ORF 1 [Intactness score] < 17.500 ALL [SSS1096] = 'mut' ORF 2 
    [Strand] = '1' ALL   

 
  

  104 
 



105 
 

 

GSE6631 Head and neck cancer 

 
Rule 1 Rule 2 Rule 3 Rule 4 

Support 0.53% Support 0.53% Support 0.53% Support 0.44% 
Confidence 75.00% Confidence 75.00% Confidence 75.00% Confidence 71.43% 

Odds ratio 51.48 Odds ratio 51.48 Odds ratio 51.48 Odds ratio 42.22 

p-value 6.27E-14 p-value 6.27E-14 p-value 6.27E-14 p-value 7.23E-11 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[Runx3 Site] = 'mut' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR [CPG Islands] < 0.500 ALL [CPG Islands] < 0.500 ALL 
[Runx3 ASP] = 'mut' 5’ UTR [orientation] = '-' ALL [Runx3 Site] = 'mut' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR 

[orientation] = '-' ALL [number of L1] < 2.500 ALL [FADD700] = 'cons' ORF 2 [orientation] = '-' ALL 
[number of L1] < 2.500 ALL [TF nkx-2.5] = 'cons' 5’ UTR [orientation] = '-' ALL [TF nkx-2.5] = 'cons' 5’ UTR 
[ORF1 Gaps] < 1.500 ORF 1 [ORF1 %A] > 0.405 ORF 1 [TF nkx-2.5] = 'cons' 5’ UTR [ORF1 %A] > 0.405 ORF 1 
[TF nkx-2.5] = 'cons' 5’ UTR [find TSDs] < 11.500 ALL [ORF1 %A] > 0.405 ORF 1 [find TSDs] < 11.500 ALL 

[ORF1 %A] > 0.405 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 
[ORF1 Stops] < 2.500 ORF 1 [ORF2 %T] < 0.205 ORF 2 [ORF2 %T] < 0.205 ORF 2 [ORF2 %T] < 0.205 ORF 2 
[ORF2 %T] < 0.205 ORF 2   [ORF2 %A] < 0.411 ORF 2 [ORF2 %A] < 0.411 ORF 2 
    [ORF2 Gaps] < 5.500 ORF 2   
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GSE6631 Head and neck cancer (Continued) 

 
Rule 5 Rule 6 Rule 7 Rule 8 

Support 0.44% Support 0.44% Support 0.44% Support 0.62% 
Confidence 71.43% Confidence 71.43% Confidence 71.43% Confidence 70.00% 

Odds ratio 42.22 Odds ratio 42.22 Odds ratio 42.22 Odds ratio 40.66 

p-value 7.23E-11 p-value 7.23E-11 p-value 7.23E-11 p-value 2.93E-15 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[Runx3 Site] = 'mut' 5’ UTR [D145] = 'cons' ORF 2 [E43] = 'cons' ORF 2 [Runx3 Site] = 'mut' 5’ UTR 
[orientation] = '-' ALL [E43] = 'cons' ORF 2 [Runx3 Site] = 'mut' 5’ UTR [FADD700] = 'cons' ORF 2 

[TF nkx-2.5] = 'cons' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR [FADD700] = 'cons' ORF 2 [Runx3 ASP] = 'mut' 5’ UTR 
[ORF1 %A] > 0.405 ORF 1 [FADD700] = 'cons' ORF 2 [number of L1] < 2.500 ALL [R363] = 'cons' ORF 2 
[find TSDs] < 11.500 ALL [Runx3 ASP] = 'mut' 5’ UTR [ORF1 Gaps] < 1.500 ORF 1 [number of L1] < 2.500 ALL 
[ORF1 Stops] < 2.500 ORF 1 [number of L1] < 2.500 ALL [TF nkx-2.5] = 'cons' 5’ UTR [ORF1 %A] > 0.405 ORF 1 

[ORF1 %T] < 0.182 ORF 1 [ORF1 Gaps] < 1.500 ORF 1 [ORF1 %A] > 0.405 ORF 1 [find TSDs] < 11.500 ALL 
[ORF2 %T] < 0.205 ORF 2 [TF nkx-2.5] = 'cons' 5’ UTR [find TSDs] < 11.500 ALL [ORF1 Stops] < 2.500 ORF 1 
[ORF2 %A] < 0.411 ORF 2 [ORF1 %A] > 0.405 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF2 %A] < 0.411 ORF 2 
  [ORF1 Stops] < 2.500 ORF 1 [ORF2 %T] < 0.205 ORF 2   

