CHAPTER IV

PARTIALLY ORDERED DISTRIBUTIVE SEMINEAR-FIELDS

In this chapter, we shall classify some complete ordered

distributive seminear-field up to isomorphism.

Definition 4.1. A system (K,+,°,<) is called an ordered distributive

seminear-field of zero type if (K,+,-) is a distributive seminear-field

of zero type and < is a total order on K satisfying the following
properties:

(i) For any X,y,z € K, x <y implies that x + z <y + z
and z + X £z + Y.

(ii) For any x,y,z € K, x <y and z > 0 imply that xz < yz
and zx < zy.

(iii) 0 ©MH

Let K be an ordered distributive seminear-field of zero type.

The positive part of K, denoted by D;, is {x € K ! x > 0} and the

negative part of K, denoted by D;, asfx ek | % < 0}.; Note that

: +. oy - .
DY is nonempty and K DKLVJ{O} U Dy - The following statements hold:

K

+ = 1 %
(1) For any x ¢ DK’ Vv e DK’ Xy, yX, ¥y € DK'

+ - -
(2) DK Q;DK x for all x e DK .
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Proposition 4.2. Let K be an ordéred distributive seminear-field

of zero type. Then D; is an ordered distributive ratio seminear-ring.

Proof: Let x,y € D;. Then x + y >0 +y =y >0, so
X +yE€ D;. If y-1 <0 then 1 = yy_1 <y0 = 0, a contradiction.

1

Hence y-1 > 0. It follows that xy > 0, so xy_1 € D, Therefors

K"

D; is an ordered distributive ratio seminear-ring. #

The following theorem has been proven in [3], page 46, and
the assumption that the addition is commutative was not used in the

proof.

Theorem 4.3. Let K be an ordered distributive seminear-field of
zero type such that 1 + 1 # 1. Then the prime distributive seminear-

field of K is order isomorphic to (Q3,+,',<).

The following fact will be used to prove the next theorem:
Let K be a complete ordered distributive seminear-field of zero type

such that 1 + 1 £ 1. Assume that D; + @. Then for each x € D;,

0 = sup {n 'x | ne 2*}  (see [3], page 48).

Theorem 4.4. Let (K,+,+,<) be a complete ordered distributive
seminear-field of zero type such that 1 + 1 #£ 1. Assume that K is

not a skew field. Then (K,+,+,<) is order isomorphic to (Rg,+,‘,<).

Proof: Since K is complete, D; is complete. Hence by

Proposition 4.2, Theorem 2.39 and 4.3, (D;,+,',<) is order isomorphic
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to (£R+,+, °»<). Since K is not a skew field, by Proposition 1.43,
Xx +y # 0 for all x,y € K\ {0}. We shall show that DI; = §. Suppose

not.

We shall show that there exist xo € DK

and yo € K such that

X+ Y= 0. Suppose not. Then x +y <0 for all x ¢ D1-<’ y € K.

Let x ¢ Dl_<' Then x + X(x+x) < 0, so we have that ng D;(x+x(x+x))
(see page 83). Hence 1 = t(x+x(x+x)) = tx + tx(x+x) > 0 for some
1

t e DI_<' Therefore tx > 0. Thus 1 + (x+x) = (tx) e D;. Since

(D;,+,-,<) is order isomorphic to (R+,+,-,\<), (1+1) (14+x) = (1+1)+(x+x) =
T+ (1+(x+x)) > 1. But x+ (1+x) <0, so (1+1)(1+x) = (1+x)+(1+x) =
1+ (x+(1+x)) €1 + 0 = 1, a contradiction. Hence there exist xo € Dl—<

and Y R K such that L) § > 0.

Let A = {y € K xo+y>0}. Then A # (. Since for each
y ¢A, 0 <xo+y £0 +y=y, 0is a lower bound of A. Since K is

complete, inf(A) exists, say z. Then z > 0.
Case 1: xo+ z > 0. Then z > 0. Since (D;,+, *»<) is order isomorphic
to (1R+,+,',<), r <xo+ zZ <0 +z =2 for somer e D;. Thus z = t+r

for some t € D;. If X + t <0 then Xtz = X + t+r <0+r

r <xo+z,
a contradiction. Hence xo+ t > 0. Therefore t e A, so t > z. But

t,r € D;, so z = t+r > t > z, a contradiction.

Case 2: xc+ z < 0. We shall show that there exists an ao € D; such

that Xtz +ay < 0. Suppose not. Then Xtz +a > 0 for all a ¢ D;.

Claim that y + a > 0 for all y ¢ D;, aeD Let y € DI-<' Then

+
Ko

0 = sup {n-1y l n ez}l (see page 84). Since X +z < 0, there
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exists an n € z' such that xo'+ z <n—1y. Then for each a ¢ D;,

0 <x +z+a gn_1y + a = n_1(y+na). e 0 a € D; for all a ¢ D;,
=1 . “ +
0 <n "(y+n(n 'a)) = n (y+a) for all a ¢ DK' Therefore 0 <y + a
for all a € D;:. Hence we have the claim.
Let w ¢ D;. By the claim, w_1+ LS R S T (*)
Suppose that 1 + w < 0. Then w + (14w) < 0. Also, (1+1)(w+1) =
(W+1)+(w+1) = (w+(14+w))+1 <0 + 1 =1. Since w + w <0, by the claim,

we have that (w+w) + 1 > 0. Since (D;,+, *,X) is order isomorphic to
RY )+, 0,9, 1 < (W) 151 B Q50w% (141) = (141) (w+1), a
1

contradiction. Hence 1 + w > 0. Therefore w '+ 1 = w-1(1+w) <0

which contradicts (*). Hence there exists an ao € D;. Such that

Xtz +a <0. Since z >0, z + a, > z. But z = inf(A), so there
exists a y € A such that y <z + a- Thus T e e 2x0+y >0, a
contradiction.

