

### REFERENCES

- Arlan, M., "Combined Radiation-Methotrexate Therapy in Preoperative Management of Carcinoma of the Head and Neck," Am. J. Surg., 132, 536 540, 1976
- Azarnoff, D.L., S.H. Wan, and D.H. Huffman,

  "Pharmacokinetics of Methotrexate," Clin.

  Pharmacol. Ther., 16(5) Part 2, 884 885, 1974
- Balis, F.M., J.S. Holcenberg, and W.A. Bleyer,

  "Clinical Pharmacokinetics of Commonly Used

  Anticancer Drugs," Clin. Pharmacoki., 8(3), 202

   232, 1983
- Berry, R.J., E.J. Hall, and J. Cavanagh,

  "Radiosensitivity and the Oxygen Effect for

  Mammalian Cells Culture in Vitro in Stationary

  Phase," Br. J. Radiol., 43 (506), 81 90, 1970.
- Bleyer, W.A., "The Clinical Pharmacology of Methotrexate:

  New Applications of an Old Drug," Cancer, 41,

  36 51, 1978
- Breithaupt, H., and E. Kuenzlen, "Pharmacokinetics of

  Methotrexate and 7-Hydroxymethotrexate Following

  Infusions of High-Dose Methotrexate," Cancer

  Treat. Rep., 66(9), 1733 1741, 1982

- Canfell, C., and W. Sadee, "Methotrexate and
  7-Hydroxymethotrexate: Serum Level Monitoring by
  High-Performance Liquid Chromatography," Cancer
  Treat. Rep., 64(1), 165 169, 1980
- Chatterji, D.C., J.F. Gallelli, "Thermal and Photolytic Decomposition of Methotrexate in Aqueous Solutions," <u>J. Pharm. Sci.</u>, 67(4), 526 531, 1978
- Chen, M., and W.L. Chiou, "Sensitive and Rapid HighPerformance Liquid Chromatographic Method for
  the Simultaneous Determination of Methotrexate
  and Its Metabolites in Plasma, Saliva and
  Urine," J. Chromato., Biomedical Applications,
  226, 125 134,1981
- Cohen, J.L., G.H. Hisayasu, A.R. Barrientos, M.S.B.

  Nayar, and K.K. Chan, "Reversed-Phase HighPerformance Liquid Chromatographic Analysis of
  Methotrexate and 7-Hydroxymethotrexate in
  Serum," J. Chromato., 181, 478 483, 1980
- Collier, C.P., S.M. MacLeod, and S.J. Soldin, "Analysis of Methotrexate and 7-Hydroxymethotrexate by High-Performance Liquid Chromatography and Preliminary Clinical Studies," Therapeutic Drug Monitoring, 4(4), 371 380, 1982

- Cradock, J.C., L.M. Kleinman, and A. Rahman, "Evaluation of Some Pharmaceutical Aspects of Intrathecal Methotrexate Sodium, Cytarabine, and Hydrocortisone Sodium Succinate," Am. J. Hosp.

  Pharm., 35, 402 406, 1978
- Faculty of Medicine, Siriraj Hospital, Mahidol

  University, <u>Tumor Registry: Cancer Institute</u>

  <u>Siriraj Hospital</u>, pp. 7 8, Foundation for the

  Cancer Institute Siriraj Hospital, 1973
- Farber, S., L.K. Diamond, R.D. Mercer, R.F. Jr.
  Sylvester, and V.A. Wolff., "Temporary Remission in Acute Leukemia in Children Produced by Folic Antagonist 4-Amethopteroylglutamic Acid (Aminopterin)," N. Engl. J. Med., 238(23),787 793, 1948
- Freeman-Narrod, M., B.J. Gerstley, P.F. Engstrom, and
  R.S. Bornstein, "Comparison of Serum

  Concentration of Methotrexate after Various

  Routes of Administration," Cancer, 36(5), 1619 1624, 1975
- Frei, E.III, N. Jaffe, M.H.N. Tattersall, S. Pitman, and I. Parker, "New Approaches to Cancer Chemotherapywith Methotrexate," N. Engl. J. Med., 292, 846 851, 1975

- Gibaldi, M., and D. Perrier, "Multicompartment Models,"

  <u>Pharmacokinetics</u>, Vol. 15, pp. 45 111, Marcel

  Dekker, Inc., New York, 2nd ed., 1982a
- \_\_\_\_\_ and \_\_\_\_\_, "Method of Residuals,"

  Pharmacokinetics, Vol. 15, pp. 433 444, Marcel

  Dekker, Inc., New York. 2nd ed., 1982b
- Hancock, B.W. and J.D. Bradshaw, <u>Lecture Notes on</u>

  <u>Clinical Oncology</u>, pp. 95 113, Tien Wah Press

  (Pte) Limited, Singapore, 1981
- Henderson, E.S., R.H. Adamson, and V.T. Oliverio, "The
   Metabolic Fate of Tritiated Methotrexate.II:
   Absorption and Excretion in Man," Cancer Res.,
   25, 1018 1024, 1965
- Hill, B.T., B.D. Bailey, J.C. White, and I.D. Goldman, "Characteristics of Transports of 4-Amino Antifolates and Folate Compounds by Two Lines of L5178Y Lymphoblasts, one with Impaired Transport of Methotrexate," <u>Cancer Res.</u>, 39, 2440 - 2446,

- Hoffbrand, A.V., and E. Tripp, "Unbalanced

  Deoxyribonucleotide Synthesis Caused by

  Methotrexate," Br. Med. J., 2, 140 142, 1972
- Hong, W.K., and R. Bromer, "Chemotherapy in Head and Neck Cancer," N. Engl. J. Med., 308(2), 75 79, 1983
- Howell, S.K., Y. Wang, R. Hosoya, and W.W. Sutow,

  "Plasma Methotrexate as Determined by Liquid

  Chromatohraphy, Enzyme-Inhibition Assay, and

  Radioimmunoassay after High-Dose Infusion," Clin.