  [ORF1 %T] < 0.182 ORF 1     
  [ORF2 %T] < 0.205 ORF 2     
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GSE6631 Head and neck cancer (Continued) 

 

Rule 9 Rule 10 Rule 11 Rule 12 

Support 0.62% Support 0.62% Support 0.62% Support 0.62% 
Confidence 70.00% Confidence 70.00% Confidence 70.00% Confidence 70.00% 

Odds ratio 40.66 Odds ratio 40.66 Odds ratio 40.66 Odds ratio 40.66 

p-value 2.93E-15 p-value 2.93E-15 p-value 2.93E-15 p-value 2.93E-15 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[CPG Islands] < 0.500 ALL [Runx3 Site] = 'mut' 5’ UTR [CPG Islands] < 0.500 ALL [Runx3 Site] = 'mut' 5’ UTR 
[Runx3 ASP] = 'mut' 5’ UTR [Runx3 ASP] = 'mut' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR [orientation] = '-' ALL 

[ORF1 Gaps] < 1.500 ORF 1 [orientation] = '-' ALL [orientation] = '-' ALL [TF nkx-2.5] = 'cons' 5’ UTR 
[TF nkx-2.5] = 'cons' 5’ UTR [ORF1 Gaps] < 1.500 ORF 1 [TF nkx-2.5] = 'cons' 5’ UTR [ORF1 %A] > 0.405 ORF 1 
[ORF1 Stops] < 2.500 ORF 1 [TF nkx-2.5] = 'cons' 5’ UTR [ORF1 %A] > 0.405 ORF 1 [find TSDs] < 11.500 ALL 
[ORF1 %T] < 0.182 ORF 1 [ORF1 %A] > 0.405 ORF 1 [find TSDs] < 11.500 ALL [ORF1 Stops] < 2.500 ORF 1 

[ORF StartStop] = 'ORF2 
cons' 

ORF [ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF1 %T] < 0.182 ORF 1 

  [ORF1 %T] < 0.182 ORF 1 [ORF2 %A] < 0.411 ORF 2 [ORF2 %A] < 0.411 ORF 2 
  [ORF2 Stops] < 5.500 ORF 2     
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6631 (continued) 

 

Rule 13 Rule 14 Rule 15 Rule 16 

Support 0.62% Support 0.62% Support 0.62% Support 0.62% 
Confidence 70.00% Confidence 70.00% Confidence 70.00% Confidence 70.00% 

Odds ratio 40.66 Odds ratio 40.66 Odds ratio 40.66 Odds ratio 40.66 

p-value 2.93E-15 p-value 2.93E-15 p-value 2.93E-15 p-value 2.93E-15 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[N14] = 'cons' ORF 2 [CPG Islands] < 0.500 ALL [CPG Islands] < 0.500 ALL [E43] = 'cons' ORF 2 
[Runx3 Site] = 'mut' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR [Runx3 Site] = 'mut' 5’ UTR 

[FADD700] = 'cons' ORF 2 [Runx3 ASP] = 'mut' 5’ UTR [Runx3 ASP] = 'mut' 5’ UTR [FADD700] = 'cons' ORF 2 
[Runx3 ASP] = 'mut' 5’ UTR [orientation] = '-' ALL [orientation] = '-' ALL [number of L1] < 2.500 ALL 
[number of L1] < 2.500 ALL [ORF1 Gaps] < 1.500 ORF 1 [TF nkx-2.5] = 'cons' 5’ UTR [TF nkx-2.5] = 'cons' 5’ UTR 
[ORF1 %A] > 0.405 ORF 1 [TF nkx-2.5] = 'cons' 5’ UTR [ORF1 %A] > 0.405 ORF 1 [ORF1 %A] > 0.405 ORF 1 

[find TSDs] < 11.500 ALL [ORF1 %A] > 0.405 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [find TSDs] < 11.500 ALL 
[ORF1 Stops] < 2.500 ORF 1 [ORF1 Stops] < 2.500 ORF 1 [ORF2 %A] < 0.411 ORF 2 [ORF1 Stops] < 2.500 ORF 1 
[ORF2 %A] < 0.411 ORF 2 [ORF2 Stops] < 5.500 ORF 2   [ORF2 CAI] > 0.634 ORF 2 
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GSE6631 Head and neck cancer (Continued) 