Therefore DI—< = @. “Thus K= D;u{o}. Hence (K,+,+,<) is
order isomorphic to (tR‘S,-,., 3P4 # -
Theorem 4.5. Let (K,+, *,<) be a complete ordered distributive
seminear-field of zero type. Then (D;,+, *, <) is not order isomorphic

to the following:
(1) AR yminige, O i
(2) i B e e s

(3} (R ;4 4,9 .

(4) ({2"|n € 2},min, ., 9.
(5) ({znln € Z})+£:°:<).

6) ({2%|n e Z}4,, 0,9,
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Proof : Suppose that there exists an order isomorphism

Q: (R+,min,-,<)*(D£,+,',<). Then 0 < 9(1) < @(2). But

9(2) = ¢(2) + 0 < @(2) + (1) = @(2+1) = (1), a contradiction.

: ; : + .
Hence (D£,+,',<) is not order isomorphic to (R ,min,*,<).

Similarly, we can show that (D;,+,',<) is not order
isomorphic to (2)-(6). "
Remark 4.6. Let (K,+,°,<) be a complete ordered distributive
seminear-field of zero type such that 1 + 1 = 1. From Theorem 2.32
and 4.5, we have that KD;,+,°,<) is order isomorphic to exactly one
of the following:

(1) ({1},+, -,/

(2) (R+,max,o,s).

(3) ({2" | n e z}max, -, 9.

Hence D; is additively commutative.

Remark 4.7. The following are examples of complete ordered

distributive seminear-field of zero type:

ox o if |yl o< iel
(1) (R.+1,-,<) where x Y o= <
by if |x}i < |9

; X if byl oe Sl
(2) (R,+2,',<) where x +y

oy if |x] < vl
(3) (2%] n e 2} U {0} UL-2M|n ¢ B}itic, 9.
() (2" n e 2V U0} U{-(2Y|n ¢ Z},45,%,€)

(5) ({‘11011}:+1)’;<)-
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6)  ({-1,0,1},+ <)~

2)’:
Proof: (1) For any x,y,z € R\ {0},
> Gt s |y| < IxI and |z| <'x|,

if |x| < |y| and Izl <|y|,

(x+1y)+1 z=x+1(y+12) =4y
2 it |x| <|2| ana |y] <[2],

[ et lz| <yl

x(y+1z) = Ky 4y X2 =
1 xz af |yl < |Z[

and

J‘ xz o IE |y| < |x|,

(x+1y)z

I
b
N
+
-
<
N
]
—
<

P AN 3 |x| $|Yl-

Hence +1 is associative and °* is distributive over +1 in R.

To show that for any x,y,z € R\ {0}, x <y implies that

X+, z<y +,zand z +, xX<2 +1y,let x,y,z € R\ {0} be such that x <y.

1 1

Case 1: |x| <|z| and |y| < |z]|. Then x +,z= 2z =y + z.

Case 2: lz] < x| and (2] < |¥y]. Then x +, z = x £y =y + z.
Case 3: |x| <)z} <|y|.- since x ¢y, y > 0. This implies that
X +,2=2 <y =Y +42.

Case 4: |y| <|z| <|x|. since x <y, x <0. This implies that

¢
X+,z=x <z =y + z.

Similarly, z +1 x £z +1 y.

Therefore (‘R,+1 »°»<) 1is a complete ordered distributive
seminear-field of zero type.

The proof of (2)-(6) are similar to the proof of (1). 4
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Let K be an ordered distributive seminear-field of zero type.

For ‘each x e K\ {0}, let LI;(x) = LI (x)M DI‘< and RI;((x) =RIK(x)ﬁ'D£.
Then the following statements hold:

(1) If x e LI (1) then {y ¢ Do Liv.3 x} S LI (1).

(2) If x e RI (1) then {y ¢ D. | y.> x} S RI (1).

(3) If x e LI (1) then x™' § RIZ(1).

Note that from (1) and (2), we have that RI£(1)§; LI;(1)

or LI (1) S RI (1).

We shall now classify all complete ordered distributive
seminear-field of zero type such that 1 + 1 = 1. First, we shall

need a lemma.

Lemma 4.8. Let K be an ordered distributive seminear-field of
zero type such that x + y = max {x,y} for all X,¥ € D;, Assume

that DE 4 g. Then the following statements hold:

(1) 1 + x lor1+x=x for all x ¢ D;_

(2) x +1

Torx+1=x for all x ¢ D;.

(3) 1f ID;, > 1 then LI;(1) and RI;(1) are nonempty proper

subsets of D;.

(4) 1f LI;(1) = RI;(1) then K is additively commutative.

(5) If there exists an a e LI_(1)\ RI_(1) such that a2 =-1
[e} K K o

- +
th D=
en K aODK.
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Proof: (1) Let x € Di. Since 1 + 1 =1, by Remark 1.30
and Proposition 1.43, 1 + x # 0. If 1 + x > 0 then
1=1+0<1T+(14x) = (1) +x=1+x €1 +0=1,801+x=1.
If 1 +x <0 then x =0 +x <1 +x=14+ (x+x) = (1+x)+x €0+ x =x,
so 1 + X = X.

(2) The proof is similar tb tbe proof of (1).

(3) Assume that |D;| > 1. We shall show that -

gC LI (1) C D . Suppose not.