  Chem., 26(6), 734 737, 1980
- Iven, H., H. Brasch, and J. Engster, "Pharmacokinetics
   of Methotrexate and 7-Hydroxy-Methotrexate in
   Rabbits," Cancer Chemother. Pharmacol., 15, 115
   120, 1985
- Jolivet, J., K.H. Cowan, G.A. Curt, N.J. Clendeninn, and B.A. Chabner, "The Pharmacology and Clinical Use of Methotrexate," N. Engl. J. Med., 309(18), 1094 1104, 1983
- Lawson, G.J., and P.F. Dixon, "Rapid and Simple Method for the Measurement of Methotrexate and 7-Hydroxymethotrexate in Serum by High-Performance Liquid Chromatography," J. Chromato., Biomedical Applications, 223, 225 231, 1981

- Lippens, R.J.J., "Methotrexate. I: Pharmacology and

  Pharmacokinetics," <u>The American Journal of</u>

  <u>Pediatric Hematology/Oncology</u>, 6(4), 379 395,

  1984
- Lokiec, F., O. Poirier, C. Gisselbrecht, M. Marty,
  M. Boiron, and Y. Najean, "Effect of Combination
  Chemotherapy, Duration of Methotrexate
  Administration, and Patient's Age on Methotrexate
  Pharmacokinetics," Cancer Chemother. Pharmacol.,
  9, 165 168, 1982
- \_\_\_\_\_\_, B. Clavel, L. Meeus, F. Turpin, A. Goupil,

  M. Tubiana-Hulin, and J. Gest, "Cancer

  Treatment by Methotrexate: Rationale Use Following

  Pharmacokinetic Study," Int. J. Nucl. Med. Biol.,

  11(1), 107 108, 1984
- Lustig, R.A., P.A. DeMare, and S. Kramer, "Adjuvant Methotrexate in the Radiotherapeutic Management of Advanced Tumors of the Head and Neck," <u>Cancer</u>, 37(6), 2703 2708, 1976
- Mead, G.M., and C. Jacobs, "Changing Role of Chemotherapy in Treatment of Head and Neck Cancer," Am. J.

  Med., 73, 582 595, 1982
- Metzler, C.M., and D.L. Weiner, <u>PCNONLIN Nonlinear</u>

  <u>Estimation Program VO1-A</u>, Statistical Consultants,
  Inc., 1984

- Miller, A.B., B. Hoogstraten, M. Staquet, and A. Winkler,

  "Reporting Results of Cancer Treatment," Cancer,

  47(1), 207 214, 1981
- Million, R.R., N.J. Cassisi, and R.E. Wittes, "Cancer of the Head and Neck," <a href="Cancer: Principles & Practice of Oncology">Cancer: Principles & Practice of Oncology</a> (De Vita, V.T.Jr., S. Hellman, and S.A. Rosenberg, eds.) Vol. 1, pp. 407 506, J.B. Lippincott Company, Pennsylvania, 2nd ed., 1985
- Mott, M.G., P. Stevenson, and C.B.S. Wood, "Methotrexate Meningitis," Lancet, 2, 656, 1972
- Muggia, F.M., M. Rozencweig, and A.E. Louie, "Role of Chemotherpy in Head and Neck Cancer: Systemic Use of Single Agents and Combinations in Advanced Disease," Head & Neck Surgery, 2, 196 205, 1980
- Neter, J., and W. Wasserman, <u>Applied Linear Statistical</u>

  <u>Models</u>, pp. 21, Richard D. Irwin, Inc., 1974
- Paxton, J.W., "Protein Binding of Methotrexate in Sera from Normal Human Beings: Effect of Drug Concentration, pH, Temperature, and Storage,"

  Journal of Pharmacological Methods, 5, 203 213, 1981
- Porpaczy, P., C.P. Schmidbauer, A. Georgopoulos, and
  A.T. Endler, "Pharmacokinetics of High-Dose
  Methotrexate in Dogs: An Experimental Model with

- Diffusion Chambers, "Cancer Chemother.

  Pharmacol., 11, 172 176, 1983
- Rajeswari, R., P.A. Shetty, B.P. Gothoskar, P.N.

  Akolkar, and S.V. Gokhale, "Pharmacokinetics of Methotrexate in Adult Indian Patients and Its Relationship to Nutritional Status," Cancer

  Treat. Rep., 68(5), 727 732, 1984
- Reynolds, J.E.F., <u>Martindale: The Extra Pharmacopoeia</u>, pp. 215 220, Pharmaceutical Press, London, 28th ed., 1982
- Scheufler, E., "Evident for Nonlinear Pharmacokinetics of Methotrexate in the Rat," <a href="Pharmacology">Pharmacology</a>, 25, 51 56, 1982
- Snyder, L.R., and J.J. Kirkland, <u>Introduction to Modern</u>
  <u>Liquid Chromatography</u>, pp. 554, John Wiley &
  Sons, Inc., Canada, 2nd ed., 1979
- Steele, W.H., J.F.B. Stuart, B. Whiting, J.R. Lawrence, K.C. Calman, J.G. McVie, and G.M. Baird, "Serum, Tear and Salivary Concentrations of Methotrexate in Man," <u>Br. J. Clin. Pharmac.</u>, 7, 207 211, 1979
- Stewart, C.F., W.R. Crom, and G.C. Yee, "Pharmacokinetics and Monitoring Techniques for Antineoplastic Agents," <a href="Applied Clinical Pharmacokinetics">Applied Clinical Pharmacokinetics</a>
  (Mungall, D.R., ed.), pp. 329, Raven Press, New

York, 1983

- Stewart, A.L., J.M. Margison, P.M. Wilkinson, and
  S.B. Lucas, "The Pharmacokinetics of
  7-Hydroxymethotrexate Following Medium-Dose
  Methotrexate Therapy," Cancer Chemother.