 
Rule 17 Rule 18 Rule 19 Rule 20 

Support 0.53% Support 0.62% Support 0.62% Support 0.62% 
Confidence 66.67% Confidence 63.64% Confidence 63.64% Confidence 63.64% 

Odds ratio 34.29 Odds ratio 30.46721 Odds ratio 30.47 Odds ratio 30.47 

p-value 2.78E-12 p-value 9.11E-14 p-value 9.11E-14 p-value 9.11E-14 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[E43] = 'cons' ORF 2 [E43] = 'cons' ORF 2 [N147] = 'cons' ORF 2 [D145] = 'cons' ORF 2 
[FADD700] = 'cons' ORF 2 [FADD700] = 'cons' ORF 2 [D145] = 'cons' ORF 2 [orientation] = '-' ALL 

[number of L1] < 2.500 ALL [number of L1] < 2.500 ALL [CPG Islands] < 0.500 ALL [number of L1] < 2.500 ALL 
[ORF1 %A] > 0.405 ORF 1 [ORF1 %A] > 0.405 ORF 1 [orientation] = '-' ALL [TF nkx-2.5] = 'cons' 5’ UTR 
[ORF1 Stops] < 2.500 ORF 1 [find TSDs] < 11.500 ALL [find TSDs] < 11.500 ALL [ORF1 %A] > 0.405 ORF 1 
[ORF2 %T] < 0.205 ORF 2 [ORF1 Stops] < 2.500 ORF 1 [ORF1 %T] < 0.182 ORF 1 [find TSDs] < 11.500 ALL 

[SRY Site 1] = 'mut' 5’ UTR [SRY Site 1] = 'mut' 5’ UTR [ORF1&2 %A] < 0.411 ORF [ORF1 Stops] < 2.500 ORF 1 
    [ORF2 Stops] > 5.500 ORF 2 [ORF2 Gaps] < 5.500 ORF 2 
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GSE6631 Head and neck cancer (Continued) 

 
Rule 21 Rule 22 Rule 23 

Support 0.62% Support 0.62% Support 0.62% 
Confidence 58.33% Confidence 58.33% Confidence 53.85% 

Odds ratio 24.35 Odds ratio 24.35 Odds ratio 20.27 

p-value 1.60E-12 p-value 1.60E-12 p-value 1.80E-11 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[CPG Islands] < 0.500 ALL [D145] = 'cons' ORF 2 [D145] = 'cons' ORF 2 
[Runx3 Site] = 'mut' 5’ UTR [CPG Islands] < 0.500 ALL [N14] = 'cons' ORF 2 

[number of L1] < 2.500 ALL [FADD700] = 'cons' ORF 2 [CPG Islands] < 0.500 ALL 
[ORF1 Gaps] < 1.500 ORF 1 [R363] = 'cons' ORF 2 [Runx3 Site] = 'mut' 5’ UTR 
[ORF1 %T] < 0.182 ORF 1 [orientation] = '-' ALL [Runx3 ASP] = 'mut' 5’ UTR 
[ORF2 %A] < 0.411 ORF 2 [number of L1] < 2.500 ALL [orientation] = '-' ALL 

[ORF2 Stops] > 5.500 ORF 2 [ORF1 Gaps] < 1.500 ORF 1 [ORF1 Gaps] < 1.500 ORF 1 
[CPG Islands] < 0.500 ALL [TF nkx-2.5] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR 
  [ORF1 %A] > 0.405 ORF 1 [ORF2 %T] < 0.205 ORF 2 
  [ORF1 Stops] < 2.500 ORF 1 [ORF2 CAI] < 0.634 ORF 2 

  [ORF1 %T] < 0.182 ORF 1   
  [ORF2 Gaps] < 5.500 ORF 2   
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GSE5816 hBEC Lung 

 
Rule 1 Rule 2 Rule 3 Rule 4 

Support 0.11% Support 0.11% Support 0.11% Support 0.11% 
Confidence 100.00% Confidence 100.00% Confidence 100.00% Confidence 100.00% 

