
การทวนสอบความสอดคล้องของเครื่องจักรสถานะจำกัดโดยการอนุมานเครื่อง
และการตรวจสอบโมเดล

นายวราวุฒิ ผ้าเจริญ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2555

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคดัยอ่และแฟ้มขอ้มูลฉบบัเตม็ของวทิยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ท่ีใหบ้ริการในคลงัปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มขอ้มูลของนิสิตเจา้ของวทิยานิพนธ์ท่ีส่งผา่นทางบณัฑิตวทิยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the Graduate School.

CONFORMANCE VERIFICATION OF FINITE STATE MACHINES BASED ON

MACHINE INFERENCE AND MODEL CHECKING

Mr.Warawoot Pacharoen

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2012

Copyright of Chulalongkorn University

Thesis Title CONFORMANCE VERIFICATION OF FINITE STATE MA-

CHINES BASED ON MACHINE INFERENCE AND MODEL

CHECKING

By Mr.Warawoot Pacharoen

Field of Study Computer Engineering

Thesis Advisor Assistant Professor Athasit Surarerks, Ph.D.

Thesis Co-advisor Assistant Professor Pattarasinee Bhattarakosol, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

. Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

. Chairman

(Professor Prabhas Chongstitvatana, Ph.D.)

. Thesis Advisor

(Assistant Professor Athasit Surarerks, Ph.D.)

. Thesis Co-advisor

(Assistant Professor Pattarasinee Bhattarakosol, Ph.D.)

. Examiner

(Associate Professor Wiwat Vatanawood, Ph.D.)

. External Examiner

(Assistant Professor Panjai Tantasanawong, Ph.D.)

. External Examiner

(Assistant Professor Arnon Rungsawang, Ph.D.)

iv

วราวุฒิ ผ้าเจริญ: การทวนสอบความสอดคล้องของเครื่องจักรสถานะจำกัดโดยการอนุมาน
เครื่องและการตรวจสอบโมเดล. (CONFORMANCE VERIFICATION OF FI-

NITE STATE MACHINES BASED ON MACHINE INFERENCE AND MODEL

CHECKING) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ. ดร. อรรถสิทธิ์ สุรฤกษ์, อ.ที่ปรึกษา
วิทยานิพนธ์ร่วม : ผศ. ดร. ภัทรสินี ภัทรโกศล, 69 หน้า.

ปัญหาความสอดคล้อง ได้ รับ ความสน ใจ อย่าง มาก ใน งานวิ จัย ทาง ด้านการทวนสอบ
ซอฟต์แวร์ เนื่องจากซอฟต์แวร์ที่ไม่สามารถทำงานได้ตรงตามที่ระบุไว้ในข้อกำหนดซอฟต์แวร์
อาจทำ ให้ เกิด ปัญหา ต่างๆ เช่น การ หยุด ชะงัก ใน ระหว่าง การ สื่อสาร กับ ซอฟต์แวร์ อื่น แต่
สมมติฐาน เบื้องต้น ใน งานวิจัยด้านการ ทวน สอบ ความ สอดคล้อง ในปัจจุบัน คือ เรา สามารถ
มอง เห็น โครงสร้างภาย ในของซอฟต์แวร์ ที่ จะนำมาทวนสอบได้ ข้อ จำกัดดังกล่าวทำให้ เรา
ไม่ สามารถทวนสอบซอฟต์แวร์ บางประเภท เช่น ซอฟต์แวร์ ที่ พัฒนาด้วยภาษา .NET หรือ
Java ได้ เนื่องจากไม่สามารถมองเห็นการทำงานภายในได้ ในวิทยานิพนธ์นี้ผู้วิจัยได้เสนอวิธี
การใหม่ในการทวนสอบความสอดคล้องของข้อกำหนดซอฟต์แวร์กับซอฟต์แวร์ที่สามารถมอง
เห็นได้แต่พฤติกรรมภายนอก โดยผู้วิจัยใช้ขั้นตอนวิธีในการอนุมานเครื่องเพื่อให้ได้เครื่องจักร
สถานะจำกัดจากซอฟต์แวร์ที่ ไม่ สามารถมองเห็นโครงสร้างภายในได้ หลังจากได้ เครื่องจักร
สถานะจำกัดของซอฟต์แวร์จากขั้นตอนวิธีดังกล่าวแล้วจึงนำไปแปลงเป็นภาษารูปนัย LTS เพื่อ
ใช้ การ ตรวจสอบโมเดล LTSA ตรวจสอบความสอดคล้อง ของ โมเดลที่ได้ และโมเดล ของข้อ
กำหนดซอฟต์แวร์ต่อไป จากผลการทดลองกับการประกอบเว็บเซอร์วิสผู้วิจัยสามารถตรวจพบ
การทำงานของเว็บเซอร์วิสที่ไม่ตรงตามที่ระบุไว้ในข้อกำหนดซอฟต์แวร์ได้ และเนื่องจากขั้น
ตอนวิธีที่นำมาใช้สามารถอนุมานเครื่องจักรสถานะจำกัดเชิงกำหนดได้เพียงอย่างเดียว ผู้วิจัย
จึงได้เสนอขั้นตอนวิธี LNM

∗ ที่สามารถอนุมานได้ทั้งเครื่องจักรสถานะจำกัดเชิงกำหนดและเชิง
ไม่กำหนด

ภาควิชาวิศวกรรมคอมพิวเตอร์ . . ลายมือชื่อนิสิต .
สาขาวิชาวิศวกรรมคอมพิวเตอร์ . . ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา 2555 ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม

v

5071822621: MAJOR COMPUTER ENGINEERING

KEYWORDS: FINITE STATE MACHINE / CONFORMANCE VERIFICATION / MA-

CHINE INFERENCE / MODEL CHECKING

WARAWOOT PACHAROEN : CONFORMANCE VERIFICATION OF FINITE

STATE MACHINES BASED ON MACHINE INFERENCE AND MODEL CHECK-

ING. ADVISOR : ASST. PROF. ATHASIT SURARERKS, Ph.D., CO-ADVISOR

: ASST. PROF. PATTARASINEE BHATTARAKOSOL, Ph.D., 69 pp.

The conformance problem has attracted much interest in the research field of soft-

ware verification, since the implementation that doesn’t conform to the specification may

cause some errors such as the communicating interruption in the composited application.

However, the earlier works in conformance verification assume that the internal structures

of the implementation are explicit. It may not always be the case such as the applica-

tions that implemented in .NET or Java. In this dissertation, we propose an alternative

approach for verifying a conformance between the specification and the implementation

whose only external behaviors can be observed. We use an adapted version of Angluin’s

algorithm to infer a deterministic Finite State Machine (FSM) from the implementations.

By transforming the obtained model to the modeling formalism LTS, the model checker

LTSA can be used for checking the conformance criterion in our framework. From the

experiment based on Web services composition, we can detect the execution trace of the

implemented Web service that does not conform to the choreography specification. More-

over, since the assumption that the implementations have to be deterministic may be too

restricted in some applications (such as, a communication system or a component-based

system), we also present a novel learning algorithm, namely LNM
∗, which can be applied

to infer both deterministic and non-deterministic FSMs.

Department :Computer Engineering . . . Student’s Signature .

Field of Study :Computer Engineering . . Advisor’s Signature .

Academic Year :2012 Co-advisor’s Signature

vi

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor

Asst. Prof. Dr. Athasit Surarerks, for his guidance, and support. He has advised me for

many years since my Master thesis, and then my Ph.D. dissertation. Also, I am grateful

to Asst. Prof. Dr. Pattarasinee Bhattarakosol, my co-supervisor, who has given me

invaluable advice in both academic and personal life since my undergraduate, my master,

and my doctorate. I am truly proud that I was under their supervision.

I greatly appreciate Prof. Dr. Prabhas Chongstitvatana, Assoc. Prof. Dr. Wiwat

Vatanawood, Asst. Prof. Dr. Arnon Rungsawang, and Asst. Prof. Dr. Panjai Tanta-

sanawong, for being my dissertation committees and giving several useful comments and

suggestions to improve this dissertation.

I am warmly thankful to Assoc. Prof. Dr. Toshiaki Aoki, who has provided a great

opportunity for one year research at Japan Advanced Institute of Science and Technology

(JAIST), Japan. Without his inspiration and encouragement, I would be lost. I also

thank Thai’s friends at JAIST, who have given me a memorable time which we spent

together.

I appreciate the University Development Commission (UDC) Scholarship from De-

partment of Mathematics, Statistics and Computer, Faculty of Science, Ubon Rajathanee

University that supports the tuition fee and some living expenses during my master and

Ph.D. program.

I thank all ELITE laboratory’s members for the great time we lived together within

the same research room.

I would like to express my deeply gratitude to my parents for their endless support,

and I sincerely thank my dearest Miss Apaporn Champa for her unconditional under-

standing. It is because of them I have attained this position. I dedicate this dissertation

to them.

Contents
Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgements . vi

Contents . vii

List of Tables . x

List of Figures . xi

Chapter

I Introduction . 1

1.1 Our Method for a Conformance Verification . 3

1.2 Objectives of Research . 3

1.3 Scope and Assumption . 3

1.4 Summary of Contributions . 4

1.5 Dissertation Organization . 4

II Definitions and Notations . 5

2.1 Labelled Transition System . 5

2.2 Finite State Machine . 8

2.3 General Notations . 10

III Background and Related Work . 11

3.1 Web Services Choreography Preliminaries . 11

3.2 Conformance Verification . 12

3.3 Conformance Testing . 13

3.4 Automata Learning Preliminaries . 15

3.4.1 Passive Learning Approaches . 15

3.4.2 Active Learning Approaches . 16

3.4.3 Learning Algorithms for Mealy Machine Inference 16

3.4.4 Observation Table . 17

3.4.5 The Algorithm LM
∗ . 18

IV Conformance Verification for Web Service Composition 20

viii

Chapter Page

4.1 The Approach . 20

4.1.1 Step 1: Learning the Implementation model 21

4.1.2 Step 2: Transforming Mealy Machine to LTS 22

4.1.3 Step 3: Verifying SSpec
i ≤tr S

Imp
i . 23

4.1.4 Step 4: Verifying SImp
i ≤tr S

Spec
i . 23

4.2 Preliminary Experiment . 24

4.3 Description . 24

4.4 Implementation . 25

4.5 Learning Algorithm in Practice . 25

4.5.1 Membership Queries . 26

4.5.2 Equivalence Queries . 26

4.6 Experimental Result . 27

4.7 Summary . 27

V Non-deterministic Finite State Machines Inference 28

5.1 Motivation . 28

5.2 Inference of Non-deterministic FSMs . 30

5.2.1 Observation Table . 31

5.2.2 The Algorithm . 34

5.2.3 Counterexample . 35

5.2.4 Correctness . 36

5.2.5 Complexity . 38

5.2.6 Optimization . 39

5.2.7 Example . 40

5.3 Experiments . 41

5.3.1 Sample Machines . 42

5.3.2 Random Arbitrary Machines . 43

5.4 Discussion and Summary . 44

VI Conclusion . 47

6.1 Dissertation Summary . 47

ix

Chapter Page

6.2 Discussion on Limitations and Future Works 48

6.3 Concluding Remark . 48

Appendix . 57

Biography . 58

x

List of Tables

Table Page

2.1 Notations for labelled transition system. 10

2.2 Notations for finite state machine. 10

4.1 Closed and Consistent Observation Table T1 for learning seller service. 22

5.1 Example of an observation table. 32

5.2 Closed observation table. 33

5.3 Processing the counterexample a/y · b/y · a/y · b/x for M0
(1). 40

5.4 Runs from 9 sample machines. 42

5.5 Comparison of normal LNM
∗ with the optimized version using the random

NFSM examples. 44

xi

List of Figures

Figure Page

2.1 Example of LTS P1 = ⟨S1,Σ1,∆1, s10⟩ (left) and LTS P2 = ⟨S2,Σ2,∆2, s20⟩

(right) with Σ1 = Σ2 = {a, b}. 5

2.2 Error LTSs of the LTSs in Figure 2.1. 7

2.3 The parallel composition between P1 ∥ P2err
(left) and P1err

∥P2 (right). 7

2.4 Example of an finite state machine. 8

3.1 An RFQ example of Web service choreography specified by Message Se-

quence Chart. 12

3.2 LTS SSpec
Seller of seller Web service. 12

4.1 Web service conformance verification framework. 21

4.2 Mealy machine conjecture of seller Web service from Table 4.1. 21

4.3 The corresponding LTS of the Mealy machine in Figure 4.2. 23

4.4 Error LTS of SSpec
Seller in Figure 3.2. 24

5.1 Example of a non-deterministic finite state machine. 30

5.2 The NFSM conjecture M0
(1) from Table 5.2. 33

5.3 A partially specified NFSM (left) and the corresponding completely speci-

fied NFSM (right). 39

5.4 Random NFSM examples learned with normal LNM
∗ and with optimiza-

tion, using |I| = 10, |O| = 5, and k = 20. 43

5.5 Comparison of the actual number of I/O queries of the normal LNM
∗

algorithm and the theoretical upper bound on the random NFSM examples. . 45

CHAPTER I

INTRODUCTION

To promote a system’s reliability, there are many attempts in the software ver-

ification domain to determine whether an implementation conforms to its specification

which can be a program specification, a communication protocol, etc. The reason is

that unexpected behaviors of an implementation may cause the system errors or the

communicating interruption in the composited application. This motivates the study of

conformance verification that will be investigated in this dissertation.

Typically, the considered implementations are software components, services, or

modules that assume to be modeled as finite state machines which are widely used to

model systems in diverse areas. Given a formal model which acts as specification, a num-

ber of studies have been presented to ensure the correct implementations. The proposed

methodologies can be categorized into two main categories based on the knowledge of

the internal structures of the implementation: conformance verification and conformance

testing.

The works in conformance verification approach assume that the implementation

is white-box, i.e., its internal structures can be directly observed and mapped to a formal

language. Then the formal model of the implementation can be used to check the confor-

mance criteria against the given specification. To the best of our knowledge, notations and

semantics of the formal languages which are used in these works are more or less based on

Petri net, process algebra, or automata. Moreover, different notions of the conformance

relation between the specification and the implementation have been formally defined

with respect to their formalism. However, the assumption that the implementations are

white-box does not need to be the case, since some applications can be only observed

their external behavior, e.g., third party applications or the applications implemented by

Java or .NET.

For checking the conformance of a black-box implementation, the technique so-

called model-based testing has been used for a long time in both academic and industrial

section. In this approach, it is assumed that a correct formal model which acts as specifi-

cation is given, typically as finite state machine (FSM) or labelled transition system (LTS).