Case 1: LI;((1) = ¢. Then for each x € D;, x-1 4: LI;(1), by (2),

we get that x Ve 1 =8 /560 88 . x & D . Hence 1 + x =1 for all

X € D; which implies that D = RII-;(U. Let x € D

+

K and y € DK be such

that x > 1. Since x + y = max {x,y} for all x,y € D;, (1+y) +x =

1 + x = x. Since xy_1eD_ 1+(y+x)=1+(1+xy_1)y=1+y=1,a

K)
contradiction.
Case 2: LI;(H) = DI-C’ If there exists an x € RII_((” then 1:+ x.='1,
29 -1 -1 - e
so x + 1 =x , hence x sl: LI (1), a contradiction. Hence

RI;H) =@. Let x ¢ D; and y € D; be such that x <1. Since

yx"1 € D{(, 1+ (y+x) = 1+(yx-1+1)x= 1+x=1. By (1), (M+y)+x =

y + X = (yx_1 +1)x = x, a contradiction. 3
Hence g C LII-<(1 i v DI';. Similarly, we can show that
g C RIK(1) 3 Dy-

(4) Assume that LI;U) = RI;(H. Let x € D;. By (1),

1+x=10r 1+ x = X. If1+x=1thenxeRIE(]):LI;(ﬂ,so
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X+ 1 =1. Assume that 1 + x = x. Then x ¢ RI;((H, so x*LIl-((H.

By (2), x + 1 = x. Thisshowsthatx+1=1+xforallstK.

Let x,y € K\ {0}.

Case 1: X,y ED;. Then X + y =y + x = max {x,y}.
Case 2: .x,v € Dlz. Without loss of generality, assume that x < ¥

Then X = X + X £€X +y <x + 0 = x, SO X + y = x. Similarly,

Yy + X =Xx. Hence x +y =y + x.

Case 3: XeD+andyeDI-<orxeDK

+ -1 -
K and y ¢ DK' Then xy e D

K*
-1 -1
Hence xy +1=14+Xy , 80X+y=y + x.

Therefore K is additively commutative.

(5) Assume that there exists an a e LII_<(1)\ RII_<(1) such

thata2=1. Then a + 1 =1and 1 +a =a_ by (1). Let x € D._.
o o o o

Suppose that a x € D,. Then a x = (1+a )X =X +ax £x+0=x=
o K o o o

(a+1)x=ax+x €ax+0=a x. Therefore a x = x, so a =l
o o) o o o [¢)

: : +
a contradiction. Hence aox € D . Thus x = ao(aox) € aoD

+
K K°

shows that D;C; aoD;. Since aoD;C DI—(’ D; = aODI-:. 4
Theorem 4.9. Let (K,+,+,<) be a complete ordered distributive
seminear-field of zero type. Assume that (D'Iz,+,-,\<) is order
isomorphic to (ER+,max,-, <). Then exactly one of the following
statements hold:

(1) K is additively commutative.

(2) (K,+,+,<) is order isomorphic to exactly one of the

following:
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2.1) (R;+1:')<).

2.2) (R,+2,',<).

Proof: By assumption, x + y = max {x,y} for all X,y € D;.

If Dl—< = # then K = D;U{O} which is additively commutative. Assufie
that D;( # @§. By Lemma 4.8(3), LI;(1) and RI;(U are nonempty proper
subsets of D;(. If LI;(1) = RI;(H then K is additively commutative
by Lemma 4.8(4). Assume that LII—<(1) # RI;((1)._ By the note on page

89, RIK(1)CLIK(1) or LIK(1) CRIK(H.

Case 1:  RIL(1) CLI(1). Let a € D \LI (1). Then a ¢ RI (1).

By Lemma 4.8(1), 1 + a = a, so a_1+ 1 =1. For each x ¢ LI£(1),

To=ux i grs x(a_1+1)+1 = (xa_1+x)+1 xa_1+(x+1) = xa‘1+1, so

a=x+a <x+0=1x for all x ¢ LII;(H. Hence a is a lower bound
of LIK(1). Let a = inf (LIK(1)). Claim that LIK(1)\ RIK(1) = {ao}
Suppose not. Then there exists an x € LII-<(1)\ RII-<(1) such that

x # ao. Then x > ao, so there exists a y ¢ LI£(1) such that x > y.

Therefore (y+1) + x = 1 +X=xXx>y=y+03y+x=y+ (14x),

a contradiction. Hence we have the claim. By the claim and Lemma
B0 e e EITEAdS RIG(1), hevms e e Therefore a> = 1
: e T K o o° o) '

- +
By Lemma 4.8(5), DK = a Dy.

To show that x + 1 = 1 + x for all x ¢ DI—(\{ao}’ let

XiE Dlz\{ao}. If x <a_ then x 4LII_<(1), so x § RII—<(1), hence

X+ 1=1+x=x by Lemma 4.8(1) and (2). Assume that x > a.
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Then x € LIE(1) (see page 89). By the claim, x ¢ RI;(1). Hence
x+1=1+x=1.

To show that ax = xa_ for all x € K\ {0}, let x ¢ K\ {0}.
Since a + 1 #1 + a S +1#1+ xla % 1f x ¢ DI then
o o’ o o ey +

=1 - -1 :
X axeD,, sox ax=a_, hence a x = xa , so we are done.
[e} K [e} o o) o

Assume that x € D;. Then x = aod for some 4 € D;. It follows that

=4 o

& i
X 'ax = (a a, )ao(aod) =d

- -1
adeD,. Hence x a x =a_, so
o K o o

For simplicity, we shall assume that p} = RY. Define

K

f: (Ky+,¢,Q - (R,+1,-,<) as follows: For x € K,

x if x e pp U0},
Fiix) = {
. Y +
-d ifx-= aod for some 4 e Dy-
It is easy to see that f is a bijection.

To show that f is a homomorphism, let x,y € K\ {0}.

Case I: X,V € D;. Then f(x+y) = x + y

f(x) + f(y) and

f(xy) = xy = £(x)E(y).

Case II: X,y € D;. Then x = aod and y aor for some 4,r € D+.

K

Also, X +y = ao(d+r) and xy

(aod)(aor) = ao(dao)r = ao(aod)r = dr.