Odds ratio NA Odds ratio NA Odds ratio NA Odds ratio NA 

p-value 6.34E-51 p-value 6.34E-51 p-value 6.34E-51 p-value 6.34E-51 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[D205] = 'cons' ORF 2 [D205] = 'cons' ORF 2 [D205] = 'cons' ORF 2 [D205] = 'cons' ORF 2 
[S1259] = 'cons' ORF 2 [S1259] = 'cons' ORF 2 [S1259] = 'cons' ORF 2 [S1259] = 'cons' ORF 2 

[SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR 
[orientation] = '+' ALL [orientation] = '+' ALL [orientation] = '+' ALL [ORF1 Gaps] < 1.500 ORF 1 
[ORF1 Gaps] < 1.500 ORF 1 [ORF1 Gaps] < 1.500 ORF 1 [ORF1 Gaps] < 1.500 ORF 1 [Strand] = '-1' ALL 
[ORF2 Gaps] < 5.500 ORF 2 [Strand] = '-1' ALL [Strand] = '-1' ALL [ORF2 Gaps] < 5.500 ORF 2 

[ORF1 %A] < 0.405 ORF 1 [ORF2 Gaps] < 5.500 ORF 2 [ORF1 %A] < 0.405 ORF 1 [ORF1 %A] < 0.405 ORF 1 
[ORF2 %T] > 0.205 ORF 2 [ORF1 %A] < 0.405 ORF 1 [ORF2 %T] > 0.205 ORF 2 [ORF2 %T] > 0.205 ORF 2 
[Intactness score] < 17.500 ALL [ORF2 %T] > 0.205 ORF 2 [Intactness score] < 17.500 ALL [Intactness score] < 17.500 ALL 
[ORF StartStop] = 'ORF2 
cons' 

ORF [ORF1 %T] > 0.183 ORF 1 [ORF StartStop] = 'ORF2 cons' ORF [ORF StartStop] = 'ORF2 cons' ORF 

  [ORF StartStop] = 'ORF2 cons' ORF     
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GSE5816 hBEC Lung (Continued) 

 
Rule 5 Rule 6 Rule 7 Rule 8 

Support 0.11% Support 0.11% Support 0.11% Support 0.11% 
Confidence 100.00% Confidence 100.00% Confidence 100.00% Confidence 100.00% 

Odds ratio NA Odds ratio NA Odds ratio NA Odds ratio NA 

p-value 6.34E-51 p-value 6.34E-51 p-value 6.34E-51 p-value 6.34E-51 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[S1259] = 'cons' ORF 2 [SRY Site 1] = 'cons' 5’ UTR [YPAKLS282] = 'cons' ORF 1 [D205] = 'cons' ORF 2 
[SRY Site 1] = 'cons' 5’ UTR [ORF1 Gaps] < 1.500 ORF 1 [SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR 

[orientation] = '+' ALL [Strand] = '-1' ALL [orientation] = '+' ALL [orientation] = '+' ALL 
[ORF1 Gaps] < 1.500 ORF 1 [ORF2 Gaps] < 5.500 ORF 2 [ORF1 Gaps] < 1.500 ORF 1 [ORF1 Gaps] < 1.500 ORF 1 
[Strand] = '-1' ALL [ORF1 Frameshifts] > 1.500 ORF 1 [ORF2 CAI] > 0.634 ORF 2 [ORF2 CAI] > 0.634 ORF 2 
[ORF2 Gaps] < 5.500 ORF 2 [Intactness score] < 17.500 ALL [ORF1&2 %A] > 0.411 ORF 1 [ORF1&2 %A] > 0.411 ORF 

[ORF1 %T] > 0.183 ORF 1 
[ORF StartStop] = 'ORF2 
cons' 

ORF [HMKK1091] = 'mut' ORF 2 [HMKK1091] = 'mut' ORF 2 

[ORF2 Stops] > 5.500 ORF 2   [I1220] = 'mut' ORF 2 [I1220] = 'mut' ORF 2 
[ORF StartStop] = 'ORF2 
cons' 

ORF       
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GSE5816 hBEC Lung (Continued) 

 
Rule 9 Rule 10 Rule 11 Rule 12 

Support 0.08% Support 0.08% Support 0.08% Support 0.11% 
Confidence 100.00% Confidence 100.00% Confidence 100.00% Confidence 75.00% 