2

Then we want to generate a set of tests (each test is a pair of input sequence and expected

output sequence), or test suite, from the given model in order to compare with the real

system. By applying each test, if the actual output sequence differs from the expected

output sequence, then a fault has been detected. Otherwise, it can be concluded that an

implementation conforms to the specification under some assumptions, e.g., the number

of states of the implementation is smaller than a given bound m. Interesting source of

techniques and tools of model-based testing can be found in the book by Broy et al.

(2005). Further detailed of conformance testing can be found in (Lee and Yannakakis,

1996; Fujiwara et al., 1991; Hierons, 2004) for FSM-based specification and (Tretmans,

2008; Frantzen et al., 2009) for LTS-based specification.

Learning in the context of model checking has been used for several purposes in

the software verification literature. For example, Chaki et al. (2008) used the approach

for checking component substitutability of evolving software systems. The approach was

also used by Cobleigh et al. (2003) to automatically generate assumptions for assume-

guarantee verification of systems. Black box checking (Peled et al., 1999) and adaptive

model checking (Groce et al., 2002) are other example applications of this approach in

order to verify correctness of the system in the case of specification is not available or in-

complete, respectively. The most well-known learning algorithm in this field was proposed

by Angluin (1987), namely L∗, for deterministic finite-state automata (DFA) inference.

Moreover, recently Shahbaz and Groz (2009) proposed an algorithm LM
∗ that adopt from

Angluin’s work for Mealy machine inference.

In this dissertation, an automata learning technique is introduced in order to solve

the conformance verification problem of black box implementations. Since the practical

limitation of current works in conformance verification is that the internal structures of

implementations have to be explicit, our approach can be used without this limitation by

observing behavior of the implementation through its interface. Moreover, unlike testing

our approach is applicable regardless of preset test environment, such as characterizing

set, state cover set, transition cover set, etc. Given a black box implementation, our

method synthesizes a behavioral model by asking queries to test (observe) its internal

behavior. As a result, the tests used here are generated online while constructing the

model.

3

1.1 Our Method for a Conformance Verification

Suppose we are given a Labelled Transition System (LTS) specification SSpec
i of an

implementation i in the protocol. First we use a learning algorithm to infer an implemen-

tation model of the implementation as a Finite State Machine (FSM). Then, in order to

check the conformance criterion, we transform the FSM to the corresponding LTS SImp
i

and use model checking to perform the conformance analysis based on a relation between

the LTSs of specification model and the learning model, i.e., SSpec
i and SImp

i .

For the notion of conformance used in this dissertation, we assume that the im-

plementation conforms to the specification if it implements all and only the observable

behaviors allowed by the specification. The reason is if the implementation can perform

the actions which are not foreseen by the given specification or cannot perform the ac-

tions which are desired by the given specification, this may cause the interruption in the

communication. This conformance criterion is called a trace equivalence relation of LTS

and will be formally defined in the next chapter.

1.2 Objectives of Research

• To propose an alternative approach for conformance verification that can be applied

with black-box implementations.

• To propose a novel active learning algorithm that can be extended to non-deterministic

finite state machines inference.

• To propose the use of a model checking to answer the equivalence query of the

learning algorithm using compositional reachability analysis of LTSs.

1.3 Scope and Assumption

The scope of this dissertation is limited to the following:

• This dissertation considers the stateful implementations.

• This dissertation focuses only functional properties of the system. Other aspects,

such as, timing, performance, security, etc. are not considered.

• The proposed method does not rely on specific implementation languages.

4

Additionally, in this dissertation, we assume the following:

• The protocol specification is given in terms of Finite State Process (FSP) notations

that are the textual representations of LTS.

• The input/output interfaces of the implementations are known and observable.

• The implementations can be modeled as deterministic FSMs, i.e., they exhibit reg-

ular and deterministic behaviors. Later this assumption will be relaxed to non-

deterministic case in Chapter 5.

• An abstraction technique is applied for variables in the specification model and the

learned model.

1.4 Summary of Contributions

This dissertation provides an alternative approach for conformance verification of

a black-box implementation for which we can only observe its external behavior. The

proposed technique is applicable regardless of a preset test suite; therefore, it can endure

with changes in the specification and in the application. The learning algorithm requires

only information of i/o interface of the implementation. This property is suitable for the

practical application such as one that developed by third party.

Furthermore, we also propose the novel learning algorithm that can infer behavioral

model of the implementation as a non-deterministic finite state machine (NFSM). This

relaxes the assumption that the implementation have to deterministic, since it may be

too restricted in some applications such as a concurrent communication system.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. The next chapter recalls the

basic definitions and notions which are used globally in the dissertation. Chapter 3

overviews the background work and surveys the state-of-the-art in the domain of con-

formance verification, conformance testing, and automata learning. Chapter 4 describes

our proposed method for conformance verification based on the Web services case study.

Chapter 5 presents the extended work towards inferring NFSMs. Finally, a discussion

and conclusions of the dissertation are presented in Chapter 6.

CHAPTER II

DEFINITIONS AND NOTATIONS

This chapter briefly recalls the basic definitions and notations that will be used

later in the forthcoming chapters. The definitions and most of the notations follow (Broy

et al., 2005; Lee and Yannakakis, 1996; Fujiwara et al., 1991; Hierons, 2004).

2.1 Labelled Transition System

Let L be the universal set of observable actions (or labels), and let Act = L ∪ {τ},

where τ denotes an internal action that is unobservable by the environment. Moreover,

we use π to denote a special error state, which models the state that has no outgoing

transitions.

Definition 2.1 (Labelled Transition System) A Labelled Transition System (LTS)

P is a 4-tuple ⟨S,Σ,∆, s0⟩ where S is the finite non-empty set of states including the

error state π, Σ ⊆ L is the finite non-empty set of observable actions called the alphabet

of P , ∆ ⊆ S − {π} × Σ ∪ {τ} × S is the transition relation that maps from a state and

an action onto another state, and s0 ∈ S is the initial state.

0 1 2

a a

b

P1

0

a
a

b

P2

1

Figure 2.1: Example of LTS P1 = ⟨S1,Σ1,∆1, s10⟩ (left) and LTS P2 = ⟨S2,Σ2,∆2, s20⟩ (right)
with Σ1 = Σ2 = {a, b}.

To note that, an LTS P is non-deterministic if it contains τ -transitions or if there

exist (s, a, s′), (s, a, s′′) ∈ ∆ but s′ ̸= s′′. Otherwise, P is deterministic.

Definition 2.2 (Transit) An LTS P = ⟨S,Σ,∆, s0⟩ transits into an LTS P ′ with action

a ∈ Act, denoted as P a−→ P ′, if:

(a) P ′ = ⟨S,Σ,∆, s′0⟩, where s′0 ̸= π and (s0, a, s
′
0) ∈ ∆, or

6

(b) P ′ = Π, where s′0 = π

We use Π to denote the LTS that is allowed to have the error state π as its initial

state (i.e., LTS ⟨{π},Σ, ∅, π⟩).

Definition 2.3 (Parallel Composition) Given two LTSs P1 = ⟨S1,Σ1,∆1, s10⟩ and

P2 = ⟨S2,Σ2,∆2, s20⟩, the parallel composition of P1 and P2, donoted by P1 ∥ P2, is

defined as follows:

(a) If P1 = Π or P2 = Π, then P1 ∥ P2 = Π.

(b) Otherwise, P1 ∥ P2 is an LTS P = ⟨S,Σ,∆, s0⟩, where S = S1 × S2, Σ = Σ1 ∪ Σ2,

s0 = (s10, s
2
0), and ∆ is the smallest relation satisfying the following rules, where a

is either observable action or τ , i.e., a ∈ Σ ∪ {τ}:

P1
a−→ P ′

1, a ̸∈ Σ2

P1 ∥ P2
a−→ P ′

1 ∥ P2

P2
a−→ P ′

2, a ̸∈ Σ1

P1 ∥ P2
a−→ P1 ∥ P ′

2

P1
a−→ P ′

1, P2
a−→ P ′

2, a ̸= τ

P1 ∥ P2
a−→ P ′

1 ∥ P ′
2

According that the parallel composition is both commutative and associative, the

order in which LTSs are composed is not significant, e.g., P1 ∥ P2 is equivalent to P2 ∥ P1.

Definition 2.4 (Trace and Language) A trace σ of an LTS P is a sequence of ob-

servable actions that P can perform, starting from the initial state. We use Tr(P), called

the language of P , to mean the set of all traces of P .

Definition 2.5 (Trace Inclusion) For any two LTSs P1 = ⟨S1,Σ1,∆1, s10⟩ and P2 =

⟨S2,Σ2,∆2, s20⟩ where Σ1 ⊆ Σ2, we write P1 ≤tr P2 to denote the trace inclusion relation

that means all traces of P1 are also in P2. Formally, P1 ≤tr P2 if and only if Tr(P1) ⊆

Tr(P2).

7

In practice, when checking P1 ≤tr P2, firstly an error LTS of P2 denoted P2err
is

created. It can be created by adding the error state π and traps possible violations with

this state. For instance, Figure 2.2 shows the error LTSs of both LTSs in Figure 2.1.

0 1 2

a a

b

P1err

0

a
a

b

P2err

1

� �

b
b

ab

Figure 2.2: Error LTSs of the LTSs in Figure 2.1.

Note that the error LTS is complete, meaning each state other than the error state

has outgoing transitions for every action in the alphabet. Formally, the error LTS of LTS

P = ⟨S,Σ,∆, s0⟩ is Perr = ⟨S ∪ {π},Σ,∆′, s0⟩, where ∆′ = ∆ ∪ {(s, a, π)|a ∈ Σ and

̸ ∃s′ ∈ S : (s, a, s′) ∈ ∆}.

After that, the parallel composition P1 ∥ P2err
is computed. If the π state is

reachable in P1 ∥ P2err
, then P1 ̸≤tr P2; that means there exists at least one trace σ that

occurs in P1 but does not occur in P2, i.e., ∃σ, σ ∈ Tr(P1) ∧ σ ̸∈ Tr(P2).

0,0 1,1 2,1

a a

b

P1 || P2err

0,0 1,1 2,1

a a

b

P1err
|| P2

�

b

ab

Figure 2.3: The parallel composition between P1 ∥ P2err (left) and P1err ∥P2 (right).

For example, in Figure 2.3 (left), since the π state cannot be reached in P1 ∥ P2err
,

then that means P1 ≤tr P2. However, since the π state is reachable in P1err
∥P2 as shown

in Figure 2.3 (right), then that means P2 ̸≤tr P1 (e.g., a ·b ∈ Tr(P2) ∧ a · b ̸∈ Tr(P1)).

The trace inclusion relation is a preorder and can be extended to define an equiva-

lence:

Definition 2.6 (Trace Equivalence) The trace equivalence relation between two LTSs

8

P1 and P2, written P1 =tr P2, holds iff P1 ≤tr P2 and P2 ≤tr P1.

In other words, two equivalent LTSs have the same observable behaviors, formally

Tr(S1) = Tr(S2).

2.2 Finite State Machine

From this point forward, the term “finite state machines” (FSMs) will be referred

to as “Mealy machines”, which represent outputs on their transitions. Moreover, both

terms are used interchangeably in this dissertation.

Definition 2.7 (Finite State Machine) A finite state machine (FSM) M is a 5-tuple

⟨Q, I,O, δ, q0⟩, where Q, I,O are the non-empty finite sets of states, input symbols, and

output symbols, respectively; q0 ∈ Q is the initial state; and δ : Q× I → 2Q×O \ {∅} is the

transition function, where 2Q×O is the power set of Q×O and ∅ is the empty set.

a/1

b/0

b/1

a/0

�Ù

a/0 �Ú a/0�Û

Figure 2.4: Example of an finite state machine.

At any point in time, the machine is currently at state q ∈ Q. It is possible to

give inputs to the machine. By receiving an input i ∈ I, the machine may produce an

output o ∈ O and change to the next state q′ ∈ Q if and only if (q′, o) ∈ δ(q, i). For

example, Figure 2.4 shows an FSM with state Q = {q0, q1, q2}, input symbols I = {a, b},

and output symbols O = {0, 1}. Applying a starting in state q0 produces output 0 and

moves to the next state q1, since (q1, 0) ∈ δ(q0, a).

As usual, the function δ can be extended to take an input sequence, i.e., δ : Q×I∗ →

2Q×O∗ . For example, here δ(q0, a · b) = {(q2, 0 · 0)}.

9

Recall from (Hierons, 2004) that the projections of the function δ, called δQ and

δO, are possible to define such that δQ : Q× I∗ → 2Q and δO : Q× I∗ → 2O
∗ will give the

states reached and the output sequences produced, respectively, from a state and a given

input sequence. For example, in Figure 2.4, δQ(q2, a) = {q0, q2} and δO(q2, a) = {0, 1}.

Suppose that x̄ denotes an input sequence x1 · x2 · . . . · xk of input symbols from I,

and that ȳ denotes an output sequence y1 ·y2 · . . . ·yk of output symbols from O. An input/

output sequence is a sequence x̄/ȳ = x1/y1 ·x2/y2 · . . . ·xk/yk for some x1, . . . , xk ∈ I and

y1, . . . , yk ∈ O. Next, the following properties are usually referred to in the model:

Property 1 (Deterministic). An FSM is deterministic if, for all states q ∈ Q and all

input i ∈ I, |δ(q, i)| ≤ 1. Otherwise, an FSM is non-deterministic.

Property 2 (Initially Connected). An FSM is initially connected if every state q ∈ Q

can be reached from the initial state q0, i.e., ∀q ∈ Q,∃x̄ ∈ I∗ such that q ∈ δQ(q0, x̄).

Property 3 (Completely Specified). An FSM is completely specified if, for all of the

states, it has transitions for every input. Formally, ∀q ∈ Q, ∀i ∈ I, |δ(q, i)| ≥ 1.

However, if the machine is not completely specified, called a partially specified FSM,

it can be transformed to a completely specified FSM by adding either a sink state sΩ or

loop back transition, with a designated error symbol Ω for all inputs that do not occur in

the original machine.

Property 4 (Observable). An FSM is observable if, for every state q ∈ Q, input i ∈ I,

and output o ∈ O, it has at most one transition leaving q with input i and output o, that

is, |{q′ ∈ Q | (q′, o) ∈ δ(q, i)}| ≤ 1.

This property ensures that, with the same input, the machine will never move to

different states with the same output. This scenario aids us in determining the target

state of the machine by observing only its output.