Hence f(x+y) = -(d+r) = -max {d,r} = —(d+1r) (—d)+1(-r)= f(X)+1f(y)

and f(xy) = dr = (-d)(-r) = £(x)E(y). ‘

+ —
Case III: X g DK and y € Dy. Then y = aod for some 4 ¢ D;. Also,

Xy = x(aod) = ao(xd). Hence f(xy) = -(xd) = x(-d) = f£(x)f(y) and
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X if d <x,

f(x) +1 fly) = X +, (-d)={

-d if x <d.

B
If d < x then aox=ao(x+d) =aox+a°d <0 +aod—y, so a_ < yx
which implies that x + y = (1+-yx_1)x = x. Similarly, if x < d then

yx—1 <a  which implies that x + y = (1+yx-1)x = (yx_1)x =y =ad.

o
Hence
- X V4 < x,
f(x+y) =
-d 1A=
Therefore f(x+y) = £(x) + £ (v,
Case 1IV: X € D; and y € D;. This proof is similar to the proof

of Case III.

Hence f is a homomorphism.

To show that f is isotone, let x,y e K\{0} be such that X< v
It ig clear that if 0 <X <yoor x <0 < wthen £f(x) < f(y). Assume

that x <y <0. Then x = aod and y = ar for some d,r € D;. iG3

d <r theny =ar =a(d4+r) =a d + a r €£ad + 0 = x, a contradiction.
(o] [e] o (] 0]

Hence r <d, so f(x) = -d < -r = f(y). Therefore f is isotone.
Therefore f is an order isomorphism.
.

Case 2: LI;(1)CZ RI;(1). This proof is similar to the proof of

Case 1 and shows that (K,+,¢,<) is order isomorphic to (R,+2,',s)
Finally, we shall show that 2.1) are not order isomorphic. to

2.2), suppose that there exists an order isomorphism

£: R+, %9 - (R,+,, <) . Since £(-1) = £(1 + (1)) = £(1) +,£(-1) =
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1 +y £(-1), 1 <I1£f(-1)1 . Since 1 = £(1) = f(-1+1 1) = f(-1)+2f(1)=

£(-1) +_ 1, 1£(-1)I <1, a contradiction.

2 #

Theorem 4.10. Let (K,+,*,<) be a complete ordered distributive

seminear-field of zero type. Assume that (D;,+,',<) is order
isomorphic to ({2n| n e Z},max,',g) . Then exactly one of the
following statements holds:

(1) K is additively commutative.

(2) (K,+,*,< is order isomorphic to exactly one of the

following:
2.1) . ({2%] n e 2O U{-(2™ | n ¢ 2}+,0 9.
2.2) (2% n e 2MU{IU{-(2™) | n e 2}h,+,,°, 9.
Proof : The proof is the same as Theorem 4.9. "

Theorem 4.11. Let (K,+,°*,<) be a complete ordered distributive

seminear-field of zero type. Assume that (D;,+,',-s) is order
isomorphic to ({1},+,*,<. Then exactly one of the following
statements holds:

(1) K is additively commutative.

(2) (K,+,°*,<) is order isomorphic to exactly one of the
following:

2-1) ({"1,0,1},+1,.)<)-

2.2) ({_1,0,1},+2,-,<).

Proof : If DI—( = @ then K = {1,0} which is additively

commutative. Assume that D; 0. 2t LII-((1) = RII—(U) then K is
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additively commutative by Lemma 4.8(4). Assume that LI;(1) # RI;(1).

Then there exists an a € D. such that a +1#1+a.
[e] K o o

Case 1: a +1=1. By Lemma 4.8(1), 1 +a =a . Then a-1 =

_ o o o o

1+a_1=(a+1)+a-1—a +(1+a_1)-a gl 0 = d
S0 o s e P e e S e S T

4 = %1+a =(a—1+1)+a =a—1+(1+a)=a-1+a P S T

o o o o o o o o o o °

2 - + &
Hence ao =a  , so ao = 1. By Lemma 4.8(5), DK = aoDK. Since
Dy = {1}, D1—< = {ao}. Therefore K = {a°,0,1}. Define

£: K,v,,0 -~ ({—1,0.1},+1.°.s) by £(0) = 0, £(1) = 1 and f(a)) = -1.

Hence f is an order isomorphism.

Case 2: a+ 1 = ag- Using a proof similar to the proof of Case 1

we can show that (K,+,*,<) is order isomorphic to ({-1,0,1 },+2,°,<) "

Definition 4.12. A system (K,+,°,< is called an ordered

distributive seminear-field of infinity type if (K,+,°) is a

distributive seminear—field of infinity type and <is a total order

on K satisfying the following properties:

(1) For any X,y,z € K, Xx <y and z < ® imply that
X+2z2 £y +2, 2+ X <£z2+Yy, X2 <yz and zx < zy.

(ii) 1 <=,

Let K be an order distributive seminear-field of infinity

type. The finite part of K, denoted by Di, is {x e K | x < *} and

the infinite part of K, denoted by D;, is {x e K | x > ®}. Note that
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£ 2 .5
DK;éﬂ andK=l?KLJ{}kJDK. .

Remark 4.13. Let K be an ordered distributive seminear-field of

infinity type. It is easily shown that the following statements

hold:
£ i -1 i
(1) For any X e DK’ y € DK' XY, VX3V . € DK'
f i i
(2) DK C_;xDK for all x € DK‘
(3) (Di,’,s) is a totally ordered group.
(4) 1If K is complete then Di is complete.
(5) Df CLCor_ (1) if and only if D'f C RCor_ (1)
x & £ if a yi x &RCor &
i g , i
(6) DKg_ LCorK(1) if and only if DKC; RCorK(1).
(7) 1f x e foﬁ LCor_ (1) [fo\ RCor_(1)] then
K K K K
£
{ly e Dy | v > x} < LCor, (1) [RCor, (1)].

i i
(8)  If x'e DKFW LCorK(1) [DK{A\RCorK(1)] then

it
{y € Dy B X}QLCorK(H [RCor, (1)].