Odds ratio NA Odds ratio NA Odds ratio NA Odds ratio 371.5714 

p-value 3.26E-28 p-value 3.26E-28 p-value 3.26E-28 p-value 2.25E-38 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[SRY Site 1] = 'cons' 5’ UTR [CPG Islands] < 0.500 ALL [CPG Islands] < 0.500 ALL [D205] = 'cons' ORF 2 
[ORF1 Gaps] < 1.500 ORF 1 [ORF2 Gaps] < 5.500 ORF 2 [YPAKLS282] = 'cons' ORF 1 [SRY Site 1] = 'cons' 5’ UTR 

[ORF2 Gaps] < 5.500 ORF 2 [ORF1&2 %A] > 0.411 ORF [ORF1&2 %A] > 0.411 ORF [orientation] = '+' ALL 
[ORF1&2 %A] > 0.411 ORF [ORF1 %A] < 0.405 ORF 1 [ORF1 %A] < 0.405 ORF 1 [Poly-A pure] < 2.500 3’ UTR 
[ORF1 %A] < 0.405 ORF 1 [ORF2 Stops] < 5.500 ORF 2 [ORF2 Stops] < 5.500 ORF 2 [ORF1 %A] < 0.405 ORF 1 
[Intactness score] < 17.500 ALL [ORF1 %T] < 0.183 ORF 1 [ORF1 %T] < 0.183 ORF 1 [HMKK1091] = 'cons' ORF 2 

[ORF StartStop] = 'ORF2 
cons' 

ORF [HMKK1091] = 'mut' ORF 2 [HMKK1091] = 'mut' ORF 2 [ORF2 %T] > 0.205 ORF 2 

      [ORF1 Frameshifts] > 1.500 ORF 1 
      [ORF StartStop] = 'ORF2 cons' ORF 
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GSE5816 hBEC Lung (Continued) 

 
Rule 13 Rule 14 Rule 15 Rule 16 

Support 0.11% Support 0.11% Support 0.11% Support 0.11% 
Confidence 75.00% Confidence 75.00% Confidence 75.00% Confidence 75.00% 

Odds ratio 371.57 Odds ratio 371.57 Odds ratio 371.57 Odds ratio 371.57 

p-value 2.25E-38 p-value 2.25E-38 p-value 2.25E-38 p-value 2.25E-38 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR [D205] = 'cons' ORF 2 [SRY Site 1] = 'cons' 5’ UTR 
[I1220] = 'cons' ORF 2 [orientation] = '+' ALL [SRY Site 1] = 'cons' 5’ UTR [orientation] = '+' ALL 

[orientation] = '+' ALL [Strand] = '-1' ALL [orientation] = '+' ALL [PolyA Signal] = 'mut' 3’ UTR 
[Strand] = '-1' ALL [Poly-A pure] < 2.500 3’ UTR [Poly-A pure] < 2.500 3’ UTR [Strand] = '-1' ALL 
[Poly-A pure] < 2.500 3’ UTR [ORF1 %A] < 0.405 ORF 1 [ORF1 %A] < 0.405 ORF 1 [ORF1 %A] < 0.405 ORF 1 
[ORF1 %A] < 0.405 ORF 1 [HMKK1091] = 'cons' ORF 2 [HMKK1091] = 'cons' ORF 2 [HMKK1091] = 'cons' ORF 2 

[HMKK1091] = 'cons' ORF 2 [ORF2 %T] > 0.205 ORF 2 [ORF1&2 %T] > 0.200 ORF [ORF2 %T] > 0.205 ORF 2 
[ORF1 Frameshifts] > 1.500 ORF 1 [ORF1 Frameshifts] > 1.500 ORF 1 [ORF1 Frameshifts] > 1.500 ORF 1 [ORF1 Frameshifts] > 1.500 ORF 1 
[ORF StartStop] = 'ORF2 
cons' 

ORF [ORF StartStop] = 'ORF2 cons' ORF [ORF StartStop] = 'ORF2 cons' ORF [ORF StartStop] = 'ORF2 cons' ORF 

  

  114 



115 
 

 

GSE5816 hBEC Lung (Continued) 

 
Rule 17 Rule 18 Rule 19 Rule 20 

Support 0.11% Support 0.11% Support 0.11% Support 0.11% 
Confidence 75.00% Confidence 75.00% Confidence 75.00% Confidence 75.00% 