  Pharmacol., 14, 165 167, 1985
- Wan, S.H., D.H. Huffman, D.L. Azarnoff., R. Stephens, and B. Hoogstraten, "Effect of Route of Administration and Effusions on Methotrexate Pharmacokinetics, " Cancer Res., 34, 3487 - 3491, 1974
- Warren, R.D., A.P.Nichols, and R.A. Bender, "Membrane
  Transport of Methotrexate in Human
  Lymphoblastoid Cells," Cancer Res., 38, 668 671, 1978
- Wartak, J., "Clearance of Drugs," <u>Clinical</u>

  <u>Pharmacokinetics: A Modern Approach to</u>

  <u>Individualized Drug Therapy</u>, Vol. 2, pp. 105 
  112, Praeger Publishers, New York, 1983
- Watson, E., J.L. Cohen, and K.K. Chan, "High-Pressure Liquid Chromatographic Determination of Methotrexate and Its Major Metabolite, 7-Hydroxymethotrexate in Human Plasma," Cancer Treat. Rep., 62(3), 381 387, 1978
- Weinstein, G.D., "Diagnosis and Treatment. Drugs Five

Year Later: Methotrexate, "Ann. Intern. Med., 86(2), 199 - 204, 1977

Woods, R.L., R.M. Fox, and M.H.N. Tattersall,

"Methotrexate Treatment of Squamous-Cell Head
and Neck Cancer: Dose-Response Evaluation," Br.

Med. J., 282, 600-602, 1981

## APPENDICES

- A Head and Neck Cancer
- B Physiological Characteristics of the Patients and
  Biochemical Laboratory Results
- C Solvent Preparations
- D Determination of Serum Methotrexate Concentration by Canfell, Chen, Cohen, Collier, Howell, Lawson, and Watson
- E Paired T-Test
- F Standard Curve Determination
- G Semilogarithm Plots of Serum Methotrexate Level of 11
  Patients
- H Pharmacokinetic Analysis by Using the PCNONLIN
  Nonlinear Estimation Program
- I Clinical Response of Patients: Diagnosis, Tumor Size and Tumor Response

## APPENDIX A

## Head and Neck Cancer

Cancer of the head and neck represents a varied group of tumors with different recurrence patterns, response rates and survival (Hancock, and Bradshaw, 1981). For detailed consideration, the region can be subdivided conveniently into areas and organs, as follows:

- 1. Lip
- 2. Mouth
  - 2.1 Tongue
  - 2.2 Floor of mouth
  - 2.3 Buccal and gingival mucosa
  - 2.4 Mandible and maxilla
  - 2.5 Palate
- 3. Tonsillar area and oropharynx
- 4. Postnasal space
- 5. Nasal cavity and paranasal sinuses
- 6. Larynx and hypopharynx
  - 6.1 Larynx
  - 6.2 Hypopharynx
- 7. Eye and orbit
  - 7.1 Eyelids
  - 7.2 Eye
  - 7.3 Orbital cavity
- 8. Salivary glands

- 9. Thyroid and parathyroids
- 10. Middle ear cleft

The estimated number of new head and neck cancer cases (excluding skin cancer) in 1973 at Siriraj
Hospital was approximately 802 cases, this represented about 26% of the total new cancer cases. The ratio of male to female was approximately 1.4/1 (Faculty of Medicine, Siriraj Hospital, 1973). The usual time of diagnosis was over the age of 40, except for salivary gland and nasopharyngeal tumors, which might occur in younger age groups. A common etiologic factor (i.e., cigarette smoking) has resulted in a large increase of lung cancer (Million, Cassisi, and Wittes, 1985).

APPENDIX B

# Physiological Characteristics and Biochemical Laboratory Results of the Patients

Table 13. Physiological characteristics of the patients.

| Patient<br> | numbers | Sexs    | Ages  | (years) | Weights          | (kg)  |
|-------------|---------|---------|-------|---------|------------------|-------|
| 1           |         | М       |       | 25      | 50               |       |
| 2           |         | F       |       | 56      | 50               |       |
| 3           |         | М       |       | 63      | 48               |       |
| 4           |         | М       |       | 61      | 56               |       |
| 5           |         | F       |       | 65      | 35               |       |
| 6           |         | М       |       | 70      | 55               |       |
| 7           |         | F       |       | 22      | 50               |       |
| 8           |         | М       |       | 60      | 60               |       |
| 9           |         | F       |       | 64      | 46               |       |
| 10          |         | М       |       | 63      | 63               |       |
| 11          |         | F       |       | 57      | 38               |       |
|             |         | Mean±SD | 55.09 | ±16.09  | 50.09 <u>+</u> 8 | 3. 48 |

M = Male, F = Female

Table 14. Biochemical laboratory results.