Property 5 (Reduced). An FSM is reduced (or minimized) if it is initially connected and

no two states are equivalent. In other words, there always exists an input sequence that

can distinguish between any two states, i.e., ∀q, q′ ∈ Q and ∃x̄ ∈ I∗, δO(q, x̄) ̸= δO(q
′, x̄).

10

Definition 2.8 (Language) Given an FSM M = (Q, I,O, δ, q0), an associated language

of M from a state q ∈ Q, denoted by LM (q), is the set of input/output sequences allowed

by M from q. More formally, LM (q) = {x̄/ȳ | x̄ ∈ I∗ ∧ ȳ ∈ δO(q, x̄)}. We use L(M),

called the language of M , to mean the set LM (q0).

Definition 2.9 (Reduction) Given two FSMs M1 = (Q1, I1, O1, δ1, q10) and M2 =

(Q2, I2, O2, δ2, q20), where I1 = I2, FSM M1 is a reduction of FSM M2, denoted by

M1 ≼M2, if and only if L(M1) ⊆ L(M2).

Definition 2.10 (Equivalence) The equivalence relation between the two FSMs M1 and

M2, written M1 =M2, holds if and only if M1 ≼M2 and M2 ≼M1, i.e., L(M1) = L(M2).

2.3 General Notations

Some of general notations used in the dissertation are summarized in the Table 2.1

and Table 2.2 as follows.

Table 2.1: Notations for labelled transition system.

Notation Meaning

τ an internal action
π a special error state
Π an LTS⟨{π},Σ, ∅, π⟩
P

a−→ P ′ transit (See Definition 2.2)
P1 ∥ P2 parallel composition (See Definition 2.3)
Perr the error LTS of LTS P (See Definition 2.5)
Tr(P) a language of LTS P (See Definition 2.4)
P1 ≤tr P2 the trace inclusion relation (See Definition 2.5)
P1 =tr P2 the trace equivalence relation (See Definition 2.6)

Table 2.2: Notations for finite state machine.

Notation Meaning

Ω an error output symbol
sΩ a sink state
δQ the projection of the function δ to give the states reached
δO the projection of the function δ to give the output sequences produced
x̄/ȳ input/output sequence
L(M) a language of FSM M (See Definition 2.8)
M1 ≼M2 the reduction relation (See Definition 2.9)
M1 =M2 the equivalence relation (See Definition 2.10)

CHAPTER III

BACKGROUND AND RELATED WORK

This chapter overviews the background work and surveys the state-of-the-art in the

domain of Web service choreography, conformance verification, conformance testing, and

automata learning techniques.

3.1 Web Services Choreography Preliminaries

Web Services Choreography is a specification protocol defining the order of the

observable message exchanges among the participating services in a business process.

Starting from this global description, each party can then extract out the local descriptions

for building own Web services independently. There are several languages have been

proposed to specify a choreography such as WS-CDL, Let’s Dance (Zaha et al., 2006),

and MAP (Barker et al., 2009). A basic building block of these choreography languages

is an activity, either basic or structured one. The basic activity corresponds to an atomic

action such as: a request action, a response action, a request-response action, a variable

assignment action. On the other hand, the structured activity defines the control flow

among activities that includes: a sequence activity, a non-deterministic activity, a choice

activity, a parallel activity. However, it is not within the scope of this work to provide a

further detailed formalization of the languages.

For simplicity, this dissertation uses the Message Sequence Chart (MSC) to graph-

ically represented a choreography between Web services as shown in Figure 3.1. More

precisely we assume that formal specification of a Web service in choreography is given

in terms of Finite State Process (FSP) notations that are the textual representations of

LTS.

Figure 3.1 illustrates a Request For Quotation (RFQ) example of choreography

between three participating services, namely buyer, seller, and shipper. They can interact

by sending messages to each other and the choreography specifies the sequence of the

interactions.

12

RequestQuote

ConfirmRequest

RequestQuoteReply

ConfirmRequestReply

UpdateQuote

UpdateQuoteReply

Initial

InitialReply

Buyer Seller

ShippingOrder

ShippingOrderReply

alt

Shipper

Figure 3.1: An RFQ example of Web service choreography specified by Message Sequence Chart.

To note that, FSP specifications that are used as formal specification in our work

will be translated to the corresponding finite LTSs in order to analyze and verify some

properties. For example, from Figure 3.1, we can extract an LTS model of seller Web

service as shown in Figure 3.2.

0 1 2 3 4 5

rq resp_rq uq resp_uq cf sh

6

resp_sh resp_cf

cf

7 8

Figure 3.2: LTS SSpec
Seller of seller Web service.

3.2 Conformance Verification

Formal methods are introduced to the Web service design and specification in order

to promote the system reliability by analyzing and verifying some required properties.

Given formal models of choreography specification and a set of implementations, there

are many efforts in the literature for checking a conformance between both models with

respect to some conformance criteria. For example, Busi et al. (2005) propose formal

languages for describing choreography and orchestration based on process algebra where

a notion of conformance takes the form of bisimulation-like relation. In (Kazhamiakin

and Pistore, 2006) the authors present a formal framework for conformance verification

that allows for modeling the data-flow and control-flow of web service composition. The

conformance criterion is the behaviors of the implemented composition and the choreog-

raphy are the same. The work in (Yeung, 2006) formalizes WS-CDL and BPEL using

process algebra CSP, where conformance can be carried out based on the concept of traces-

refinement in CSP. Foster et al. (2006) translate WS-CDL specification and BPEL4WS,

13

the early version of BPEL, to the FSP process algebra model, then a conformance relation

is defined by equivalent of the interaction traces. Furthermore, the conformance in this

work can be checked using the model checker LTSA.

However, the aforementioned works verify a conformance based on the behavior of

composition of local implementations against the choreography specification. Obviously,

using model checking to verify in such a case may face with state explosion problem.

There are several works apply the projection techniques in order to extract the behavior

of the considered role in a choreography, hence the conformance checking procedure can

be done locally without considering other services. Among the works on this technique,

Zhao et al. (2006) introduce a formal model for WS-CDL, and a simple projection from

choreography to orchestration is given. Li et al. (2007) propose two formal languages for

describing choreography and orchestration. In order to do the verification, the definition

of endpoint projection and process refinement are presented in this work. Moreover,

the work in (Tasharofi and Sirjani, 2009) uses Reo and Constraint Automata with State

Memory (CASM) as a unified formalism for describing both WS-CDL and BPEL. By using

endpoint projection on CASM, the behavior of an interested party in the choreography is

obtained and can be used to compare with the CASM model of BPEL of the interested

party based on the simulation relation in CASM.

3.3 Conformance Testing

The problem of conformance testing has been investigated by many works in the

literature. Given a formal model which acts as specification and a black box implementa-

tion, called implementation under test (IUT), for which we can only observe its external

behavior, we want to check whether the IUT conforms to the given specification. There-

fore, in this approach it is assumed that a specification model of the system is given,

typically in the form of FSM or LTS. Based on these models, there are many attempts

proposing techniques and algorithms to construct a test suite in order to test the IUT.

In this work, we classify the existing works of model-based testing into two categories,

FSM-based and LTS-based testing, with respect to the specification model.

For FSM-based testing, various test sequence generation techniques have been pub-

lished to either a deterministic finite state machine (DFSM) or a non-deterministic finite

state machine (NFSM) specification. The well-known methods based on DFSM specifica-

14

tion are Transition tour (TT) method, W-method, Wp-method, Distinguishing sequence

(DS) method, Unique input/output (UIO) method, and UIOv-Method. These methods

generate the test suites which have different length and fault detection coverage. Further

details and comparisons of the DFSM-based techniques can be found in the Chapter 4 of

(Broy et al., 2005). On the other hand, most approaches for selecting a test suite from

NFSM are based on the method so-called state counting, which can be applied to the

case in which the IUT is known to be deterministic (Hierons, 2004), or non-deterministic.

Last but not least, the necessary assumptions of all referred FSM-based test generation

methods are (i) the specification FSM is assumed to be reduced or minimal, initially

connected, completely specified and observable, and (ii) there is an upper bound on the

number of states in the IUT.

For LTS-based testing, there are a large number of methods have been proposed

in the literature. Among these works, the most of well-known methods are based on

the construction of a canonical tester from, e.g., LOTOS specification, refusal graphs, or

the Compulsory and Options sets (CO-OP method). However, some drawbacks of these

methods from the practical used have been reported, such as the LTS models do not

distinguish between inputs and outputs. To the best of our knowledge, the well-accepted

testing relation for LTS (with inputs and outputs) is ioco (Tretmans, 2008).

According to the recent surveys of testing Web services composition (Canfora and

Penta, 2009), several approaches exist to deal with conformance problem of the Web

service implementations to the specification models (e.g., a finite state machine, a graph

grammar). For example, Bertolino and Polini (2005) propose an approach to test that a

black-box Web service conforms to a specification before the service will be added into

an UDDI registry. The behavior of the service in this work is described by a finite state

machine. In (Heckel and Mariani, 2005) the authors use graph grammars to represent the

mutually agreed behavior between two partners, called contract, in order to enable the

automatic derivation of the test suite.

The closest idea to our approach is (Frantzen et al., 2009) in which the authors

propose the verification framework, called JAMBITION, to test whether an implemented

Web service conforms to a design specification. This framework uses a Symbolic Transition

System (STS) diagram as a specification model and tests the Java Web services, and then

15

the test cases will be generated on-the-fly, i.e., the next input will be guided by the

observed output from the IUT. Furthermore, test generation method can be based on

full state and/or transition coverage criteria with respect to sioco testing relation (i.e.,

a sound and complete adaptation of ioco for STS). Unfortunately, test cases generated

based on state or transition coverage cannot detect some faults in the IUT.

3.4 Automata Learning Preliminaries

In this section we start by reviewing the automata learning approach in general,

and then we focus on the learning algorithms that usually used in software engineering

domain and the algorithm used in our approach.

The field of automata learning has been studied for decades as one branch of gram-

matical inference. The early research in grammatical inference is to solve the problems in

three main areas: computational linguistics, inductive inference, and pattern recognition.

Later, it has been introduced to other domains such as bio-informatics and automata

learning. The good source of techniques and applications of grammatical inference can

be found in the book of de la Higuera (2010).

Given an unknown language U over the alphabet Σ, the goal of automata learning

is to infer an automaton that can recognize the language U . In the following subsections,

we describe the concepts of the two general categories of automata learning techniques:

passive learning and active learning.

3.4.1 Passive Learning Approaches

In this approach, we are given a finite set of the observations (or informants) that

are the strings from the alphabet Σ of an unknown language U . Then the algorithms

in this paradigm try to estimate a model of the language from these observations. The

challenge of this concept is that the learning process is bounded to identify the automaton

in the limit of samples. If the strings are the words of the language, they are called positive

samples. Otherwise, they are called negative samples. From a set of positive and negative

samples, Gold (1978) proved that finding a minimum machine, more precisely a minimum

deterministic finite automaton (DFA), of the targeted language from the given set of both

samples is hard (i.e., NP-Complete). However, the research was continued to find probably

16

approximately correct (PAC) model that could learn concepts with a high probability but

in low complexity.

3.4.2 Active Learning Approaches

Instead of using given samples, the algorithms in active learning paradigm have an

ability to collect observations by asking queries. It is typically assumed that there exists

an Oracle who knows the language and can correctly answer some queries in this setting.

The most well-known algorithm in active learning approach is provided by Angluin,

namely L∗, which can efficiently learn an unknown regular language U and produce a

minimum DFA that accepts U in polynomial time. In the setting of L∗, the learning

algorithm is called a Learner and an Oracle is called a minimally adequate Teacher (or

Teacher for short).

There are two types of queries in L∗. The first type is a membership query, consisting

of a string σ ∈ Σ∗. The response is “0” (in case σ ̸∈ U) or “1” (in case σ ∈ U) that will be

recorded in an observation table. The Learner asks the membership queries and recorded

the responses from the Teacher until some conditions on the observation table have been

met. These conditions will be described further in the next subsection together with the

case of Mealy machine inference. Then, the Learner constructs a conjecture that is a

candidate DFA M whose language the algorithm L∗ believes to be identical to U . The

second type of question is called an equivalence query that consists of the conjecture. The

Teacher’s answer is true if L(M) = U . Otherwise the Teacher returns a counterexample

showing a discrepancy between the machine L(M) and U .

3.4.3 Learning Algorithms for Mealy Machine Inference

The learning algorithm that plays an important role in our approach was proposed

by Shahbaz and Groz (2009), namely LM
∗. It adopts the Angluin’s algorithm L∗ (An-

gluin, 1987) to Mealy machine inference. Even though L∗ can learn an unknown regular

language in polynomial time, its adaptations to Mealy Machines are not obviously effi-

cient as discussed in (Shahbaz and Groz, 2009). For example, the direct adaptations can

be performed through model transformation techniques by mapping from inputs I and

outputs O of the Mealy Machine to letters of a DFA’s alphabet Σ, such that Σ = I ∪ O

17

(Hungar et al., 2003) or Σ = I ×O (Mäkinen and Systä, 2001). However, these methods

are confronted by complexity problems because the cost of L∗ is polynomial based on

the size of Σ. Shahbaz and Groz (2009) observed that, by slightly modifying the struc-

ture of the observation table and the way in which the counterexample is processed, their

proposed method, namely LM
+, can learn deterministic Mealy machines more effectively.

Similar to L∗, in order to infer the Mealy machine from a black box machine, the

algorithm LM
∗ needs to ask two types of questions to a Teacher that is assumed to

correctly answer the questions. Let MU be a black box machine whose input set I is

known. The first type is an output query, consisting of a string σ ∈ I+. This is similar to

the concept of membership queries in L∗. The different is that instead of “0” or “1”, the

Teacher replies with the complete output strings which will be recorded in an observation

table.

The second type of question is an equivalence query, consisting of a candidate

Mealy machine M whose language the algorithm LM
∗ believes to be identical to MU .

The answer is true if L(M) = L(MU). Otherwise the Teacher returns a counterexample

which is a string σ showing a discrepancy between the machine M and MU . The detailed

description of an observation table and the procedure of LM
∗ will be defined as follows.

3.4.4 Observation Table

The structure of an observation table, denoted by (S,E, T), of the algorithm LM
∗

consists of three parts: S,E, and T where

• S,E are the non-empty finite sets of prefix-closed and suffix-closed, respectively,

input strings from I+.

• T is a finite function that map (S ∪ S · I)× E to the output string from O+.

Intuitively, an observation table can be visualized as a two-dimensional array with

rows labelled by elements of (S ∪S · I) and columns labelled by elements of E. The entry

corresponding to row s in (S ∪ S · I) and column e in E equals to T (s · e) containing the

last output symbol of the output string as suf |1|(λ(q0, s ·e)), where suf |k|(ω) denotes the

suffix of a string ω of length k.