We shall now determine LCorK(1) and RCorK(1) for complete

ordered distributive seminear-fields of infinity type. First, we
shall need some lemmas. The first lemma has been proven in [3],
&

page 8, and the assumption that the addition is commutative was not

used in the proof.

Lemma 4.14 ([3]). For any complete ordered distributive seminear-

field K of infinity type, if (H,*) is a subgroup of (Di,-) such that



98

: £
IHI > 1 then H has no upper bound in Dy-

Lemma 4.15. Let K be a complete ordered distributive seminear-field

of infinity type such that LCorK(1) is a proper subset of K. Then

f
LCorK(1)ﬁ DK =g.

Proof: First, we shall show that (K\ LCorK(1),') is a

subgroup of (K\ {®},*). Let x,y € K» LCorK(1). ‘Then x + 1 # @ and
y+1#®, so1+ y"1 # ®. It follows that x + (xy_1+1) + y.1 =
(x+xy_1)+(1+y—1) = x(1+y_1)+(1+y_1) = (x+1)(1+y-1) # ©. Hence

xy_1+1 # ®, so xy—T € K\ LCorK(1). Therefore (K\ LCorK(H,') is a

subgroup of (K\ {®},).

Then 1 € K\LCor (1), so 1 + 1 <=. If D = {1} then

£
K
£

LCorK(1) M Di = @, so we are done. Assume that D, # {1}. Choose

K
asDi such that a <1. Then a + 1 €1 +1 <®, g0 ac K\LCorK(1).
Hence we have that IDi MK\ LOorK(1))I > 1. Now, we have that

f ; £
(DK R G @Y LCorK(H),') is a subgroup of (DK,'). By Lemma 4.14,

f . £ f
DK M (K LCorK(1)) has no upper bound in DK' Then for each x € DK

there exists a ¥k le< M (K\ LCor (1)) such that x < y,- Hence

X + 1 syx+ 1 <= for all x € Dlﬁ’ so xs} LCorK(1) for all x € le(.
PO

f—

Therefore LCorK(1) M B a. "

Lemma 4.16. Let K be a complete ordered distributive seminear-field

of infinity type. 1If LCorK(1) has an upper bound then sup (LCorK(1))=

sup (RCorg(1)). -



99

Proof: Assume that LCorK(1) has an upper bound. Let
a, = sup (LCorK(1)). Then a 2. Qlaim that a, is an upper bound
of RCorK(1). Suppose not. Then there exists an x € RCorK(1) such
that x > a - Then x > ® and x 4 LCorK(1;. It follows that
i 4 RCorK(1). Since x € RCorK(1), so xm1 € LCorK(1), hence
® < x_1 < a < X. By Remark 4.13(8), x'-1 € RCorK(1), a contradiction.
Hence we have the claim. Let bO = sup (RCorK(1)). Then bostao.

Using a proof similar to the proof of the above claim we get that bo

is an upper bound of LCor (1). Hence a <b . Therefore a = bl
K o~ "o o o #

Theorem 4.17. Let K be a complete order distributive seminear-field

of infinity type. Then LCorK(1) is exactly one of the following

sets:
(1) {=}.
i
(2) by U {=}.
(3) K.
Proof: Assume that {“}C:,LCorK(1) C K. By Lemma 4.15,
£ i o :
LCorK(1)rW D = @. Hence LCorK(1) g;DK Crio), o yF LCorK(1) has no

upper bound then D; Q;LCorK(1) by Remark 4.13 (8), hence
LCor (1) = Dilv){m}, so we are done. Assume that LCor (1) has an
upper bound. Let a, = sup (LCorK(1)). By Lemma 4.16, a_=sup (RCorK(1)).
: £ £
Claim that Dy = {1}. Ssuppose not. Let d e DK\\{1}. Then

aod # a, -
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Case I: aod < a,- Then there exists an r € LCorK(1) such that
op -1 -1
r>ad. Thenrd >a_,sord ¢ LCor, (1). Thus rd +1# ®, so
1 + ¥ ha # ®. Hence v 4 RCorK(1). Since a_ = sup (RCorK(1)),
-1 -1 -1 :

by Remark 4.13 (8), we get that r 'd > a» hence r 2'a°d . Since

LCor_ (1) -1 ¢ Rreor (1). Thus r-1 <a , so a P Hence
r e LCory , T 1) <a, 2 <a_.

ao < aod, a contradiction.

Case II: ao<:aod. Then aod—1< a, and using the same proof as in

Case I we get a contradiction.

Hence we have the claim.
By Lemma 4.15, LCorK(1)f\ Di =@, hence 1 + 1 <*®, Thus

y [ L > Di = {1}, so 1 + 1 = 1. We shall show that D;C; LCorK(1).

LetxeD;. Then x + 1 >% and x +1 = x + (1+1) = (x+1) +1. If
x+1>® then 1 =1 + (x+1)_1 >1 +® =, a contradiction. Hence

X+ 1=%° soxE€ LCorK(1). Therefore D;ZQ;LCorK(1). But

i O VERSITY.
LCor (1) & Dy iu{®}. Hence LCor, (1) = DKU{ }.

From Theorem 4.17, there are three types of complete ordered
distributive seminear-fields of infinity type. A complete ordered
distributive seminear-field K of infinity type is called a type I

distributive seminear-field of infinity type if LCorK(1) = {=}, a

type II distributive seminear-field of infinity type if

LCor (1) = D;k_){m}, a type III distributive seminear-field of

infinity type if LCorK(1) = K.
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Remark 4.18. Let K be a type I distributive seminear-field of

infinity type. Then LCorK(1) = {»} This implies that x + y # ®
for all x,y € K\ {®}. Then we have that x + y <® for all x,y € le(.
By Remark 4.13 (3) and (4), (D§,+,',$) is a complete ordered

distributive ratio seminear-ring.