| 2      |               |          |      |      |      |      |       |      |      |      |      |      |
|--------|---------------|----------|------|------|------|------|-------|------|------|------|------|------|
|        |               |          |      |      |      | Re   | sults |      |      | ¥    |      |      |
| Test   | Normal value  |          |      |      |      | Pa   | tient |      |      |      |      |      |
|        |               | <u>i</u> | 2    | 3    | 4    | 5    | 6     | 7    | 8    | 9    | 10   | 11   |
| BS     | 60-100 mg/dl  | 85       | 125  | 110  | 320  | 120  | 210   | 80   | 105  | 100  | 90   | 100  |
| BUN    | 8-20 mg/dl    | 9        | 11   | 11   | 18   | 5    | 10    | 7    | 10   | 11   | 19   | 8    |
| Cr     | 0.7-1.5 mg/dl | 0.9      | 0.8  | 0.8  | 1.6  | 1    | 1.3   | 0.8  | 1    | 0.9  | 1    | 0.5  |
| UA     | 3-7.5 mg/dl   | 9        | 2.9  | 6.4  | 3.9  | 3.6  | 5.6   | 4    | 4.3  | 4.7  | 6.1  | 2.2  |
| TP     | 6.5-7.5 g/dl  | 7.6      | 7.6  | 6.6  | 6.9  | 6.7  | 5.9   | 6.9  | 7.6  | 6.8  | 7.9  | 6.7  |
| Alb    | 4-5.5 ng/dl . | 4.6      | 4.4  | 4.5  | 4.3  | 3.5  | 3.7   | 4.4  | 4    | 4.4  | 4.2  | 3.5  |
| T.Bili | 0.2-1 mg/dl   | 0.4      | 0.8  | 0.6  | 0.8  | 0.4  | 0.2   | 2.2  | 0.4  | 0.2  | 0.6  | 0.8  |
| D.Bili | 0-0.2 mg/dl   | 0.1      | 0.2  | 0.1  | 0.3  | 0.1  | 0.1   | 0.3  | 0.1  | 0.1  | 0.2  | 0.1  |
| Chol   | 150-280 mg/dl | 249      | 193  | 211  | 218  | 270  | 218   | 145  | 213  | 224  | 208  | 180  |
| SGOT   | 8-28 Units    | 20       | 24   | 17   | 29   | 17   | 21    | 19   | 13   | 16   | 25   | 20   |
| AP.    | 9-35 IU/L     | 22       | 36   | 38   | 40   | 28   | 33    | 16   | 27   | 41   | 27   | 35   |
| lct    | 37-54%        | 39       | 34   | 45   | 36   | 30   | 35    | 28   | 33.5 | 36.5 | 37   | 34   |
| lb     | 14-16 g/dl 2  | -        | 11   | 14.5 | 12.5 | 9.7  | 11.6  | 8.9  | 11   | 12   | 12   | 11   |
| IBC    | 4500-11000/mm | 8200     | 9600 | 8200 | 5700 | 5300 | 7800  | 7265 | 6000 | 6950 | 6200 | 4200 |
| /C Ne  | 40-60%        | 72       | 65   | 78   | 70   | 63   | 43    | 57   | 66   | 62   | 76   | 77   |
| Ε      | 1-3%          | 6        | 3    | 2    | 1    | 1    | 27    | 9    | 7    | 5    | i    | -    |
| В      | 0-1%          | -        | -    | -    | _    | -    |       | -    | -    | 1    | -    | . 2  |
| Ly     | 20-40%        | 21       | 30   | 17   | 29   | 36   | 27    | 31   | 26   | 30   | 20   | 19   |
| Mo     | 4-8%          | i        | 2    | 3    | -    |      | 3     | 3    | 1    | 2    | 3    | 4    |
|        |               |          |      |      |      |      |       |      |      |      |      |      |

### APPENDIX C

## Solvent Preparations

## 1. 0.025 M Phosphate Buffer pH 6.25

0.025 M Na HPO solution and 0.025 M KH PO  $2\ 4\$  solution were mixed to adjust pH of the solution to be 6.25.

## 2. 0.5 M Phosphate Buffer pH 6.6

0.5 M Na HPO solution and 0.5 M KH PO were 2 4 2 4 mixed to adjust pH of the solution to be 6.6.

## 3. 0.15 M Sodium Acetate pH 4.6

Adding acetic acid to 0.15 M sodium acetate solution to adjust pH of the solution to be 4.6.

## 4. 0.005 M Hexanesulfonic Acid pH 3.75

Adding acetic acid to 0.005 M hexanesulfonic acid to adjust pH of the solution to be 3.75.

## 5. <u>0.01 M KH PO</u> pH 4.5

 $1.36~{\rm g}$  of KH PO was dissolved in 1000 ml of 2 4 distilled water. Its pH was 4.5.

## 6. <u>0.1 M Tris-NaH PO pH 6.7</u>

0.1 M Tris (hydroxymethyl) aminomethane solution and 0.1 M NaH PO solution were mixed to  $\frac{2}{4}$  adjust pH of the solution to be 6.7.

## 7. 0.25 M Phosphate Buffer pH 6.8

0.25 M Na HPO solution and 0.25 M KH PO 2 4 solution were mixed to adjust pH of the solution to be 6.8.

## 8. 0.1 M Phosphate Buffer pH 6.8

0.1 M Na HPO solution and 0.1 M KH PO 2 4 2 4 solution were mixed to adjust pH of the solution to be 6.8.

## 9. 0.2 M Acetate Buffer pH 5.0

Adding ammonia water to 0.2 M acetic acid solution to adjust pH of the solution to be 5.0.