18

Definition 3.1 (Row Equivalence) Let s, t ∈ S∪S ·I be two rows in the table (S,E, T),

then s and t are row equivalence, denoted by s ∼=E t, if and only if T (s, e) = T (t, e), for

all e ∈ E. Moreover, we used [s] to denote the equivalence class of rows that are row

equivalence to s.

Definition 3.2 (Closed and Consistent Observation Table) An observation table

is called closed if and only if for each t ∈ S · I, there existed an s ∈ S such that

s ∼=E t. An observation table is called consistent if and only if for each s1, s2 ∈ S such

that s1 ∼=E s2, then s1 · i ∼=E s2 · i, for all i ∈ I.

If the table (S,E, T) is closed and consistent, we can construct a Mealy machine

conjecture as defined in (Shahbaz and Groz, 2009).

3.4.5 The Algorithm LM
∗

As shown in (Shahbaz and Groz, 2009), the Algorithm LM
∗ starts by initializing

the observation table (S,E, T) with S = {ϵ} and E = I. Then LM
∗ asks the output

queries constructed from the table to determine T . For each row s ∈ S∪S · I and column

e ∈ E, a query is constructed as s · e. The corresponding output string from the query

s · e is recorded to the entry (s, e), i.e., row s and column e, of the table with the help of

function T where T (s, e) = suf |1|(λ(q0, s · e)).

After filling the initial table with the result of the queries, LM
∗ starts the loop for

testing whether the current table is closed and consistent. If it is not closed that means

∃t ∈ S · I such that s ̸∼=E t, for all s ∈ S. Then LM
∗ finds and moves t to S and T (t · i, e)

is determined for all i ∈ I, e ∈ E in S · I. If the table is not consistent that means

∃s1, s2 ∈ S, i ∈ I, and e ∈ E such that s1 ∼=E s2, but T (s1 · i, e) ̸= T (s2 · i, e). Then LM
∗

finds and adds the string i · e to E and extends the table by asking the output queries for

the missing elements.

These two operations are performed repeatedly until the table is closed and con-

sistent. From the closed and consistent table (S,E, T), LM
∗ makes a Mealy machine

conjecture M and asks it to the Teacher. The Teacher replies either “yes”, showing that

the conjecture is correct, or with a counterexample σ. If the Teacher replies yes, LM
∗

terminates with the correct Mealy machine M . Otherwise, the Teacher replies with a

19

counterexample σ, then LM
∗ adds σ and all its prefixes to S and extends (S,E, T) by

the output queries. Then the algorithm repeats the main loop until (S,E, T) is closed

and consistent, followed by making a new conjecture.

CHAPTER IV

CONFORMANCE VERIFICATION FOR WEB

SERVICE COMPOSITION

In this chapter, we provide the detailed explanation of our research methodology

based on the Web services composition.

4.1 The Approach

In a sense, Web service can be considered as a reactive system that can be invoked by

the environment, i.e., service consumer. Typically, Web service receives a request message

from the environment, performs some computations or invokes other Web services, takes

decisions on its internal transitions, and finally sends the corresponding response message

back to the environment. For this reason, the behaviors of Web service can be naturally

modeled by a Mealy machine that is specifically designed for an I/O based system.

As mentioned in Chapter 1, in order to analyze a conformance between the spec-

ification and the implementation, we verify whether the implementation has the same

observable behaviors as described in the specification, i.e., the conformance criterion is

the trace equivalence between the specification model and the implementation model, as

described by Definition 2.6.

To obtain the model of the implementation, our framework uses the learning al-

gorithm LM
∗ in an iterative fashion as shown in Figure 4.1. After each iteration, the

algorithm provides a Mealy machine conjecture of the implementation Web service that

can be used as a source for performing model checking. However, without any assumptions

the learning from the implementation is impossible.

• We assume that the Web service is available and accessible, e.g., no network con-

nection problem, no message loss.

• The inferred Web service is input deterministic. This means the Web service will

produce the same output sequence from each input sequence that is sent to it.

21

Yes

Counterexample

No

Not
found

Found

Spec Imp
i tr iS Sd

Imp
iS

Counterexample

Imp Spec
i iS not conform to S

Imp Spec
i iS conform to S

Choreography Model

Learning the
Mealy machine

from the
implementation

Transform
Mealy machine

to LTS
Spec
iS

Imp
iM

Conformance Check:

Imp Spec
i tr iS Sd

Yes

No

Counterexample

RequestQuote

ConfirmRequest

RequestQuoteReply

ConfirmRequestReply

UpdateQuote

UpdateQuoteReply

Initial

InitialReply

Buyer Seller

ShippingOrder

ShippingOrderReply

loop

Shippe
r

Compare
counterexample

with system

2

1

3

4

Figure 4.1: Web service conformance verification framework.

Suppose we have a specification LTS SSpec
i of Web service i that is assumed to be correctly

specified. Our framework consists of the following four steps:

4.1.1 Step 1: Learning the Implementation model

The first step is to learn the behavioral model from the actual implementation of

Web service using LM
∗. Table 4.1 is an example of an observation table that is inferred

from the seller Web service in RFQ example; moreover, a Mealy machine conjecture

M Imp
Seller constructed from the table is shown in Figure 4.2.

0 1

rq / resp_rq uq / resp_uq

rq

resp_sh

S

rq

resp_sh

uq

cf

resp_sh

rq

uq

cf

resp_sh

3

cf / sh

2

uq / resp_uq

cf / sh

rq

uq

cf

resp_sh / resp_cf

Figure 4.2: Mealy machine conjecture of seller Web service from Table 4.1.

Note that, the error outputs are recorded as Ω in the table. Furthermore, for

simplicity, we do not show Ω on the transition of Mealy machine, such as uq is used

22

Table 4.1: Closed and Consistent Observation Table T1 for learning seller service.

T1 E
rq uq cf resp_sh

S

ϵ resp_rq Ω Ω Ω
rq Ω resp_uq Ω Ω
uq Ω Ω Ω Ω
rq, uq Ω resp_uq sh Ω
rq, uq, cf Ω Ω Ω resp_cf

S · I

cf Ω Ω Ω Ω
resp_sh Ω Ω Ω Ω
rq, rq Ω Ω Ω Ω
rq, cf Ω Ω Ω Ω
rq, resp_sh Ω Ω Ω Ω
uq, rq Ω Ω Ω Ω
uq, uq Ω Ω Ω Ω
uq, cf Ω Ω Ω Ω
uq, resp_sh Ω Ω Ω Ω
rq, uq, rq Ω Ω Ω Ω
rq, uq, uq Ω resp_uq sh Ω
rq, uq, resp_sh Ω Ω Ω Ω
rq, uq, cf, rq Ω Ω Ω Ω
rq, uq, cf, uq Ω Ω Ω Ω
rq, uq, cf, cf Ω Ω Ω Ω
rq, uq, cf, resp_sh Ω Ω Ω Ω

instead of uq/Ω.

4.1.2 Step 2: Transforming Mealy Machine to LTS

An intention of this step is to transform the Mealy machine conjecture, from the

previous step, to the model checking formalism LTS. The LTS for a given Mealy machine

model in the trace semantics, called the corresponding LTS, is defined as follows:

Definition 4.1 (Corresponding LTS) Given a Mealy machine M = ⟨Q, I,O, δ, q0⟩

where Q, I,O are the non-empty finite sets of states, input symbols, and output symbols

respectively, δ : Q× I → 2Q×O \ {∅} is the transition function, q0 ∈ Q is the initial state.

The corresponding LTS with regard to M is an LTS P = ⟨S,Σ,∆, s0⟩, where

• s0 = q0

• Σ = I ∪O

• For all qi ∈ Q and all a ∈ I, there exists a one-to-one mapping ψ : Q → S1 and

γ : Q× I → S2 where S = S1 ∪ S2 and S1 ∩ S2 = ∅ such that

– (ψ(qi), a, ψ(qj)) ∈ ∆ if and only if (qj ,Ω) ∈ δ(qi, a)

– (ψ(qi), a, γ(qi, a)), (γ(qi, a), b, ψ(qj)) ∈ ∆ if and only if (qj , b) ∈ δ(qi, a) where

b ∈ O and b ̸= Ω

23

– ψ(sΩ) = π, where sΩ is the sink state, i.e., the state that has no outgoing

transition to other states

For example, Figure 4.3 shows the corresponding LTS SImp
Sellererr

of the Mealy ma-

chine in Figure 4.2. To note that, the corresponding LTS is not only an error LTS, but

also a deterministic LTS.

1 2 3 4 5

rq resp_rq uq resp_uq cf sh

6 7

resp_sh

cf

�

uq

0

resp_cf

8

Figure 4.3: The corresponding LTS of the Mealy machine in Figure 4.2.

4.1.3 Step 3: Verifying SSpec
i ≤tr S

Imp
i

The two following steps intend to check whether the implementation model of Web

service conforms to the choreography specification. In this step our framework verifies that

all observable traces from the specification have been implemented, i.e., SSpec
i ≤tr S

Imp
i .

As mention in Definition 2.5, in order to check SSpec
i ≤tr S

Imp
i , we check whether the π

state is reachable in SSpec
i ∥ SImp

ierr
.

For instance, using the LTS SSpec
Seller (Figure 3.2) as specification model and LTS

SImp
Sellererr

(Figure 4.3) as an error LTS of implementation model, we verify that whether

an error state π is reachable in SSpec
Seller ∥ S

Imp
Sellererr

.

4.1.4 Step 4: Verifying SImp
i ≤tr S

Spec
i

In this phase we verify that SImp
i ≤tr S

Spec
i to guarantee that the actual system has

implemented only the traces foreseen by the protocol. To do this, we create the error LTS

of the specification model, i.e., SSpec
ierr

, which traps all possible traces that do not occur

from the specification with the error state.

For example, Figure 4.4 shows the error LTS SSpec
Sellererr

of seller Web service specifi-

cation. In addition, we transform the error LTS SImp
ierr

of the implementation to the LTS

24

resp_rq rq

1 2 3 4 5

uq resp_uq cf sh

6 7

resp_sh

cf

�

0

resp_cf

8

Figure 4.4: Error LTS of SSpec
Seller in Figure 3.2.

SImp
i . This can be done easily by removing the error state and all transitions that lead

to it. Then we check whether the π state is reachable in SSpec
ierr

∥ SImp
i .

Finally, the verification process is terminated and returns that the implementation

model conforms to choreography specification, if a counterexample is not found from both

step 3 and step 4. Otherwise, we have a counterexample from either step 3 or step 4 which

shows the different behavior between the implementation model and specification. Then

we check whether the counterexample is spurious or not with the real implementation.

If the counterexample trace is found in an actual execution, we can conclude that the

implementation does not conform to the specification by using the counterexample as

evidence. On the other hand, this situation implies that the current inferred model of the

implementation is inaccurate. As a result, the counterexample is fed back to the learning

algorithm to construct a new better conjecture in the next iteration.

4.2 Preliminary Experiment

In order to demonstrate the feasibility of applying our framework to a practical

system, we used a modified version of the Request For Quotation (RFQ) (Kazhamiakin

and Pistore, 2006) as a case study. In this experiment, we applied our framework to verify

whether the implementation of the seller Web service conforms to the role of seller that

was defined by the given choreography model.

4.3 Description

There are three participating services, namely buyer, seller, and shipper, in the

RFQ case study. The MSC diagram in Figure 3.1 presents the choreography model that

specifies the sequence of interactions among these Web services. First, the buyer accepts

25

an initial message from its environment to activate the conversation. After that the buyer

sends a request requestQuote message to the seller. The seller replies a requestQuoteReply
offer back to the buyer. In this situation, the buyer can make a decision to either accept

the offer by sending a confirmRequest message, or request a new offer by sending an

updateQuote message to the seller. If the seller receives the confirmRequest message from

the buyer, the seller will send a shippingOrder request to the shipper. Otherwise, the

seller replies an updateQuoteReply to offer a new quotation to the buyer. Finally, when

the seller received the shippingOrderReply message, it sends the confirmRequestReply reply

to the buyer and the buyer sends a reply to the environment.

4.4 Implementation

We have implemented the seller service using JAX-WS (2012) to handle Web service

in Java. Thanks to the help of NetBeans IDE (2012), when we compiled and deployed

the seller Web service, the tool automatically generated and installed the Web service

and its WSDL file to the application server, e.g., GlassFish (2012). According to the

choreography, the implemented seller Web service has three public operations, namely

requestQuote, updateQuote, and confirmRequest, which are specified by tag <operation

name> in the WSDL. However, unlike BPEL, we had to manually handle states and

instances of the stateful Web service in JAX-WS. Furthermore, in order to reduce the

time used in the verification process, we expect that the implemented Web service should

throw an exception whenever an explicit error occurs. For instance, if the requestQuote
operation of the seller Web service has already been invoked and the same operation is

invoked again, the service should throw an exception immediately.

4.5 Learning Algorithm in Practice

We have also implemented a Learner and a Teacher of LM
∗ in Java. The Learner is

simply implemented with respect to the algorithm. On the other hand, an implementation

of a Teacher is quite complicated. For the reason that we have to provide a Teacher that is

able to answer both kinds of questions: “membership queries” and “equivalence queries”.

26

4.5.1 Membership Queries

The membership queries are asked by the Learner in step 1 of the verification pro-

cess. In order to answer this kind of question, we created the Teacher which is composed

of two parts, main part and monitoring part, based on the given WSDL of a targeted

Web service.

Suppose we know the set of input symbols and the set of output symbols of the

Learner. The main part implements the methods to invoke the public operations of the

targeted Web service. When the main part has received the sequence of input symbols

from the Learner, it maps each symbol to the public operation, creates a SOAP message

corresponding to the operation, and sends the message to the Web service.

Simultaneously, while the main part sends the SOAP message to the implemen-

tation, the monitoring part is used to monitor the output that will be sent from it. If

the output message is received on time, the Teacher maps the message back to the cor-

responding output symbol and replies it to the Learner. Otherwise, if either the error

message is received or the timeout has expired, the Teacher replies with the symbol Ω.

Our implementation of this part was modified from TcpMon (2012).