Theorem 4.19. Let K be a type I distributive seminear-field of

infinity type such that 1 + 1 = 1. Then D; = g.

Proof : Suppose not. Let x ¢ D]{(' Since LCorK(1) = {=},

X+ 1> Since x + 1 =x+ (14+1) = (x+1) + 1, so 1 = 1+(x+.1)-1>°°,

a contradiction. Hence D; = g. "

Remark 4.20. From Remark 4.18 and Theorem 4.19, we get that K is
order isomorphic to one of the complete ordered distributive ratio
seminear-rings D in Theorem 2.32 with an ® element adjoined and

a <« for all a £ D.

Theorem 4.21. Let K be a type I distributive seminear-field of

infinity type such that for any x,y,z e K, x <y implies z+ x £z+y

or for any x,y,z € K, x <y implies X + z <y + z. Then D; =fg.
é
Proof : Assume that for any x,y,z € K, x < y implies

zZ + X £z + y. Suppose that DlK;é!J. Let x € D;. Then x + 1 < x + @
= @, But LCorK(1) = {2}, so x +1 > ®, a contradiction. Hence

D, = #§. If K has a property that for any x,y,z € K, x < y implies
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X +2z <y + z then using a proof similar to the above proof we get
that Di =f.
K #

Remark 4.22. Let K be a type I distributive semingar—field of
infinity type such that 1 + 1 # 1. Assume that for any x,y,z € K,

x <y implies z + X <z + y or for any x,y,z € K, x <y implies

X +2 <y + z. From Remark 4.18 and Theorem 4.21, we get that K is
order isomorphic to 6ne of the complete ordered distributive ratio
seminear-rings D in Theorem 2.39 with an ® element adjoined and a < @

for all a € D.

Remark 4.23. Let K be a type II distributive seminear-field of

infinity type. Then LCor (1) = D;l,){m}, so xy—1+1 =@ = x~1y + 1

for all x ¢ Di, y € D;. Hence we have that x + y =y + x = ® for all

X € Df, € Do and x + BRI X € Df. By Remark 4.13 (3)
Rl K

and (4), Di is a complete ordered distributive ratio seminear-ring.

We shall now classify all type II distributive seminear-fields
of infinity type subject to the condition that for any x,y,z € K,
X <y implies x + z <y + z or for any x,y,z€ K, x €y implies

Z +X 2 + Y.

Theorem 4.24. Let K be a type II distributive seminear-field of

infinity type such that Di is additively commutative. Then K is

additively commutative.
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Proof: 1f D; = @ then we are done. Assume that D; £ 0.

i
€ D .
Let x,y K

Case 1: xy € Di. Then x + y = (xy—1+1)y = (1+xy_1)y =y + X,
it e i : 1 -1
Case 2: xy '€ Dy . Since LCor, (1) = DK:LJ{w}, Xy +1 =% and

ool

yx_1+ 1 = (xy- ) "+ 1 = @, ‘Thapex 4 y = (xy_1+1)y =® = ®ey

(yx_1+1)x =y + X.

Hence K is additively commutative. "
Remark 4.25. Let K be a type II distributive seminear-field of
infinify type such that K is additively commutative and for any
X,yyz € K, x £y implies x + z £y + z. 1In [3], all such K were
classified. So from now on, Qe shall study all such K which are not
additively commutative. By the above theorem Di must be isomorphic

to either (4),(5),(8) or (9) in Theorem 2.32.

Remark 4.26. Let F = {(Zn,O)In e zHU {m}\v’{(Zn,a)ln e 2} and
H={2",0|ne 21U {=} {(JEE,1)|n is an odd interger}. The
following are examples of type II distributive seminear-fields of
infinity type:

(1) (F,+i,‘,$1) where +p»° and <, are defined as follows:
L tg W =W'® = ®w =2 for all w € F and for each

x,y e {2" In e z},

]

(x,0) +y (y,0) (x,0),
(x,1) +y (y,1) = (x,1),
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(x,0)*(y,0) = (xy,0),
(x,1)°(y,1) = (xy,0),
(x,0)°(y,1) = (xy,1),
(y,1)*(x,0) = (yx,1),

(x,0) s o B (y»1),

. (x,0) < (y,0) if and only if x £y and
(x,1) < (y,1) if and only if x <vy.

(2) (F,+,, ,\<2) where 4+, and * are given in (1) and <, is

2 £ 2

defined as follows: For each x,y € {Zn[ ne 2},

(x,0) <P £ (y,1),

(x,0) <, (y,0) if and only if x <y and
(x,1) <5 (y,1) if and only if y < x.

(3) (F,+2,*,<1) where +, and <, are given in (1) and * is

defined as follows: w*® = ®%*y = ® for all we F and for each

X,y € {2n| n € z},

(x,0)*(y,0) = (xy,0),
(x,1)*(y,1) = (xy,0),
(x,0)*(y,1) = (x—1y,1) and
(y,1)*(x,0) = (yx,1).
(4) (F,+2,*'%<2) where ) and * are given in (3) and sz ig

given in (2).

(5) (F,+r,",< ) where * and <, are given in (1) and G is

1

defined as follows: wW + ® = @ +rw = for all w € F and for each

x,ye{anne 2}
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(x,0) +r (y,O) (y,0),

(xs1) +r (y;1) (y,1) and

(x,0) T (y,1) (y,1) * (x,0) = =.

(6) (F,+r,°,s,) where N and * are given in (5) and sz is
given in (2).

(7) (F,+r,*,<1) where T and <, are given in (5) and * is

given in (3).
(8) (F,+r,*,\<2) where o and * are given in (7) and <5 is
given in (2).

(9) (H,+2,',\< ) where + e and <

1 are similar to those

2’ 1

defined in (1).

(10) (H,+2,',s ) where + , * and <, are similar to those

2 w2

defined in (2).