#### APPENDIX D

Determination of Serum Methotrexate Concentration by Canfell, Chen, Cohen, Collier, Howell, Lawson, and Watson

# 1. <u>Determination of Serum Methotrexate</u> <u>Concentration by Canfell.</u>

column : µ Bondapak/phenyl (0.39 X 25 cm)

detector : ultraviolet spectrophotometer, at 303 nm

flow rate : 2 ml/min

solvent : 0.15 M sodium acetate buffer pH 4.6/

acetonitrile = 89/11

extraction: serum 1 ml + acetonitrile 1 ml

centrifuged

the supernatant was extracted with anh.

ethyl ether 5.5 ml and n-butanol 2.9 ml for

2 mins

centrifuged

the organic layer was discarded

the water phase + anh. ethyl ether 2.5 ml

shaked centrifuged

the water phase was injected into the column

## 2. Determination of Serum Methotrexate

## Concentration by Chen.

column : partisil PXS 10/25 SCX (0.46 X 25 cm)

detector : ultraviolet spectrophotometer, at 313 nm

flow rate : 2 ml/min

solvent : 0.02 M (NH )H PO with 0.2% H PO /

4 2 4 3 4

acetonitrile = 90/10

extraction: serum 0.2 ml + acetonitrile 0.5 ml

centrifuged

the supernatant + ethyl acetate 1 ml

+ isoamyl alcohol 100 µl

shaked centrifuged

the water phase was injected into HPLC

## 3. Determination of Serum Methotrexate

## Concentration by Cohen.

column : RP-8 (0.41 X 25 cm)

detector : ultraviolet spectrophotometer, at 313 nm

flow rate: 1.5 ml/min

solvent : 0.1 M phosphate buffer pH 6.8/MeOH = 85/15

IS : p-aminoacetophenone

extraction: serum 1 ml + IS 0.25 mcg + 1N HClO 1.5 ml

centrifuged

the supernatant + solid (NH ) SO 5 g

+ ethyl acetate/isopropanol (10/1) 2 ml

shaked for 20 mins

the organic layer was evaporated to dryness

at 60°C under a stream of nitrogen

residue was reconstituted in 0.005 M

K HPO 100 µl
2 4

the solution was injected into the column

## 4. Determination of Serum Methotrexate

## Concentration by Collier.

column : radial µ Bondapak

detector : ultraviolet spectrophotometer, at 305 nm

folw rate: 0.8 ml/min

solvent : 0.01 M KH PO pH 4.5/acetonitrile = 85/15

2 4

IS : 8-chlorotheophylline

extraction: Sep pak was washed with MeOH 10 ml and 10 ml

of 0.2 M acetate buffer pH 5.0

serum 0.3 ml + IS 6.25 mcg + acetate buffer

5 ml

the solution was applied to Sep pak

Sep pak was washed with water 10 ml

MTX and IS were eluted with MeOH 2 ml

the eluent was evaporated to dryness at 60°C under nitrogen gas

the residue was reconstituted in 0.005 M HCl 200 µl

## centrifuged

the solution was injected into the column

## 5. Determination of Plasma Methotrexate

## Concentration by Howell.

column : partisil PXS 10/25 ODS (0.46 X 25 cm)

detector : ultraviolet spectrophotometer, at 280 or 305 nm

flow rate : 1 ml/min

solvent : 0.005 M 1-hexanesulfonic acid pH 3.75/MeOH

= 70/30

extraction: plasma 1 ml + 6% HClO 1 ml

the supernatant was neutralized with

1 M KOH

centrifuged

the supernatant was extractred with ethyl

acetate/isopropanol (10/1)

the organic layer was evaporated under

nitrogen

the residue was dissolved in water 100  $\mu$ l

the solution was injected into the column

## 6. Determination of Serum Methotrexate

## Concentration by Lawson.

column : hypersil-ODS (0.4 X 12 cm)

detector : ultraviolet spectrophotometer, at 305 nm

flow rate : 1 ml/min

solvent : 0.1 M tris-NaH PO pH 6.7/MeOH =80/20

2 4

IS : N-[4[[2,4diamino-6-quinazolinyl)methylamino]

benzoyl]]aspatic acid

extraction: serum 0.5 ml +IS 0.3 ml (10 mcg/ml in 2 M

HC10 )

centrifuged

the supernatant was injected into the column

## 7. Determination of Plasma Methotrexate

## Concentration by Watson.

column : partisil 10-SAX (0.46 X 25 cm)

detector : ultraviolet spectrophotometer, at 315 nm

flow rate: 1.2 ml/min

solvent : 0.025 M sodium phosphate buffer pH 7.0

IS : N-[4[[2,4-diamino-6-quinazolinyl)methylamino]

benzoyl]]aspartic acid

extraction: plasma 1 ml + IS 4 mcg + water 1 ml

+ 2 N HClO 1.5 ml

centrifuged

the supernatant was added with

solid (NH ) SO 5 g and extracted by

ethyl acetate/isopropanol (10/1) 2 ml

the organic layer was evaporated under

nitrogen

the residue was reconstituted in water 100 µl

the solution was injected into the column

### APPENDIX E

## Paired T-Test

Analyzed serum methotrexate concentrations obtained from applying methotrexate through washed Sep pak were compared with methotrexate standards by using paired t-test

Table 15. Calculation of the difference between methotrexate standard and analyzed methotrexate concentration obtained from washed Sep pak.

| MTX Standards (mcg/ml) | Analyzed MTX<br>concentrations<br>(mcg/ml) | d<br>i  | 2<br>d<br>i |
|------------------------|--------------------------------------------|---------|-------------|
| 2.652                  | 2.6952                                     | -0.0432 | 0.00187     |
| 4.420                  | 4.3847                                     | 0.0353  | 0.00125     |
| 6.188                  | 6.1138                                     | 0.0742  | 0.00551     |
|                        |                                            | 0.0663  | 0.00863     |