4.5.2 Equivalence Queries

The conjectures are constructed and presented to the Teacher in steps 2-4 of the

verification process. To answer the question, the model checker Labelled Transition System

Analyser LTSA (Magee and Kramer, 2006) is employed to check the trace equivalence

relation between the LTSs of implementation SImp
i and specification SSpec

i . In step 2,

the Mealy machine conjecture is automatically transformed to the corresponding LTS

according to Definition 4.1. After that we performed a model checking based on a trace

equivalence relation. Step 3 of our framework verifies that all observable traces from the

specification have been implemented, i.e., SSpec
i ≤tr S

Imp
i . Next, in step 4, we verify that

SImp
i ≤tr S

Spec
i to guarantee that the actual system has implemented only the traces

foreseen by the protocol. If we have a counterexample provided by LTSA from either step

3 or step 4, the Teacher replies with the counterexample. Otherwise, the Teacher replies

“yes” to the Learner.

27

4.6 Experimental Result

Given the set of input symbols I = {rq, uq, cf, resp_sh} for requestQuote, update-
Quote, confirmRequest, and shippingOrderReply message respectively, and the set of output

symbols O = {resp_rq, resp_uq, resp_cf, sh,Ω} for requestQuoteReply, updateQuoteRe-
ply, confirmRequestReply, shippingOrder message and the special symbol Ω representing

the error message respectively. From step 1, the observable table (S,E, T) is initialized

and the algorithm is applied until the table is closed and consistent. Table 4.1, in the

previous section, is the closed and consistent table from the first iteration. Figure 4.2

presents the Mealy machine conjecture M Imp
Seller from Table 4.1.

After transforming the Mealy machine conjecture to the corresponding LTS model

SImp
Sellererr

(step 2), we checked that every observable traces from the specification have

been implemented by verifying SSpec
Seller ∥ SImp

Sellererr
(step 3). Using LTSA, we found that

the π state is not reachable.

However, the trace σ = rq · resp_rq · uq · resp_uq · uq, as shown by dotted line in

Figure 2.2, is a counterexample from verifying SSpec
Sellererr

∥ SImp
Seller (step 4) with LTSA. After

checking with the implementation of seller Web service, we found that the counterexample

is the actual run of the service. As a result, we can conclude that the current implemented

seller Web service does not conform to the given choreography specification; moreover, the

counterexample trace can be used to refine either the specification or the implementation

of the service.

4.7 Summary

Although the notions of conformance between Web service choreography and or-

chestration has been formally defined in the literatures, the practical limitation of the

verification process is that the internal structures of implemented orchestration have to

be explicit such as BPEL. In this chapter, we presented a framework for verifying the con-

formance between choreography specification and the black box implementation of Web

service using the learning algorithm LM
∗ and the model checker LTSA. As an application

to a practical system, we conducted an experiment to verify the seller Web service imple-

mented in Java of the RFQ case study. From the experimental result, we were able to

detect the execution trace of the seller service that does not conform to the specification.

CHAPTER V

NON-DETERMINISTIC FINITE STATE MACHINES

INFERENCE

5.1 Motivation

In the former chapters, we assume that the behaviors of the implementation are

deterministic and can be described by DFSMs. On the other hand, nondeterminism in

specifications and practical applications is not unusual in certain systems that are com-

posed of a number of components that participate concurrently, such as a communication

system, a component-based system, and a service-oriented system. Such nondetermin-

ism could arise from the asynchronous communication between different components, as

well as from unpredictable activities such as interleaving between components. A non-

deterministic finite state machine (NFSM) is preferred for specifying such a system in a

more neutral manner because it has both an input/output structure and nondeterminism.

Even though the NFSM has received much attention in a wide range of test generation

methods (see, for example, (AboElFotoh et al., 1993; Hierons, 2004; Ipate, 2006; Luo

et al., 1994)), it has received less examination in the automata learning literature. Nev-

ertheless, the relationship between model-based testing and automata learning can be

found in (Berg et al., 2005a; Lee and Yannakakis, 1996).

Most of the studies on automata inferencing of nondeterministic machines, both the

active and passive approaches, are based on a class of non-deterministic finite automata

(NFAs). For example, Yokomori (1995) presented an active algorithm for inferring NFAs

using contradiction backtracking. In (Denis et al., 2000, 2004), the authors introduced a

subclass of NFAs, namely residual finite state automata (RFSAs), and provided passive

learning algorithms for RFSAs that operate in a manner similar to that of the classical

RPNI algorithm (Oncina and Garcia, 1992). Moreover, they argued in (Denis et al., 2004)

that the resulting NFAs of (Yokomori, 1995) are actually RFSAs. Another subclass of

NFAs, called unambiguous finite automata (UFAs), was defined and studied in (Coste and

Fredouille, 2003). A recent survey and comparisons of passive learning for NFAs can be

29

found in (García et al., 2008). In addition, for active procedure, the most recent RFSAs’

learning algorithm, called NL∗, is presented in (Bollig et al., 2009).

Inferencing in a class of NFSMs, i.e., finite automata with outputs and with non-

determinism, has been studied in (Berg et al., 2006; Shahbaz et al., 2007), for example.

The closest idea to our approach can be found in (Shahbaz et al., 2007), in which the

authors extend the concept of L∗ to a more expressive model called a parameterized finite

state machine (PFSM), which has nondeterministic structures. For the same determin-

istic input, i.e., the same input symbol but with different input parameters, a PFSM

could produce different outputs. In contrast, we consider in this study an NFSM model

that, for the identical inputs, i.e., the same input symbol and the same input parameter,

could produce different outputs. Thus, we have studied a model with a higher degree of

nondeterminism.

There are two main reasons as to why we cannot use an algorithm to determinise

an NFSM to an equivalent deterministic FSM (DFSM), and then apply the DFSM’s

learning algorithms. First, unlike finite automata, there are NFSMs for which there is no

equivalent DFSM (Hierons, 2004). Second, even though some NFSMs can be converted

into equivalent DFSMs, the corresponding DFSM could have exponentially more states

than the original NFSM, which would be an obstacle in the learning process because

its efficiency depends on this factor. Thus, specific learning algorithms for NFSMs are

needed.

In this chapter, we propose an active-style learning algorithm called LNM
∗ for

NFSM inferencing. To apply the algorithm, an input/output query (i/o query) that ex-

tends the concept of an output query (Shahbaz and Groz, 2009) is introduced. Because

some NFSMs might be partially specified, as studied in (Petrenko and Yevtushenko,

2006) for conformance testing approach, we present an optimization that can optionally

be invoked in this specific case of NFSMs. We also provide a time complexity analy-

sis together with a proof of correctness because our algorithm can be terminated by an

incorrect conjecture that has more states than the original machine when the complete

testing assumption (Hierons, 2004) does not hold. We implemented the algorithm and

studied its efficiency using a suite of experiments. From the experimental results, we

draw conclusions regarding the applicability and scalability of our algorithm, as well as

30

the effect of our implemented optimization. Moreover, these results allow us to perform

a tighter analysis of the worst-case time complexity of LNM
∗.

5.2 Inference of Non-deterministic FSMs
b/x

b/x

a/y

a/y b/y

a/y

a/xb/y

b/y

�Ù �Ú �Û

�Ü

Figure 5.1: Example of a non-deterministic finite state machine.

Even though Angluin’s algorithm L∗ can efficiently learn an unknown regular lan-

guage U and produce a minimal DFA that accepts U in polynomial time, its adaptations

to FSMs are not obviously efficient, as discussed in (Shahbaz and Groz, 2009). For exam-

ple, the direct adaptations can be performed through model transformation techniques by

mapping from inputs and outputs of the FSM to letters of a DFA’s alphabet Σ, such that

Σ = I∪O (Hungar et al., 2003) or Σ = I×O (Mäkinen and Systä, 2001). However, these

methods are confronted by complexity problems because the cost of L∗ is polynomial,

based on the size of Σ. Shahbaz and Groz (2009) observed that, by slightly modifying the

structure of the observation table and the way in which the counterexample is processed,

their proposed method, namely LM
+, can learn deterministic FSMs, specifically Mealy

machines, more effectively.

As usual in L∗-based algorithms’ settings, a learning algorithm, called Learner,

needs to ask two types of questions to a Minimally Adequate Teacher, called Teacher for

short, which is assumed to correctly answer the questions. The first type of question

is called a membership query in L∗, which consists of a string σ from Σ∗. The Teacher

replies either true if σ ∈ U or false otherwise. Later, this concept is adapted to the output

query in LM
+, which consists of a string σ from I+. The difference is that, instead of

true or false, the Teacher of LM
+ replies with the output string from O+, which will be

processed and recorded in an observation table.

The second type of question is called an equivalence query, which consists of a

31

candidate DFA M , whose language the Learner believes to be identical to U (i.e., L(M) =

U) in the case of L∗, or a candidate Mealy machine M , whose language the Learner

believes to be identical to the language of an unknown Mealy machine MU (i.e., L(M) =

L(MU)) in the case of LM
+. The answer is true if it is a correct conjecture; otherwise,

the Teacher returns a counterexample, which is a string in the symmetric difference of

L(M) and U in L∗ or L(M) and L(MU) in LM
+.

In our setting, the algorithm asks input/output queries (i/o queries) that are input/

output sequences x̄/ȳ, where x̄ is in I∗ and ȳ is in O∗, followed by an input sequence z̄

in I+, and obtains the corresponding answer from the Teacher. This concept is similar

to that of the output queries of LM
+. However, we modify the Teacher to answer the i/

o queries with the output sequences from O+ that have the output sequence ȳ as their

prefix. Note that, after each query, the unknown machine must be returned to the initial

state by a reset input.

Moreover, we need to ask the same i/o query k times for each input/output sequence

to observe every possible output sequence from an unknown NFSM (if the complete testing

assumption holds for k).

Let M = (Q, I,O, δ, q0) be an unknown NFSM that is initially connected, com-

pletely specified, observable, and reduced. A detailed description of an observation table

and the procedure of LNM
∗ will be described in this section.

5.2.1 Observation Table

At a higher level, the observation table is composed of two parts: an upper and

a lower part. Each row in the upper part represents a candidate state of the unknown

machine, while each row in the lower part represents the target state of a candidate state

and an input. Formally, the structure of an observation table (denoted by (S,E, T)) of

the algorithm LNM
∗ consists of three parts: S,E, and T , where

• S is the non-empty finite set of prefix-closed input/output sequences x̄/ȳ, where

x̄ ∈ I∗, ȳ ∈ O∗, and S always contains the empty sequence ϵ.

• E is the non-empty finite set of suffix-closed input sequences from I+.

32

• T is a finite function that maps (S ∪S · I/O)×E to a set of output sequences from

2O
|E| .

Intuitively, an observation table can be visualized as a two-dimensional array with

rows labelled by elements of S and S · I/O (i.e., S ∪ S · I/O) and columns labelled by

elements of E. The entry corresponding to row s in (S∪S ·I/O) and column e in E equals

to T (s, e), which contains the set of the output sequences from suff |e|(δO(q0, s ·e)), where

suff k(S) denotes the set of k-length suffixes of every sequence from a set S. For example,

let S = {y · x · x, y · x · y, y · y · y}, suff 1(S) = {x, y} and suff 2(S) = {x · x, x · y, y · y}.

Table 5.1: Example of an observation table.

T1
E

a b
S ϵ {y} {y}

S · I/O a/y {y} {x, y}
b/y {y} {y}

Definition 5.1 (Row Equivalence) Let s, t be two rows in the table (S,E, T), i.e.,

s, t ∈ S ∪ S · I/O. Then, s and t are row equivalent, denoted by s ∼=E t, if and only if

T (s, e) = T (t, e) for all e ∈ E. Moreover, we used [s] to denote the equivalence class of

rows that are row equivalent to s.

For example, Table 5.1 is an example of the observation table used for learning the

NFSM M0 in Figure 5.1. From this table, the row ϵ is equivalent to b/y (i.e., ϵ ∼=E b/y)

but is not equivalent to a/y (i.e., ϵ ̸∼=E a/y).

Definition 5.2 (Closed Observation Table) An observation table is called closed if

and only if for each t ∈ S · I/O, there exists an s ∈ S such that s ∼=E t.

For example, Table 5.1 is not closed because a/y ∈ S · I/O but ∀s ∈ S, s ̸∼=E a/y.

However, Table 5.2 is a closed observation table because, for each row t in S · I/O, there

exists a row s in S such that s ∼=E t.

From the closed observation table, we can construct an NFSM conjecture as follows:

33

Table 5.2: Closed observation table.

T1
E

a b

S
ϵ {y} {y}
a/y {y} {x, y}
a/y · b/x {x} {x}

S · I/O

b/y {y} {y}
a/y · a/y {y} {y}
a/y · b/y {y} {y}
a/y · b/x · a/x {x} {x}
a/y · b/x · b/x {y} {y}

Definition 5.3 (NFSM Conjecture) Given a closed observation table (S,E, T), LNM
∗

obtains an NFSM conjecture M = (Q, I,O, δ, q0), where

• q0 = [ϵ],

• Q = {qi | qi = [s] for 1 ≤ i ≤ |S| − 1, ∀s ∈ S ∧ s ̸= ϵ},

• δ(q, i) = {(q′, o) | q = [s], q′ = [s · i/o], ∀s ∈ S,∀i ∈ I, ∀o ∈ T (s, i)}.

The conjecture M0
(1) shown in Figure 5.2 is constructed from Table 5.2, which is a

closed observation table, according to Definition 5.3.
a/y

a/y, b/y
b/x

a/x

b/y

b/x

�Ù �Ú

�Û

Figure 5.2: The NFSM conjecture M0
(1) from Table 5.2.

Theorem 5.4 Let (S,E, T) be a closed (and consistent) observation table, and let M be

the NFSM conjecture that is constructed from (S,E, T). The conjecture M is consistent

with the finite function T . Any other NFSM that is consistent with T but not equivalent

to M must have more states.

Proof. Since the observation table (S,E, T) in the setting of LNM
∗ preserves the prefix-

closed and suffix-closed properties of S and T , respectively, the conjecture is proven to

be consistent with the observation table that has been given by Niese (2003). Moreover,

34

because the conjecture M is the reduced NFSM by construction, any other NFSM that

consistent with T but not equivalent to M must have at least one more state. �

5.2.2 The Algorithm

We now describe LNM
∗, which takes a set of input symbols I and a time to query

k as input. Its pseudocode is given in Algorithm 1.