(11) (H,+r,',<1) where +. « and 41 are similar to those

defined in (5).

(12) (H,-i-r,',s ) where + , *and <, are similar to those

2 r 2

defined in (6).

Note that (H,+l,*,s1) where +2, * and <1 are similar to

those defined in (3) is order isomorphic to (F,+£,*,$1) by the map

w2 ) e 2%, 0) and (27,15 e (R gyl

Lemma 4.27. Let K be a type II distributive seminear-field of

infinity type such that for any x,y,z € K, x €y implies x+2z y+2
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or for any x,y,z E:AK, x Ly implies z + x <z + y. If D; # @ then

i £ £ i

= = € .

DK. xDK DKX for all x DK
Proof: First, we shall assume that for any X,¥,2 € K, x Ly

implies X + z <y + z. Assume that D; # @. Let xe¢ D;. Then

Crpr

f
xDK = Dy.

f i i £ :
Suppose that xDKC DK' Let y € DK\ xDK. Since

<
I

x(x-1y), so x—1y 4 le(, hence x—1y € D;. Since LCorK(1) = D;U{w},

V + x = x(x-1y+1) = ® = ye® = y((x_1y)_1+1) = y(y_1x+1) =X 4+ V. If

x. 3> y then x + y >y + y = y(1+1) > ®, a contradiction. If y > x

then y + x > x + x = x(1+41) >® , a contradiction. Hence xDi = D-

S £ i
Similarly, DKX = DK'

If K has a property that for any x,y,z € K, x £y implies

Z + X £z + y then using a proof similar to the above proof we get

3. £ £ i
that DK = xDK = DKX for all x € DK' "

Theorem 4.28. Let (K,+,*,<) be a type II distributive .

seminear-field of infinity type such that for any x,y,z € K, x €y
implies x + z £y + z or for any x,y,z € K, x £y implies z+x <z+y.

f . ; X
Assume that (Dl ,+,*,<) is order isomorphic to ({2"] ne z},+ <%

2)')

Then (K,+,°*,< is order isomorphic to exactly one of the following:

(1) 27| n e 2} R Lo % SR

(2) (F,+£,',s1).
(3) (F,+£,°,<2).
(4) (F,+£,*,<1).
(5) (F,+2,*,S2).
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(6) (Hy 45505 <). :
(7) (H:+2)')<2)-
Proof: If D?': g then K is order isomorphic to (1). Assume

that D; # ﬁ. For simplicity, we shall assume that Di = {an n € 7z}.

i i £ -1_f 2 f
= = 1
Let a € DK. By Lemma 4.27, DK aDK a DK' Then a DK' Also,

we get that a2 = 2N and 2a = a2M for some N,M € Z. It follows by

induction that 2"a = a2™\\for/{iW/x e Z}. Since e e S

follows by induction that 2"a = a2nM' for all n € 2. Hence we have

Chat 2% = a2™  for ol %/ 2, Prom 2 = a’ = alabad il
a-1a2NM = 2NM, we get that N = 0 or M = 1.
n n

Case 1: M = 1: Then 2 'a = a2 for all n € z.

Subcase 1.1: N = 2k for some k € Z. Let b = g Then
b ¢ D; and b2 = (2_ka)(2-ka) = Z—Zka2 = Z-ZKZN = 1. By Lemma 4.27,
Dy = bDi. Since Zhem RISt IR ST Se Kt = a2 %0 L 27kan 'L b2,
it follows by induction that 2"p = b2" for all ne 2.

Subcase 1.1.1: b <b2. It follows by induction that

D L L e € Zg. Since b2™! < b, by induction, we get

n+1

that b2 < b2”*! for 413 ne B Hance 1OV 15 for all ne z.

This implies that for any m,n ¢ Z, m <n implies b2™< b2, Define

£ (K,+,' ,() — (F)+2 %Y ,é.l) by

(x,0) if x e Di,
f(x) = ® Af x =00

f

(a,1) if x bd for some 4 € DK'
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Clearly, f is a bijection.

To show that f is a homomorphism, let x,y € K\ {=}.

Case 1I: X,y € Df

K Then f(x+y) = f£(x) = (x,0) = (x,0)+2 (y,0) =

f(x) p f(y) and f(xy) = (xy,0) = (x,0)(y,0) = £(x)f(y).

Case II: X,y € D:;(. Then x = bc and y = bd for some ¢,d € le(.

Also,.x + y = b(c+d) = bc and xy = bcbd = bbcd = cd. Hence

fix+y) = (c,1) = (c,1) +y (d4y1)/ #J£(x) +y f(y) and
f(xy) = (cd,0) = (c,) (@58 =f(ELy).
3 f f
Case III: X € DK and y € DK' Then x = bd for some d € DK' Also,

f(x+y) = £(®) = ® = (d,1) +, (y,0) = £(x) +y f(y) and f(xy) = (dy,1) =

(d,1) (y,0) = £(x)E(y).

Case IV: X € Di and y € D;L(. This proof is similar to thé proof of
Case III.

Hence f is a homomorphism.

To show that f is isotone, let x,y € K\ {®} be such that
x <y. It is easy to see that if x <y <® or x <® <y then

£f(x) <4 f(y). Assume that y > x > ®. Then x = b2™ and V= b2" for

some m,n € Z. Thus o b2n, som <n. It follows that
m n &
f(x) = (27,1) <1(2 1) = £(y). Hence f is isotone.

¢
Therefore f is an order isomorphism.

Subcase 1.1.2: b2 <b. It follows by induction that

bzm'1 <p2" for all n € Z. From this we get that for any m,n € Z,

m <n implies b2" < b2™. Define g: (K,+,°*,9 ~ (F,+£,°,\<2) by
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s 2
(x,0) if xe DK’

@©
J

g(x) = ® if x

(d,1) if x

bd for some 4 € Di.