H : Ud = 0

H : Ud ≠ 0

$$\frac{d}{d} = \frac{\sum_{i=1}^{d} i}{n} = \frac{0.0663}{3} = 0.0221$$

$$Sd^{2} = \frac{\sum_{i=1}^{d} - \left(\sum_{i=1}^{d}\right)^{2}}{n(n-1)}$$

$$= \frac{3 \times 0.00863 - (0.0663)^{2}}{3(3-1)}$$

$$= 0.00358$$

$$Sd = 0.0598$$

$$S_{d} = \frac{Sd}{n} = \frac{0.0598}{3} = 0.0345$$

$$t = \frac{(d - Ud)}{0.0345}$$

Percentile of t Distributions

d.f. 
$$t = 1.886$$
.

So H was accepted.

t = 0.6406

### APPENDIX F

Standard Curve Determination

Table 16. Typical standard curve data for methotrexate concentrations in human serum estimated

1 using linear regression.

| MTX concentration | Peak height | 2.<br>Inversely | % 3    |
|-------------------|-------------|-----------------|--------|
| (mcg/ml)          | ratio of    | estimated       | Theory |
|                   | MTX/8-CT    | concentrations  |        |
|                   |             | (mcg/ml)        |        |
| 0.1768            | 0.0582      | 0.1938          | 109.62 |
| 0.442             | 0.1509      | 0.4932          | 111.58 |
| 0.884             | 0.2444      | 0.7952          | 89.95  |
| 2.652             | 0.7521      | 2.4351          | 91.82  |
| 4.420             | 1.3479      | 4.3595          | 98.63  |
| 6.188             | 1.8857      | 6.0966          | 98.52  |
| 8.840             | 2.7429      | 8.8653          | 100.29 |
|                   |             | Mean            | 100.06 |
|                   |             | SD              | 8.15   |
|                   |             | cv <sup>4</sup> | 8.15   |

<sup>1.</sup> r = 0.9952, A = -0.0018, B = 0.3096 (y = A + Bx)

- 2. Inversely estimated concentration = (peak height ratio
  + 0.0018)/ 0.3096
- 3. % Theory = Inversely estimated concentration/
  methotrexate concentration
- 4. Coefficient of Variation (CV) = (SD X 100)/Mean

peak height ratio (MTX/8-CT)



Figure 29. Typical standard curve for methotrexate concentration in human serum.



Figure 30. Semilogarithmic plots of serum methotrexate level of 11 patients.



Figure 30 (cont.). Semilogarithmic plots of serum methotrexate level of 11 patients.



Figure 30 (cont.). Semilogarithmic plots of serum methotrexate level of 11 patients.



Figure 30 (cont.). Semilogarithmic plots of serum methotrexate level of 11 patients.



#### APPENDIX H

## Pharmacokinetic Analysis by Using the PCNONLIN Nonlinear Estimation Program

It was proposed that the time course of serum methotrexate for each patient could be well described by a two-compartment model with bolus input and first-order output (Model 8).

The initial estimates of the parameters

(A, B, &, \beta ) used with PCNONLIN nonlinear estimation program were obtained by graphic procedure using the method of residuals (Gibaldi, et al., 1982b).

For example, the data set from Table 9 in patient number 5 was chosen. We plotted C versus t on a semilogarithmic graph paper and use the method of residuals to determine A, B, &, \$\beta\$ (see Figure 30E and Table 17). The intercepts on the y axis after extrapolation of the residual and terminal lines for distribution and elimination were 5.62 and 2.75 mcg/ml, respectively.

The slope of the terminal portion of the curve was calculated as follows:

$$\beta = \frac{\ln 0.86 - \ln 0.64}{1.8} = 0.1641 \text{ hr}$$

as well as the

$$\mathcal{A} = \frac{\ln 3.1 - \ln 0.086}{1.2} = 2.9873 \text{ hr}$$

The final estimation of the parameters was obtained by repeated entering the computed parameter values as initial estimation until the values were stabilized. Results obtained from the computer analysis of the estimated pharmacokinetic parameters were shown in Figure 33 and Table 10.



Figure 32. Graphical technique of calculating estimated .

pharmacokinetic parameters in the serum

methotrexate concentration-time curve by the

method of residuals.

Table 17. Striping biexponentials from set of the serum methotrexate concentration in patients no. 5.

|       | C Ĉ =<br>obs t<br>mcg/ml) | -0.1641t<br>2.75e | R = C - Ĉ<br>1 obs t | -2.9873t<br>R =5.62e | C = C + R<br>pred t 1 | C pred X 100<br>C obs |
|-------|---------------------------|-------------------|----------------------|----------------------|-----------------------|-----------------------|
| 0.167 | 6.1029                    | 2.6757            | 3.4272               | 3.4125               | 6.0882                | 99.76                 |
| 0.5   | 3.7481                    | 2.5334            | 1.2084               | 1.2620               | 3.7954                | 101.26                |
| 1     | 2.7096                    | 2.3338            | 0.3758               | 0.2834               | 2.6172                | 96.59                 |
| 2     | 1.9665                    | 1.9806            |                      | 0.0143               | 1.9949                | 101.44                |
| 4     | 1.3548                    | 1.4265            | 4 - 1 1              | 0                    | 1.4265                | 105.29                |
| 6     | 1.0980                    | 1.0274            | - 1                  | 0                    | 1.0274                | 93.57                 |
| 8     | 0.6488                    | 0.7399            |                      | 0                    | 0.7399                | 114.04                |
| 12    | 0.4887                    | 0.3838            |                      | 0                    | 0.3838                | 78.53                 |
|       |                           |                   |                      |                      |                       |                       |
|       |                           |                   |                      |                      | Mean                  | 98.81                 |
|       |                           |                   |                      |                      | SD                    | 10.22                 |
|       |                           |                   |                      |                      | CV                    | 10.34                 |
|       |                           |                   |                      |                      |                       |                       |