Algorithm 1: The algorithm LNM
∗.

input : A set of input symbols I, time to query k
output: NFSM conjecture M

// Construct the initial observation table (S,E, T)
1 set S = {ϵ}, E = I, and update T using i/o queries ;
2 add ϵ · i/o to S · I/O for all i ∈ I, o ∈ T (ϵ, i), and update T using i/o queries ;
3 repeat

// Check whether the table is closed
4 while found t ∈ S · I/O such that t ̸∼=E s, for all s ∈ S do
5 move t to S;
6 add t · i/o to S · I/O for all i ∈ I, o ∈ T (t, i), and update T using i/o queries ;
7 end
8 make the NFSM conjecture M from (S,E, T) ;
9 if the Teacher replies with a counterexample ce then

10 if any prefix of ce has been recorded in T with a different value then terminate ;
11 else
12 find the longest u ∈ S ∪ S · I/O such that ce = u · v ;
13 add the input sequence of v and all of its suffixes to E, and update T using i/o

queries ;
14 end
15 end
16 until the Teacher replies “yes”;
17 return the conjecture M ;

The algorithm starts by initialising an observation table (S,E, T) with S = {ϵ} and

E = I. Then, it asks the i/o queries to fill the upper part of the table, i.e., T (ϵ, e), ∀e ∈ E

(line 1). Next, it uses the observed outputs from the upper part to construct the i/o

queries to fill the lower part, namely S · I/O, of the table, i.e., T (ϵ · i/o, e),∀i ∈ I, ∀e ∈

E, ∀o ∈ T (ϵ, i) (line 2).

After initialising the table, LNM
∗ repeatedly checks whether the current table is

closed (line 4). If it is not closed that means there exists row t ∈ S · I/O such that t ̸∼=E s

for all s ∈ S. Then, LNM
∗ finds and moves row t to S (line 5). Next, t · i/o is added to

S · I/O, and T (t · i/o, e) is determined by the i/o queries for all i ∈ I, e ∈ E, o ∈ T (t, i)

(line 6).

When the table is closed, LNM
∗ makes an NFSM conjecture M from the table

35

according to Definition 5.3 and verifies it with the Teacher by equivalence query (line 8).

The Teacher replies either yes, acknowledging that the conjecture is correct, or with a

counterexample. If the Teacher says yes, then LNM
∗ terminates with the correct NFSM

M (line 16). Otherwise, the Teacher replies with a counterexample. The counterexample

is analysed as to whether it is false (line 10). If it is a false counterexample, then the

procedure terminates; otherwise, it will be used for extending the table accordingly (lines

12 − 13). The method for processing a counterexample will be described in the next

subsection. With the extended table, the algorithm repeats the checking loop (lines

4− 6) again until the table is closed, followed by making a new conjecture.

Note that, according to the complete testing assumption, for each i/o query, LNM
∗

needs to ask the same query k times to explore every possible output from the machine.

Therefore, an answer of an i/o query is a set of output sequences.

5.2.3 Counterexample

To the best of our knowledge, the crucial improvement in the methods for process-

ing counterexamples of the original Angluin’s algorithm L∗ was proposed by Rivest and

Schapire (1993). They observed that the handling of counterexamples as in L∗ could lead

to inconsistency in an observation table (S,E, T). Informally, the table is inconsistent if

two (or more) rows in the upper part of the table that represent the same potential state

in the conjecture have different target states when applied to some inputs. More precisely,

∃s, t ∈ S and ∃i ∈ I, such that s ∼=E t but s · i ̸∼=E t · i. This scenario implies that the

rows s and t must be distinguished. Fortunately, Rivest and Schapire suggested that, by

adding a distinguishing sequence from the counterexample to the set E, inconsistency will

never occur. The reason is that the method will never directly add a new row to S, and

consequently, the rows in S will remain inequivalent. Furthermore, this condition will

always hold trivially. However, the method requires a relaxation on the prefix-closed and

suffix-closed properties of the table. For more details and proofs of the method, interested

readers can refer to the original paper (Rivest and Schapire, 1993).

In (Shahbaz and Groz, 2009), the authors modified the method for processing the

counterexample based on Rivest and Schapire’s idea. Their method starts by finding the

longest prefix of the counterexample that has already been observed in the table, i.e.,

S ∪ S · I. Then, the remaining string and all of its suffixes are added to E. Unlike

36

the previous methods, the observation table preserves the prefix-closed and suffix-closed

properties, and, therefore, the constructed conjecture is proved to be consistent with the

table.

Our treatment of counterexamples is adapted straight from (Shahbaz and Groz,

2009). Let ce be the counterexample for the current conjecture. We find the longest

prefix u ∈ S ∪ S · I/O of ce such that ce = u · v, and v = x̄/ȳ is the remaining input/

output sequence of ce. Then, we add the input sequence of v (i.e., x̄) and all of its suffixes

to E.

We have observed that, when processing a counterexample in this setting, the table

preserves the prefix-closed and suffix-closed properties of S and E, respectively. Thus,

the output conjecture is proved to be consistent with the observation table.

5.2.4 Correctness

As usual in an active learning procedure, our algorithm asks increasingly longer i/

o queries to the Teacher to observe all of the possible states of an unknown machine,

and the corresponding sets of output sequences are recorded in an observation table

(S,E, T). According to the structure of the observation table, the set S contains uniquely

potential states of the conjecture, and the set E contains the sequences that can be used

to distinguish these states from each other. This scenario means that every row in S can

be distinguished when applying some e ∈ E. In other words, any rows in the table (i.e.,

S ∪S · I/O) that represent the same state must not be distinguished by any sequences in

E.

In the case of a deterministic machine, when the same states are applied by any

distinguishing sequences, the machine always responds with the same set of output se-

quences. However, this scenario is not always the case for a non-deterministic machine.

The reason is that if the complete testing assumption does not hold, the Learner may

observe a different set of output sequences when the state is applied more than once by

the same input/output sequence. This situation could lead the Learner to infer an incor-

rect conjecture. Nevertheless, the learning procedure will always terminate, which will be

proved as follows.

37

Proposition 5.5 Suppose that MU = (Q, I,O, δ, q0) is an unknown NFSM. Let qi be a

state in Q, and let Oqi,a be a set of possible outputs of a state qi under an input a in I.

Clearly, Oqi,a ⊆ O. Let Lqi,a be the set of all combinations of outputs of the state qi under

the input a. Then, Lqi,a = 2Oqi,a \ {∅} and |Lqi,a| = 2|Oqi,a
| − 1.

Proposition 5.5 claims that the number of possible distinct output sets that can be

observed and added to the observation table is finite.

Theorem 5.6 Given an unknown NFSM MU = (Q, I,O, δ, q0), LNM
∗ will eventually

provide a closed table (S,E, T) in each iteration, regardless of the complete testing as-

sumption.

Proof. Now assume that s is a row in S and t is a row in S ·I/O and that they represent

the same state qi in Q. Therefore, s ∼=E t, which means that T (s, e) = T (t, e) must hold

for all e in E with respect to Definition 5.1. If the complete testing assumption holds,

then we know that δO(qi, a) = Oqi,a for ∀a ∈ I and ∀qi ∈ Q. Since e is I+, we have

T (s, e) = T (t, e) = Oqi,e. Thus, the table is closed.

In contrast, when the complete testing assumption does not hold, we know that

δO(qi, a) ⊆ Oqi,a. Thus, there may exist an e in E such that T (s, e) ̸= T (t, e), i.e., the

different subsets of Oqi,a have been observed as outputs for T (s, e) and T (t, e). This leads

the Learner to consider moving row t, which represents a spurious state, to S. Thus,

there are two possible cases, as follows:

• If t is not a new row in S, then the table is now closed.

• Otherwise, row t is moved to S, and the learning process can continue. In this case,

the number of the remaining elements in Lqi,a must decrease by at least one for each

iteration.

By Proposition 5.5, because the set Lqi,a is finite, the maximum number of spurious

states for a state qi for all inputs is bounded by
∑

a∈I |Lqi,a|, which is also finite. As a

result, from (i) and (ii), the learning process eventually provides a closed table. �

38

Theorem 5.7 Given an unknown NFSM MU = (Q, I,O, δ, q0), let M be a corresponding

conjecture that is constructed from a closed table (S,E, T) in each iteration. When

LNM
∗ terminates, if the complete testing assumption holds, then M is guaranteed to be

isomorphic with MU .

Proof. Theorem 5.6 ensures that LNM
∗ always provides a closed table in each iteration.

Whenever the table is closed, the corresponding NFSM conjecture is constructed based

on Definition 5.3. Since, by Theorem 5.4, the conjecture M is consistent with the finite

function T . For the case in which the complete testing assumption holds, according to

the correctness of the Teacher’s answer for the equivalence query, we either obtain a

counterexample from the conjecture for extending the table, or the learning procedure

terminates with a correct conjecture that is isomorphic to MU . �

Note that, when the complete testing assumption does not hold, there may exist

some rows, which represent spurious states, are recorded in the table. Thus, the conjecture

M , which is consistent with the table, may have these spurious states. With respect to

the correctness of the answer for the equivalence query, if M contains the spurious states,

then LNM
∗ terminates. In summary, our algorithm does not necessarily provide an NFSM

that is isomorphic to MU in this case.

5.2.5 Complexity

We analysed a theoretical upper bound for the number of i/o queries asked by

LNM
∗. Similar to the membership queries of L∗ or the output queries of LM

+, the

maximum number of i/o queries also corresponds to the worst-case size of the observation

table.

Let |I| and |O| be the sizes of the input set I and the output set O, respectively.

Let n be the number of states of the NFSM, and let m be the maximum length of any

counterexamples that are provided by the Teacher for equivalence queries. The size of

the table has at most n + n|I||O| rows (n rows in the upper part + their successors)

and |I| + m(n − 1) columns because E contains |I| elements initially, and at most m

suffixes of the maximum n − 1 counterexamples are added. In addition, with respect

to complete testing assumption, each query must be asked k times to observe every

possible output. Thus, LNM
∗ produces a correct conjecture by asking a maximum of

39

k(S ∪ S · I/O)× E = O(kn|I|2|O|+ kmn2|I||O|) i/o queries.

5.2.6 Optimization

As mentioned in (Shahbaz and Groz, 2009), reactive systems can be naturally mod-

elled as (non-deterministic) finite state machines. These models are very useful for check-

ing some properties before implementing the system or testing whether the implementa-

tion conforms to the specification models. However, these models might come up with

partial transition relations (Petrenko and Yevtushenko, 2006). To apply our method, one

necessary assumption is that the FSM models must be completely specified.

Any (non-deterministic) FSM can be transformed into a completely specified FSM

by adding a sink state that loops itself for all inputs, i.e., a state that has no outgoing

transition to other states, and adding transitions for the missing inputs from any states

in the original FSM to the sink state, with a designated error output symbol.

b/ ·

a/0

a/ ·
a/ ·

a/1b/0
b/1

a/1

b/ ·

�Ù �Ú

�Û �Ê

a/0

a/1b/0
b/1

a/1

�Ù �Ú

�Û

Figure 5.3: A partially specified NFSM (left) and the corresponding completely specified NFSM
(right).

Consider an NFSM example, shown in Figure 5.3, in which the input symbols are

{a, b} and the output symbols are {0, 1}. Here, an NFSM on the left side is partially

specified since it is missing input b of state q1 and input a of state q2. Thus, a sink state

π is introduced, and new transitions are added between state q1 under input b and state

q2 under input a to the sink state, as shown in Figure 5.3 (right). In this figure, an error

output symbol is represented by Ω.

Thus, if we know that any sequence t will lead the machine to enter the sink state,

then every sequence that has t as its prefix will also lead the machine to enter the sink

state. We can then use this characteristic to reduce the number of i/o queries asked to the

Teacher. Before asking each query, the Learner must first test whether it is an extension

of an input/output sequence that has already been observed with an error output. If so,

40

the Learner can then immediately record the result of the query as an error in the table.

Note that, when we obtain a correct conjecture, which is a completely specified

FSM with a sink state, from LNM
∗, it can be transformed back to the original machine

easily by removing the sink state and all of the transitions that lead to it.

5.2.7 Example

We illustrate the algorithm LNM
∗ on the NFSM M0 given in Figure 5.1. The

algorithm initializes (S,E, T) with S = {ϵ} and E = I = {a, b}. Moreover, we set k = 10

in this example. Then, LNM
∗ asks the i/o queries to fill the upper part of the table, i.e.,

T (ϵ, a) = y and T (ϵ, b) = y. Next, it uses the known outputs to construct the queries to

fill the lower part of the table. The initial table is shown in Table 5.1.

When the initial table is filled, LNM
∗ repeatedly tests whether the table is closed.

Table 5.1 is not closed because the row a/y in S · I/O is not equivalent to any row in

S. Therefore, the algorithm moves the row a/y to S and extends the table by adding

a/y · a/y, a/y · b/x, and a/y · b/y to S · I/O. Then, the queries are constructed for the

missing elements of the observation table.

The new table is closed, as shown in Table 5.2; thus, LNM
∗ makes a conjecture

M0
(1) from it, which is shown in Figure 5.2. Since the conjecture M0

(1) is not correct, the

Teacher replies with a counterexample ce. In this case, we assume that the counterexample

ce is a/y · b/y ·a/y · b/x (a/y · b/y ·a/y · b/x ∈ L(M0
(1)) but a/y · b/y ·a/y · b/x ̸∈ L(M0)).

Table 5.3: Processing the counterexample a/y · b/y · a/y · b/x for M0
(1).

(a) Adding the suffixes of a · b to E.

T2
E

a b a · b

S

ϵ {y} {y} {y · x, y · y}
a/y {y} {x, y} {y · y}
a/y · b/x {x} {x} {x · x}

S · I/O

b/y {y} {y} {y · x, y · y}
a/y · a/y {y} {y} {y · x, y · y}
a/y · b/y {y} {y} {y · y}
a/y · b/x · a/x {x} {x} {x · x}
a/y · b/x · b/x {y} {y} {y · x, y · y}

(b) Moving the rows a/y · b/y to S.

T2
E

a b a · b

S

ϵ {y} {y} {y · x, y · y}
a/y {y} {x, y} {y · y}
a/y · b/x {x} {x} {x · x}
a/y · b/y {y} {y} {y · y}

S · I/O

b/y {y} {y} {y · x, y · y}
a/y · a/y {y} {y} {y · x, y · y}
a/y · b/x · a/x {x} {x} {x · x}
a/y · b/x · b/x {y} {y} {y · x, y · y}
a/y · b/y · a/y {y} {y} {y · y}
a/y · b/y · b/y {y} {y} {y · x, y · y}

According to the method for processing the counterexample, LNM
∗ adds a ·b, which

41

is the remaining input sequence of ce, and all of its suffixes, i.e., b and a ·b, to E, as shown

in Table 5.3a. This table is not closed because the row a/y · b/y is not equivalent to any

rows in S. Thus, the row a/y · b/y is moved to S, and the table is extended accordingly.

The resulting table after filling in the missing elements by asking i/o queries is Table 5.3b.

Next, LNM
∗ checks whether Table 5.3b is closed. This table is closed, so LNM

∗

constructs a new conjecture that is isomorphic to M0. Thus, the Teacher replies yes to

this conjecture and LNM
∗ terminates with the correct conjecture as its output. The total

number of i/o queries asked by the algorithm during this run is 300.