Odds ratio 371.57 Odds ratio 371.57 Odds ratio 371.57 Odds ratio 371.57 

p-value 2.25E-38 p-value 2.25E-38 p-value 2.25E-38 p-value 2.25E-38 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR [TF nkx-2.5B] = 'mut' 5’ UTR [D205] = 'cons' ORF 2 
[orientation] = '+' ALL [orientation] = '+' ALL [S1259] = 'cons' ORF 2 [SRY Site 1] = 'cons' 5’ UTR 

[Strand] = '-1' ALL [PolyA Signal] = 'mut' 3’ UTR [SRY Site 1] = 'cons' 5’ UTR [I1220] = 'cons' ORF 2 
[Poly-A pure] < 2.500 3’ UTR [Strand] = '-1' ALL [orientation] = '+' ALL [orientation] = '+' ALL 
[ORF1 %A] < 0.405 ORF 1 [ORF1 %A] < 0.405 ORF 1 [ORF1 Gaps] < 1.500 ORF 1 [Poly-A pure] < 2.500 3’ UTR 
[HMKK1091] = 'cons' ORF 2 [HMKK1091] = 'cons' ORF 2 [Strand] = '-1' ALL [ORF1 %A] < 0.405 ORF 1 

[ORF1&2 %T] > 0.200 ORF [ORF1&2 %T] > 0.200 ORF [ORF2 CAI] > 0.634 ORF 2 [HMKK1091] = 'cons' ORF 2 
[ORF1 Frameshifts] > 1.500 ORF 1 [ORF1 Frameshifts] > 1.500 ORF 1 [ORF2 Gaps] < 5.500 ORF 2 [ORF1 Frameshifts] > 1.500 ORF 1 
[ORF StartStop] = 'ORF2 
cons' 

ORF [ORF StartStop] = 'ORF2 cons' ORF [ORF1&2 %A] > 0.411 ORF [ORF StartStop] = 'ORF2 cons' ORF 

    [ORF StartStop] = 'ORF2 cons' ORF   
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GSE5816 hBEC Lung (Continued) 

 
Rule 21 Rule 22 Rule 23 Rule 24 

Support 0.11% Support 0.11% Support 0.077% Support 0.08% 
Confidence 75.00% Confidence 75.00% Confidence 66.67% Confidence 66.67% 

Odds ratio 371.57 Odds ratio 371.57 Odds ratio 236.45 Odds ratio 236.45 

p-value 2.25E-38 p-value 2.25E-38 p-value 3.92E-19 p-value 3.92E-19 
L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part L1 characteristics L1 part 

[SRY Site 1] = 'cons' 5’ UTR [SRY Site 1] = 'cons' 5’ UTR [CPG Islands] < 0.500 ALL [SRY Site 1] = 'cons' 5’ UTR 
[I1220] = 'cons' ORF 2 [orientation] = '+' ALL [SRY Site 1] = 'cons' 5’ UTR [ORF1 Gaps] < 1.500 ORF 1 

[orientation] = '+' ALL [Strand] = '-1' ALL [ORF1&2 %A] > 0.411 ORF [ORF2 CAI] > 0.634 ORF 2 

[PolyA Signal] = 'mut' 3’ UTR [Poly-A pure] < 2.500 3’ UTR [ORF1 %A] < 0.405 ORF 1 [ORF2 Gaps] < 5.500 ORF 2 
[Strand] = '-1' ALL [ORF1 %A] < 0.405 ORF 1 [ORF1 Frameshifts] < 1.500 ORF 1 [ORF1 %A] < 0.405 ORF 1 
[ORF1 %A] < 0.405 ORF 1 [HMKK1091] = 'cons' ORF 2 [HMKK1091] = 'mut' ORF 2 [ORF1 %T] > 0.183 ORF 1 

[HMKK1091] = 'cons' ORF 2 [ORF2 %T] > 0.205 ORF 2 [ORF2 CAI] < 0.634 ORF 2 [ORF2 Stops] > 5.500 ORF 2 
[ORF1 Frameshifts] > 1.500 ORF 1 [ORF1&2 %T] > 0.200 ORF   [ORF StartStop] = 'ORF2 cons' ORF 
[ORF StartStop] = 'ORF2 
cons' 

ORF [ORF StartStop] = 'ORF2 cons' ORF     
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