PCNONLIN NONLINEAR ESTIMATION PROGRAM VOI-E

\*\*\*\* COPYRIGHT 1984,1985 \*\*\*\*
FOR INFORMATION CONTACT - STATISTICAL CONSULTANTS INC.
1-606-252-3890

LISTING OF INPUT COMMANDS

MODEL 8, 'NLIN.LIB' MODEL 8 REMARK TWO COMPARTMENT MODEL - BOLUS INPUT, FIRST ORDER OUTPUT REMARK DEFINED IN TERMS OF A,B,ALPHA,BETA REMA SECONDARY PARM. PARAMETER CONSTANT REMA NO. REMA ---REMA 1 DOSE AUC REMA K10 HALF LIFE В 2 REMA 3 ALPHA ALPHA HALF LIFE BETA HALF LIFE REMA BETA REMA 5 K10 K12 REMA K21 REMA VOLUME REMA REMA\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* REMA REMA BOLUS REMA IV --> I COMPARTMENT 1 I ---> K10 REMA I REMA I REMA I K21 K12 I REMA I REMA I I REMA I REMA I REMA I COMPARTMENT 2 I REMA REMA I I-----I REMA\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* COMM NPARM 4 NCON 1 NSEC 8 PNAMES 'A', 'B', 'ALPHA', 'BETA' SNAMES 'AUC', 'K10-HL', 'ALPHA-HL', 'BETA-HL', 'K10', & 'K12', 'K21', 'VOLUME'

Figure 33. The output of example 5-fitting data to Model 8

(Two - compartment model with bolus input and first order output) of the PCNONLIN library.

```
END
TEMP
A=P(1)
B=P(2)
ALPHA=P(3)
BETA=P(4)
T = X
D=CON(1)
V=D/(A+B)
K21 = (A*BETA + B*ALPHA)/(A+B)
K10=ALPHA*BETA/K21
K12=ALPHA+BETA-K21-K10
END
FUNC1
F=(A*DEXP(-ALPHA*T))+(B*DEXP(-BETA*T))
END
SECO
S(1) = (A/ALPHA) + (B/BETA)
S(2) = -DLOG(.5)/K10
S(3) = -DLOG(.5)/ALPHA
S(4) = -DLOG(.5)/BETA
S(5)=K10
S(6)=K12
S(7)=K21
S(8)=V
END
EOM
INIT 5.62,2.75,2.9873,0.1641
NCON 1
CONS 35
NOBS 8
DATA
BEGIN
```

### PCNONLIN NONLINEAR ESTIMATION PROGRAM

| ITERATIO | N WEIGHTED SS | Α     | В     | ALPHA | BETA  |
|----------|---------------|-------|-------|-------|-------|
| 0        | .412316E-01   | 5.620 | 2.750 | 2.987 | .1641 |
| 1        | .412088E-01   | 5.624 | 2.751 | 2.987 | .1641 |

## CONVERGENCE ACHIEVED

| RELATIVE | CHANGE | IN  | WEIGHTED | SUM  | OF | SQUARES | LESS | THAN | .00 | 0100  |
|----------|--------|-----|----------|------|----|---------|------|------|-----|-------|
| 1        | .4120  | 87E | -01 5    | 5.62 | 5  | 2.75    | 51   | 2    | 988 | .1641 |

Figure 33 (cont.). The output of example 5-fitting data to Model 8.

### PCNONLIN NONLINEAR ESTIMATION PROGRAM

| PARAMETER | ESTIMATE | STANDARD<br>ERROR | 95% CONFIDENCE       | LIMITS               |                      |
|-----------|----------|-------------------|----------------------|----------------------|----------------------|
| Α         | 5.624518 | .311032           | 4.760967             | 6.488069<br>7.219965 | UNIVARIATE<br>PLANAR |
| В         | 2.751436 | .181382           | 2.247845<br>1.821030 | 3.255027<br>3.681842 | UNIVARIATE<br>PLANAR |
| ALPHA     | 2.987688 | .361232           | 1.984761<br>1.134737 | 3.990615<br>4.840639 | UNIVARIATE<br>PLANAR |
| BETA      | .164119  | .015873           | .120049              | .208188              | UNIVARIATE<br>PLANAR |