5.3 Experiments

We have performed a suite of experiments to demonstrate the applicability and

scalability of our algorithm in practice. This suite is composed of (i) 9 samples of (partially

and completely specified) NFSMs, either inspired by different papers (Hierons, 2004; Miao

et al., 2010) or specifically designed, and (ii) random (partially specified) NFSMs with

arbitrary sizes for the number of states. Furthermore, we have implemented our algorithm

in Java, together with our proposed optimization.

We have also simulated the Teacher to answer the equivalence query by using the

model checker Labelled Transition System Analyser (LTSA) (Magee and Kramer, 2006).

To apply the LTSA, we first transform the NFSM to the corresponding Labelled Tran-

sition System (LTS). The transformation technique is straightforwardly modified from

(Pacharoen et al., 2011). Then, the model checking tool checks the trace equivalence

relation between two corresponding LTSs of the learned NFSM and the targeted NFSM.

As mentioned in (Berg et al., 2005b), the performance of the Teacher in answering

an equivalence query depends on the method that is used to realize it. Thus, the time

spent by the equivalence query is disregarded from the measurement. To evaluate the

execution time of the algorithm, we measured the total execution time except for the

time utilized for the equivalence queries.

The experiments were conducted using a Windows 7 system with an Intel Core i5,

2.67 GHz and 4 GB of memory, and LTSA version 3.0. In addition, the Learner and the

Teacher were running on the same machine.

42

5.3.1 Sample Machines

The first set of experiments was conducted on 9 sample FSMs, 1 DFSM and 8

NFSMs, to evaluate our algorithm. All of the examples are different sizes in terms of the

number of states. Moreover, we started with the time to query (k) to 1, and learned 10

times for each machine.

Table 5.4: Runs from 9 sample machines.

Machines No. of States k I/O Queries EQ Avg. time
(ms)

M1 3 1 14 1 7.2
M2 3 8 144 1 103.1
M3 4 7 140 1 65.9
M4 4 10 260 1 363
M5 4 7 154 1 95.8
M6 6 11 462 2 251.9
M7 6 6 336 3 176.1
M8 7 10 510 2 307.6
M9 8 10 570 2 329.4

Experiences

The learned machines are isomorphic to the original FSMs, as expected. With re-

spect to the number of states of each sample machine (No. of States) and the time to

query (k), which can guarantee the complete testing assumption, Table 5.4 shows the ex-

perimental results, including the number of used input/output queries (I/O Queries), the

number of used equivalence queries (EQ), and the average execution time in milliseconds

(Avg. time).

From the table, LNM
∗ can be applied with both DFSM (e.g., M1) and NFSM (e.g.,

M2–M9). In addition, k = 1 is obviously sufficient for learning any DFSM. Note that

the efficiency of the algorithm not only depends on the number of states and the size of

the input alphabet, but it also depends on the value of k. Let us consider machines M2

and M3, which have 3 and 4 states, respectively. Learning M3, which has more states, is

expected to require more I/O queries; however, because the value of k for inferring M3 is

less than that for inferring M2, learning M2 requires slightly more queries than M3.

43

5.3.2 Random Arbitrary Machines

Apart from the sample machines, we also performed a second set of experiments on

random examples by varying the number of states. Specifically, we generated and learned

NFSMs with sizes ranging between 10 and 100 states (in steps of 10), with an input size

of 10 and an output size of 5. For each number of states n, we randomly generated 10

NFSMs, which have n − 1 states plus one sink state, to observe the effectiveness of our

optimization.

First, we fixed the time to query to 5. However, we found that we cannot guarantee

the complete testing assumption with this value. To compare the scalability of LNM
∗, we

varied the number of states of the target machines and fixed the time to query. Thus, in

this experiment, we set the time to query to 20, and we leave the topic of how to define

this value to be discussed in the next section.

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100

#
�i
n
p
u
t/
o
u
tp
u
t�
q
u
e
ri
e
s

States

Normal

With�optimization

Figure 5.4: Random NFSM examples learned with normal LNM
∗ and with optimization, using

|I| = 10, |O| = 5, and k = 20.

Experiences

We observed that the number of i/o queries relative to the number of states is linear

and conforms to the part kn|I|2|O| in the complexity calculation (see Figure 5.4, in which

we vary the number of states but fix the other factors such that |I| = 10, |O| = 5 and

k = 20).

The number of i/o queries is reduced by an average of approximately 39% using the

optimized version compared to the basic LNM
∗ algorithm. Moreover, the best reduction

that we achieved in this setting was 43% in an NFSM with 10 states. With the specific

example of a size of 100 states, the optimized Learner took approximately 10 minutes

44

with 138,546 i/o queries, a reduction of approximately 38%. The detailed results can be

found in Table 5.5, in which it can be seen that the optimized Learner performs better in

every case. This scenario might indicate that, for an NFSM with a certain structure, we

can make the algorithm perform better through our optimization.

Note that, because the number of equivalence queries in the optimized version does

not change from the number in the basic algorithm, we do not report the query in this

experiment.

Table 5.5: Comparison of normal LNM
∗ with the optimized version using the random NFSM

examples.

No. of States I/O Queries I/O Queries Saved Queries
(with opt.) (%)

10 22000 12620 43
20 44200 26020 41
30 66200 38760 41
40 87400 50900 42
50 109200 67640 38
60 132200 81760 38
70 158552 94950 40
80 176202 108366 38
90 198200 127960 35
100 222402 138546 38

Interestingly, when we plotted a graph to study the relationship between the actual

number and the theoretical upper bound of the I/O queries, as shown in Figure 5.5,

we observed that the part kn|I|2|O| of the calculated upper bound is far closer to the

experimental results than the other part, i.e., kmn2|I||O|. The reason for this similarity

is that the Learner in our setting asks few equivalence queries in practice. Thus, a small

number of columns will be added to the observation table, i.e., the maximum number of

columns is |I|+ ε, where ε is a small integer.

As a result, the revised calculation of the worst-case time complexity of the algo-

rithm LNM
∗ in our setting is O(kn|I|2|O|) since the table has at most n + n|I||O| rows

and |I|+ ε columns.

5.4 Discussion and Summary

In this chapter we have presented a novel algorithm for NFSM inference, namely

LNM
∗, which uses active-style learning similar to the original L∗ algorithm. This algo-

rithm can be applied to both deterministic and non-deterministic FSMs. However, to

45

0

2000000

4000000

6000000

8000000

10000000

12000000

10 20 30 40 50 60 70 80 90 100

#
�i
n
p
u
t/
o
u
tp
u
t�
q
u
e
ri
e
s

States

knI2O kn2IO ActualGJ�+�6�1� GIJ
6�+��1� #?PQ=H

Figure 5.5: Comparison of the actual number of I/O queries of the normal LNM
∗ algorithm and

the theoretical upper bound on the random NFSM examples.

infer the correct conjecture, the complete testing assumption must hold in the case of

NFSMs. We have calculated the worst-case time complexity of LNM
∗, together with a

refinement from the experimental results. Moreover, when LNM
∗ deals with NFSMs that

have a particular structure, i.e., partially specified NFSMs, the algorithm offers a faster

run by our proposed optimization. From the experimental results, the optimized Learner

can reduce the number of i/o queries by approximately 39% on average.

In our setting, we used the LTSA model checker as the Teacher to answer equivalence

queries. The results from testing the trace equivalent relation between the two LTSs that

represent the learned NFSM and the targeted NFSM can be automatically provided in

a short time, e.g., approximately 5 milliseconds for NFSMs with 90 states. Clearly, our

method for answering equivalence queries does not work when the prior knowledge of the

targeted NFSM is not given. However, it can easily be replaced by other methods, such

as a conformance testing approach, with the additional cost of the test suite generation.

To answer the question of how to define the proper value of k to guarantee the

complete testing assumption, we usually set the value of k to be a small integer, e.g.,

k = |O|. Because our algorithm is assured to terminate regardless of the complete testing

assumption, we eventually obtain a conjecture NFSM. Using the equivalence query, the

Learner can receive either the answer yes or a counterexample. We found that, if the

provided counterexample has already been observed in the table but the recoded value

is not the same. This situation means that we cannot explore every possible output of

the machine with the current value of k. Therefore, we restart the algorithm with an

increased value of k. On the other hand, if the provided counterexample has not been

46

observed in the table, the counterexample will be used to extend the table, as described

in Section 5.2.3. Although this process can be run incrementally, performing incremental

steps appears to be inefficient. Thus, it is a challenge to obtain a method for selecting the

most appropriate value of k that may not necessarily be minimal but that is sufficient to

ensure the complete testing assumption.

CHAPTER VI

CONCLUSION

6.1 Dissertation Summary

In this dissertation, we consider the conformance problem that whether an imple-

mentation conforms to the given formal specification. There are a number of attempts

to solve this problem; however, the crucial limitation of the traditional techniques in

verification process is that the internal structures of implementation have to be explicit.

It does not need to be the case, since some implementations can be only observed their

external behavior such as third party applications, or the applications implemented by

the programming language like Java or .NET.

To solve such a problem, this dissertation proposes a novel method for conformance

verification based on a technique so-called automata learning. Inspired by many works in

the software verification literature, the automata learning technique is introduced to infer

a behavioral model of the black box implementation in our approach. More specifically,

we infer the Mealy machine from the implementation using the learning algorithm LM
∗.

By transforming the obtained Mealy machine to the modeling formalism LTS, the model

checker LTSA can be used for checking a trace equivalence relation which is the confor-

mance criterion in this work. We also implemented a prototype of our framework based

on the Web services composition, and the preliminary experimentation shows promising

results.

Moreover, the assumption that the implementations have to be deterministic may be

too restricted in some applications, such as a communication system or a component-based

system. We present a novel algorithm for NFSM inference, namely LNM
∗, which uses an

active-style learning similar to the original L∗. The proposed algorithm can be applied to

both deterministic and non-deterministic FSMs. In addition, we have demonstrated the

worst-case time complexity analysis and a proof of correctness of LNM
∗. However, to infer

the correct conjecture in the case of NFSMs, the complete testing assumption must hold.

Furthermore, when LNM
∗ deals with partially specified NFSMs, the algorithm offers a

48

faster run by our optimization.

6.2 Discussion on Limitations and Future Works

Despite of several benefits, there are some limitations that should be mentioned

here. First, since the learning algorithm used in our approach is based on active learning

paradigm, it could not be applied to the implementations from which we have only the

given observations (e.g., log files).

Second, even though the proposed verification process can guarantee the confor-

mance relation, it may be a time-consuming task which does not appropriate to some

applications such as a simple program with a few states. If one may want to test such a

system, the lower fault coverage process with lower cost such as some conformance testing

methods seems more suitable.

Third, in case of non-deterministic implementation, the time complexity of the

proposed learning algorithm LNM
∗ is depend on the factor k. Since the used value of

k in this dissertation is derived from the verification process, we have to increase this

value several times before we can find the suitable one. Thus it is a challenge to find the

heuristic method for selecting a proper value of k that can ensure the complete testing

assumption.

Last but not least, this dissertation mainly focusses on the approach for applying

formal method to the practical applications. Because the proposed method for confor-

mance verification might not fit with some implementations in other domains, we intend

to continue our future research in this direction to obtain further improvements on our

results.

6.3 Concluding Remark

Since our conformance verification method can be applied without knowledge of the

internal structures of the implementation, we believe that the proposed approach could

alleviate the tradition process in software verification. Moreover, the proposed approach

and the proposed algorithm in this dissertation would be one prominent instance that

promotes the use of formal methods to practical systems.

References

AboElFotoh, H., Abou-Rabia, O., and Ural, H. 1993. A test generation algorithm for

systems modelled as non-deterministic FSMs. Software Engineering Journal 8.4

(July 1993): 184 –188.

Angluin, D. 1987. Learning regular sets from queries and counterexamples. Inf. Comput.

75.2 (November 1987): 87–106.

Barker, A., Walton, C. D., and Robertson, D. 2009. Choreographing web services. IEEE

Trans. Serv. Comput. 2.2 (April 2009): 152–166.

Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., and Steffen, B. 2005a.

On the correspondence between conformance testing and regular inference. In

Cerioli, M. (ed.), Fundamental Approaches to Software Engineering, volume 3442

of Lecture Notes in Computer Science, pp. 175–189. : Springer Berlin Heidelberg.

Berg, T., Jonsson, B., Leucker, M., and Saksena, M. 2005b. Insights to Angluin’s learning.

Electr. Notes Theor. Comput. Sci. (2005): 3–18.

Berg, T., Jonsson, B., and Raffelt, H. 2006. Regular inference for state machines with

parameters. In FASE’06, pp. 107–121. :

Bertolino, A. and Polini, A. 2005. The audition framework for testing web services inter-

operability. In Proceedings of the 31st EUROMICRO Conference on Software

Engineering and Advanced Applications, EUROMICRO ’05, pp. 134–142. Wash-

ington, DC, USA: IEEE Computer Society.

Bollig, B., Habermehl, P., Kern, C., and Leucker, M. 2009. Angluin-style learning of NFA.

In Proceedings of the 21st international jont conference on Artifical intelligence,

IJCAI’09, pp. 1004–1009. San Francisco, CA, USA: Morgan Kaufmann Publish-

ers Inc.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., and Pretschner, A. 2005. Model-Based

Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer

Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA. ISBN 3540262784.

50

Bucchiarone, A., Melgratti, H., and Severoni, F. 2007. Testing service composition. In

Proceedings of the 8th Argentine Symposium on Software Engineering, ASSE

’07. :

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., and Zavattaro, G. 2005. Choreography

and orchestration: a synergic approach for system design. In Proceedings of the

Third international conference on Service-Oriented Computing, ICSOC’05, pp.

228–240. Berlin, Heidelberg: Springer-Verlag.

Canfora, G. and Penta, M. 2009. Software engineering. chapter Service-Oriented Archi-

tectures Testing: A Survey, pp. 78–105. Berlin, Heidelberg: Springer-Verlag.

Chaki, S., Clarke, E., Sharygina, N., and Sinha, N. 2008. Verification of evolving software

via component substitutability analysis. Form. Methods Syst. Des. 32.3 (June

2008): 235–266.

Cobleigh, J. M., Giannakopoulou, D., and Păsăreanu, C. S. 2003. Learning assumptions

for compositional verification. In Proceedings of the 9th international conference

on Tools and algorithms for the construction and analysis of systems, TACAS’03,

pp. 331–346. Berlin, Heidelberg: Springer-Verlag.

Coste, F. and Fredouille, D. 2003. Unambiguous automata inference by means of state-

merging methods. In Lavrac, N., Gamberger, D., Blockeel, H., and Todor-

ovski, L. (ed.), Machine Learning: ECML 2003, volume 2837 of Lecture Notes

in Computer Science, pp. 60–71. : Springer Berlin / Heidelberg.

de la Higuera, C. 2010. Grammatical Inference: Learning Automata and Grammars. Cam-

bridge University Press, New York, NY, USA. ISBN 0521763169, 9780521763165.

Denis, F., Lemay, A., and Terlutte, A. 2004. Learning regular languages using RFSAs.

Theor. Comput. Sci. 313.2 (February 2004): 267–294.

Denis, F., Lemay, A., and Terlutte, A. 2000. Learning regular languages using non

deterministic finite automata. In Oliveira, A. (ed.), Grammatical Inference:

Algorithms and Applications, volume 1891 of Lecture Notes in Computer

Science, pp. 213–214. : Springer Berlin / Heidelberg.

Ferrara, A. 2004. Web services: a process algebra approach. In Proceedings of the 2nd

international conference on Service oriented computing, ICSOC ’04, pp. 242–

251. New York, NY, USA: ACM.

51

Foster, H., Uchitel, S., Magee, J., and Kramer, J. 2006. Model-based analysis of obli-

gations in web service choreography. In Proceedings of the Advanced Int’l

Conference on Telecommunications and Int’l Conference on Internet and Web

Applications and Services, AICT-ICIW ’06, pp. 149–156. Washington, DC, USA:

IEEE Computer Society.

Frantzen, L., Las Nieves Huerta, M., Kiss, Z. G., and Wallet, T. 2009. Web services and

formal methods. chapter On-The-Fly Model-Based Testing of Web Services with

Jambition, pp. 143–157. Berlin, Heidelberg: Springer-Verlag.

Fu, X., Bultan, T., and Su, J. 2005. Synchronizability of conversations among web

services. IEEE Transactions on Software Engineering 31 (2005): 1042–1055.

Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., and Ghedamsi, A. 1991.

Test selection based on finite state models. IEEE Trans. Softw. Eng. 17.6 (June

1991): 591–603.

García, P., Parga, M. V., Álvarez, G. I., and Ruiz, J. 2008. Learning regular languages

using nondeterministic finite automata. In Proceedings of the 13th international

conference on Implementation and Applications of Automata, CIAA ’08, pp. 92–

101. Berlin, Heidelberg: Springer-Verlag.

GlassFish 2012. GlassFish application server [Online]. Available from: https://

glassfish.dev.java.net/ [2012,March].

Gold, E. M. 1978. Complexity of automaton identification from given data. Information

and Control 37.3 (1978): 302–320.

Groce, A., Peled, D., and Yannakakis, M. 2002. Adaptive model checking. In Proceedings

of the 8th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS ’02, pp. 357–370. London, UK, UK: Springer-

Verlag.

Heckel, R. and Mariani, L. 2005. Automatic conformance testing of web ser-

vices. In Proceedings of the 8th international conference, held as part of the

joint European Conference on Theory and Practice of Software conference on

Fundamental Approaches to Software Engineering, FASE’05, pp. 34–48. Berlin,

Heidelberg: Springer-Verlag.

52

Hierons, R. M. 2004. Testing from a nondeterministic finite state machine using adaptive

state counting. IEEE Trans. Comput. 53.10 (October 2004): 1330–1342.

Hinz, S., Schmidt, K., and Stahl, C. 2005. Transforming BPEL to Petri nets.

In Proceedings of the 3rd international conference on Business Process

Management, BPM’05, pp. 220–235. Berlin, Heidelberg: Springer-Verlag.

Hungar, H., Niese, O., and Steffen, B. 2003. Domain-specific optimization in au-

tomata learning. In Hunt, J., WarrenA.. and Somenzi, F. (ed.), Computer Aided

Verification, volume 2725 of Lecture Notes in Computer Science, pp. 315–327. :

Springer Berlin Heidelberg.

Ipate, F. 2006. Bounded sequence testing from non-deterministic finite state machines. In

Proceedings of the 18th IFIP TC6/WG6.1 international conference on Testing of

Communicating Systems, TestCom’06, pp. 55–70. Berlin, Heidelberg: Springer-

Verlag.

JAX-WS 2012. Java API for XML web services (JAX-WS) [Online]. Available from:

http://jax-ws.java.net/ [2012,March].

Kazhamiakin, R. and Pistore, M. 2006. Choreography conformance analysis: asyn-

chronous communications and information alignment. In Proceedings of the

Third international conference on Web Services and Formal Methods, WS-

FM’06, pp. 227–241. Berlin, Heidelberg: Springer-Verlag.

Lee, D. and Yannakakis, M. 1996. Principles and methods of testing finite state machines

- a survey. Proceedings of the IEEE 84.8 (1996): 1090–1123.

Li, J., Zhu, H., and Pu, G. 2007. Conformance validation between choreography and

orchestration. In Proceedings of the First Joint IEEE/IFIP Symposium on

Theoretical Aspects of Software Engineering, TASE ’07, pp. 473–482. Wash-

ington, DC, USA: IEEE Computer Society.

Lohmann, N. 2008. A feature-complete Petri net semantics for WS-BPEL 2.0. In

Proceedings of the 4th international conference on Web services and formal

methods, WS-FM’07, pp. 77–91. Berlin, Heidelberg: Springer-Verlag.

Lucchi, R. and Mazzara, M. 2007. A pi-calculus based semantics for WS-BPEL. Journal

of Logic and Algebraic Programming 70.1 (2007): 96–118.

53

Luo, G., von Bochmann, G., and Petrenko, A. 1994. Test selection based on commu-

nicating nondeterministic finite-state machines using a generalized Wp-method.

IEEE Trans. Softw. Eng. 20.2 (February 1994): 149–162.

Magee, J. and Kramer, J. 2006. Concurrency: state models & Java programs. John

Wiley & Sons, Inc., New York, NY, USA. ISBN 0-470-09355-2.

Mäkinen, E. and Systä, T. 2001. MAS an interactive synthesizer to support behav-

ioral modelling in UML. In Proceedings of the 23rd International Conference

on Software Engineering, ICSE ’01, pp. 15–24. Washington, DC, USA: IEEE

Computer Society.

Miao, H., Liu, P., and Mei, J. 2010. An improved algorithm for building the charac-

terizing set. In Proceedings of the 2010 4th IEEE International Symposium on

Theoretical Aspects of Software Engineering, TASE ’10, pp. 67–74. Washington,

DC, USA: IEEE Computer Society.

Nakajima, S. 2005. Lightweight formal analysis of web service flows. Progress in

Informatics 2 (2005): 57–76.

NetBeans 2012. Netbeans IDE homepage [Online]. Available from: http://netbeans.org/

[2012,March].

Niese, O. 2003. An integrated approach to testing complex systems. PhD thesis, Univer-

sity of Dortmund.

Oncina, J. and Garcia, P. 1992. Inferring regular languages in polynomial update time.

Pattern Recognition and Image Analysis (1992): 49–61.

Ouyang, C., Verbeek, E., van der Aalst, W. M. P., Breutel, S., Dumas, M., and ter

Hofstede, A. H. M. 2007. Formal semantics and analysis of control flow in

WS-BPEL. Sci. Comput. Program. 67.2-3 (July 2007): 162–198.

Pacharoen, W., Aoki, T., Bhattarakosol, P., and Surarerks, A. 2011. Verifying con-

formance between web service choreography and implementation using learning

and model checking. In Proceedings of the 2011 5th International Conference on

New Trends in Information Science and Service Science (NISS), volume 2, pp.

375–381. : IEEE Computer Society.

54

Peled, D., Vardi, M. Y., and Yannakakis, M. 1999. Black box checking. In Proceedings

of the IFIP TC6 WG6.1 Joint International Conference on Formal Description

Techniques for Distributed Systems and Communication Protocols (FORTE XII)

and Protocol Specification, Testing and Verification (PSTV XIX), FORTE XII

/ PSTV XIX ’99, pp. 225–240. Deventer, The Netherlands, The Netherlands:

Kluwer, B.V.

Petrenko, A. and Yevtushenko, N. 2006. Conformance tests as checking experiments for

partial nondeterministic FSM. In Grieskamp, W. and Weise, C. (ed.), Formal

Approaches to Software Testing, volume 3997 of Lecture Notes in Computer

Science, pp. 118–133. : Springer Berlin / Heidelberg.

Rivest, R. and Schapire, R. 1993. Inference of finite automata using homing sequences.

In Hanson, S., Remmele, W., and Rivest, R. (ed.), Machine Learning: From

Theory to Applications, volume 661 of Lecture Notes in Computer Science, pp.

51–73. : Springer Berlin / Heidelberg.

Salaün, G., Bordeaux, L., and Schaerf, M. 2004. Describing and reasoning on web services

using process algebra. In Proceedings of the IEEE International Conference on

Web Services, ICWS ’04, pp. 43–51. Washington, DC, USA: IEEE Computer

Society.

Shahbaz, M. and Groz, R. 2009. Inferring Mealy machines. In Proceedings of the 2nd

World Congress on Formal Methods, FM ’09, pp. 207–222. Berlin, Heidelberg:

Springer-Verlag.

Shahbaz, M., Li, K., and Groz, R. 2007. Learning and integration of parameterized

components through testing. In Petrenko, A., Veanes, M., Tretmans, J., and

Grieskamp, W. (ed.), Testing of Software and Communicating Systems, volume

4581 of Lecture Notes in Computer Science, pp. 319–334. : Springer Berlin /

Heidelberg.

Su, J., Bultan, T., Fu, X., and Zhao, X. 2008. Towards a theory of web service chore-

ographies. In Proceedings of the 4th international conference on Web services

and formal methods, WS-FM’07, pp. 1–16. Berlin, Heidelberg: Springer-Verlag.

Tasharofi, S. and Sirjani, M. 2009. Formal modeling and conformance validation for WS-

55

CDL using Reo and CASM. Electron. Notes Theor. Comput. Sci. 229.2 (July

2009): 155–174.

TcpMon 2012. A tool to monitor traffic on TCP connections (TCPMON) [Online]. Avail-

able from: http://java.net/projects/tcpmon/ [2012,March].

Tretmans, J. 2008. Formal methods and testing. chapter Model based testing with

labelled transition systems, pp. 1–38. Berlin, Heidelberg: Springer-Verlag.

Yeung, W. L. 2006. Mapping WS-CDL and BPEL into CSP for behavioural specification

and verification of web services. In Proceedings of the European Conference on

Web Services, ECOWS ’06, pp. 297–305. Washington, DC, USA: IEEE Com-

puter Society.

Yokomori, T. 1995. Machine intelligence 13. chapter Learning non-deterministic finite

automata from queries and counterexamples, pp. 169–189. New York, NY, USA:

Oxford University Press, Inc.

Zaha, J. M., Barros, A., Dumas, M., and ter Hofstede, A. 2006. Let’s Dance: a lan-

guage for service behavior modeling. In Proceedings of the 2006 Confederated

international conference on On the Move to Meaningful Internet Systems:

CoopIS, DOA, GADA, and ODBASE - Volume Part I, ODBASE’06/OTM’06,

pp. 145–162. Berlin, Heidelberg: Springer-Verlag.

Zhao, X., Yang, H., and Qiu, Z. 2006. Towards the formal model and verification of

web service choreography description language. In Proceedings of the Third

international conference on Web Services and Formal Methods, WS-FM’06, pp.

273–287. Berlin, Heidelberg: Springer-Verlag.

APPENDIX

57

APPENDIX

PUBLICATION

During my Ph.D. study, I have published several papers as follows.

International Conference Publications

1. W. Pacharoen, T. Aoki, P. Bhattarakosol, and A. Surarerks, “Verifying conformance

between Web service choreography and implementation using learning and model

checking.”, in Proceedings of the 5th International Conference on New Trends in

Information Science and Service Science (NISS 2011), IEEE Computer Society, pp.

375–381, 2011.

2. W. Pacharoen, T. Aoki, A. Surarerks, and P. Bhattarakosol, “Conformance verifi-

cation between Web service choreography and implementation using learning and

model checking.”, in Proceedings of the of the 18th International Conference on Web

Services (ICWS 2011), IEEE Computer Society, pp. 722–723, 2011.

58

Biography

Warawoot Pacharoen was born in Trat, Thailand, on December, 1980. Then, he

moved to Rayong, Thailand, in 1991 and graduated from Rayongwittayakom school in

1999. He received B.Sc. and M.Sc., both in Computer Science, from Chulalongkorn

University, Thailand, in 2003 and 2005, respectively. His bachelor degree has been su-

pervised by Asst. Prof. Dr. Pattarasinee Bhattarakosol. His master and doctorate have

been under the supervision of Asst. Prof. Dr. Athasit Surarerks and Asst. Prof. Dr.

Pattarasinee Bhattarakosol. Since 2003, he has received a grant from the Commission

on Higher Education of Thailand under the University Development Commission (UDC)

Scholarship to study in Master and Doctoral degree. During Nov. 2009 - Nov. 2010,

he visited the School of Information Science, Japan Advanced Institute of Science and

Technology (JAIST), Japan, for doing research under the supervision of Assoc. Prof.

Dr. Toshiaki Aoki. The scholarship of this one year research was also supported by the

UDC Scholarship. His field of interest includes various topics for applying formal method

to Software Engineering with emphasis on software verification, software designing, and

model checking. He is also educated in the field of Automata Learning.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	I Introduction
	1.1 Our Method for a Conformance Verification
	1.2 Objectives of Research
	1.3 Scope and Assumption
	1.4 Summary of Contributions
	1.5 Dissertation Organization

	II Definitions and Notations
	2.1 Labelled Transition System
	2.2 Finite State Machine
	2.3 General Notations

	III Background and Related Work
	3.1 Web Services Choreography Preliminaries
	3.2 Conformance Verification
	3.3 Conformance Testing
	3.4 Automata Learning Preliminaries

	IV Conformance Verification for Web Service Composition
	4.1 The Approach
	4.2 Preliminary Experiment
	4.3 Description
	4.4 Implementation
	4.5 Learning Algorithm in Practice
	4.6 Experimental Result
	4.7 Summary

	V Non-deterministic Finite State Machines Inference
	5.1 Motivation
	5.2 Inference of Non-deterministic FSMs
	5.3 Experiments
	5.4 Discussion and Summary

	VI Conclusion
	6.1 Dissertation Summary
	6.2 Discussion on Limitations and Future Works
	6.3 Concluding Remark

	References
	Appendix
	Vita