## PCNONLIN NONLINEAR ESTIMATION PROGRAM

\*\*\* CORRELATION MATRIX OF THE ESTIMATES \*\*\*

1.00000

-.02045 1.00000

.52781 .77671 1.00000

-.07900 .84574 .59525 1.00000

## \*\*\* EIGENVALUES OF (A TRANSPOSE A) MATRIX \*\*\*

NUMBER EIGENVALUE 1 151.1 2 3.214

3 .1454

4 .5531E-01

PCNONLIN NONLINEAR ESTIMATION PROGRAM

\*\*\* SUMMARY OF NONLINEAR ESTIMATION \*\*\*

#### FUNCTION 1

| X     | OBSERVED | CALCULATED | RESIDUAL  | WEIGHT | SD-YHAT   | STANDARIZED |
|-------|----------|------------|-----------|--------|-----------|-------------|
| 17.4  | Y        | •          | 40005 04  | 4 000  | 1011      | .1064       |
| .1670 | 6.103    | 6.092      | .1080E-01 | 1.000  | .1011     |             |
| .5000 | 3.748    | 3.797      | 4932E-01  | 1.000  | .9329E-01 | 4859        |
| 1.000 | 2.710    | 2.618      | .9112E-01 | 1.000  | .6694E-01 | .8977       |
| 2.000 | 1.967    | 1.996      | 2935E-01  | 1.000  | .7685E-01 | 2892        |
| 4.000 | 1.355    | 1.427      | 7234E-01  | 1.000  | .5138E-01 | 7127        |
| 6.000 | 1.098    | 1.028      | .7021E-01 | 1.000  | .5431E-01 | .6917       |
| 8.000 | .6488    | .7402      | 9141E-01  | 1.000  | .5875E-01 | 9006        |
| 12.00 | .4887    | .3839      | .1048     | 1.000  | .5339E-01 | 1.032       |
|       |          |            |           |        |           |             |

CORRECTED SUM OF SQUARED OBSERVATIONS = 25.1735
WEIGHTED CORRECTED SUM OF SQUARED OBSERVATIONS = 25.1735
SUM OF SQUARED RESIDUALS = .412087E-01
SUM OF WEIGHTED SQUARED RESIDUALS = .412087E-01
S = .101500 WITH 4 DEGREES OF FREEDOM
CORRELATION (Y,YHAT) = .999

#### PCNONLIN NONLINEAR ESTIMATION PROGRAM

### SUMMARY OF ESTIMATED SECONDARY PARAMETERS

| PARAMETER | ESTIMATE  | STANDARD |
|-----------|-----------|----------|
|           |           | ERROR    |
| AUC       | 18.647493 | .961647  |
| K10-HL    | 1.543162  | .110720  |
| ALPHA-HL  | .232001   | .028023  |
| BETA-HL   | 4.223453  | .408067  |
| K10       | .449173   | .032267  |
| K12       | 1.610994  | .215591  |
| K21       | 1.091639  | .150598  |
| VOLUME    | 4.178628  | .177916  |
|           |           |          |

#### PCNONLIN NONLINEAR ESTIMATION PROGRAM

FUNCTION 1
PLOT OF X VS. OBSERVED Y AND CALCULATED Y

### \*\*\* ARE CALCULATED POINTS, OOD ARE OBSERVED POINTS



Figure 33 (cont.). The output of example 5-fitting data to Model 8.

#### PCNONLIN NONLINEAR ESTIMATION PROGRAM FUNCTION 1 PLOT OF OBSERVED Y VS. CALCULATED Y CALCULATED Y 7.000 6.500 I 6.000 I 5.500 I 5.000 I 4.500 I 4.000 3.500 I 3.000 2.500 2.000 I 1.500 1.000 I .5000 .0000 -.5000

2.40 4.40

OBSERVED Y

6.40

8.40

## PCNONLIN NONLINEAR ESTIMATION PROGRAM

-1.60

.400

FUNCTION 1 PLOT OF CALCULATED Y VS. RESIDUAL



Figure 33 (cont.). The output of example 5-fitting data to Model 8.

#### PCNONLIN NONLINEAR ESTIMATION PROGRAM

FUNCTION 1 PLOT OF X VS. RESIDUAL Y



## PCNONLIN NONLINEAR ESTIMATION PROGRAM VOI-E

\*\*\*\* COPYRIGHT 1984,1985 \*\*\*\*
FOR INFORMATION CONTACT - STATISTICAL CONSULTANTS INC.
1-606-252-3890

LISTING OF INPUT COMMANDS

FINISH

NORMAL ENDING

Figure 33 (cont.). The output of example 5-fitting data to Model 8.

## APPENDIX I

Table 18. Clinical responses of patients: Diagnosis, tumor size and tumor response.

|     | Diagnosis        | Tumor si | zes (cm) |        | 1. 5 4 |                    |
|-----|------------------|----------|----------|--------|--------|--------------------|
| no. | for cancer<br>of |          |          |        |        | Tumor<br>responses |
| 1   | nasopharynx      | NM       | NM       | 10 X 6 | 7 X 4  | NM                 |
| 2   | lower gum        | 3.3      | 1.2      | -      | 12     | PR                 |
| 3   | base of          | 1.1      | 0        | -      | - 1    | CR                 |
|     | tongue           |          |          |        |        |                    |
| 4   | soft palate      | 2.2      | 0.9      |        | × 3×14 | PR                 |
| 5   | buccal mucosa    | 5.8      | NF       |        | 1      | NF                 |
| 6   | base of          | 1.2      | 0        |        | - 1    | CR                 |
|     | tongue           |          |          |        |        |                    |
| 7   | tongue           | 1.9      | 0        | -      | -      | CR                 |
| 8   | pharynx          | 3.0      | 1.3      | 6 X 7  | 5 X 5  | PR                 |
| 9   | tongue           | 1.4      | 0        |        | -      | CR                 |
| 10  | metastatic       | NM       | NM       | 7 X 6  | 5 X 5  | NM                 |
|     | cancer           |          |          |        |        |                    |
| 11  | nasopharynx      | NM       | NM       | -      |        | NM                 |

NM = tumor size could not be measured

NF = patient did not followed up

CR = complete, PR = partial response



## VITAE

Name Miss Danita Phanucharas

Birth Date October 28, 1961

Education Bachelor of Science in Pharmacy in 1984 from

the Faculty of Pharmaceutical Sciences,

Chulalongkorn University