Clearly, g is a bijection. Using the same proof as in Subcase 1.1.1
we get that g is a homomorphism.

To show that g is isotone, let x,y € K\ {®*} be such that
X <y. It is easy to see that if x <y <® or x <.°° <y then

g(x) <, g(y). Assume that y > x > ®. Then x = b2" and V= b2" for

some m,n € Z. Thus b2m < b2n, son <m. It follows that

g(x) = (2m,1) <2 (2n,1) = g(y). Hence g is isotone.

Therefore g is an order isomorphism.

Subcase 1.2: N 42k < 14for some k € Z. Let b = 2 Xa.
Then b € D; and b = RS a2 = 272k N i By
Lemma 4.27, Dll< = bDi. Using the same proof as in Subcase 1.1 we

get that 2"b = b2" for all n € 2.

Subcase 1.2.1: b <b2. Using the same proof as in

Subcase 1.1.1 we get that for any myn € Z, m <n implies 2" < p2"

Pefine. h:  (K,+;°;,<9Q (H,+2,',<1)by

(x,0) if xe D

¥ hi(x) = @ if x
(2?1 ayce

Clearly, h is a bijection. Using a proof similar to the proof of

bZn for some n € %.

Subcase 1.1.1 we get that h is isotone and for any x,y e K\{=} if

£ .
x,ysDIf( or x € D andyt-:D]I'(

i f
K orxt-:DK and y € D, then

K
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h(x+y) = h(x) + h(y) and h(xy) = h(x)h(y). Let x,y ¢ DJ;“(. Then

2
%ow BT and y = b2" for some m,n € Z. Also, X +y = b(2m+2n) = b2"
and sy = B2Tp2P « pp2PHl o e L Btie hlxey) = (277110 -
(/22m-1,1) 4, ( 221"1,1) = h(x) + h(y) and h(xy) = (2m+n_1,0) =

( /'22m-1 ) ( /22n—1 kY e h(x.)h(y) . Hence h is a homomorphism.

Therefore h is an order isomorphism.

Subcase 1.2.2: b2 <b. Using a proof similar to the

proof of Subcase 1.2.1 we get that (K,+,°*,<) is order isomorphic to

(H)+2)°)\<2)-

Case 2: N = 0. Then a2 = 2N = 1. since 2"a = a2nM for all n € 2,
/ ? 2 2 2

2 = (2a)a = (aZM)a = a(ZMa) = a(a2M )= a22M = 2M . Hence M = t1.

By Subcase 1.1, we get that if M = 1 then (K,+,°,< is order
isomorphic to either (2),(3),(6) or (7). Assume that M = -1. Then

2%a = a2™™ for all n € 2.

Subcase 2.1: a <a2. Using the same proof as in Subcase
1.1.1 we get that for any myn € Z, m <n implies a2™ < a2™. Define

i: (K)+).)\<) e (F)+£)*)\<1) by

. f

(x,0) if x € DK’

i(x) = = if x =9,
¢ f
(a,1) if x = ad for some 4 € DK'

T

Clearly, i is a bijection. Using the same proof as Subcase 1.1.1
we get that i is an isotone,i(x+y) = i(x) + i(y) for all x,y e K

and if x,y € Dli or x € Dll( and y € D then i(xy) = i(x)*i(y). Let

£
K

x,y € K\{®}. If x,y e D; then x = ac and y = ad for some c,d € le(,



8o xy = (ac)(ad) = a(ca)d = a(ac™})d = ¢~1a and hence

i(xy)= (c_1d,0) = (c,1)*(d,1) =i(x)*i(y). If x ¢ Di and y € D;

then y = ad for some 4 € Di, SO0 Xy = xad = ax_1d, and hence

i(xy) = (x_1d,1) = (x,0)*(d,1) = i(x)*i(y). Hence i is a homomorphi sm.

Therefore i is an order isomorphism.

Subcase 2.2: a2 <a. Using a proof similar to the proof
of Subcase 2.1 we get that (X,+,°,< is order isomorphic to

(F,+£,*’\< ).

2
Finally, we shall show that (1) to (7) are not order
isomorphic to each others. Clearly, (1) is not order isomorphic to
any of the others. Since (4) and (5) are not multiplicatively
commutative, (4) and (5) are not order isomorphic to any of the
others.
To show that (2) is not order isomorphic to (3), suppose not.

Let f: (F,+2,°,<1) Nig (F,+2,',$2) be an order isomorphism. Let

£(2,0) = (ZN,O) and £(2,1) = (2P,1) for some N,P € Z. Since

2 P g
(2,1) <1 (27,1), (2°,1) = £(2,1) <2 £(2%,1) = £((2,1)(2,0)) =
£02,1)£02,0) = (2%,1302%,0) = (2"™,1). 8 Bance 2P R L

since (2,0) < 22,07, so (2%,0) < £¢2,0) < £(22,0) = £((2,0)(2,0)) =

£(2,0£(2,0 = (20,00(2%,00 = 2™,0). Hence 2" <2, o ¥ > 0,
a contradiction. Therefore (2) is not order isomorphic to (3).

To show that (2) is not order isomorphic to (6), suppose

not. Let f: (F,+£,',s1) - (H,+2,',$1) be an order isomorphicm. Let

£02,00 = (25,0) and £02,1) = (2F;1) where NP e B anki 0dd.

Then (227,00 = 2,00(2%,0) = £(2,00£(2,0) = £((2,0)(2,0)) = £2% e
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£((2,1)(2,10) = £(2,1£(2,1) = (V25,1 (22,1) = (2%,0), so we have
that P = 2N which is even, a cbntradiction. Hence (2) is not order
isomorphic to (6).

The proofs that (2) and (3) are not order isomorphic to (7)
and (3) is not order isomorphic to (6) are similar to the proof that
(2) is not order isomorphic to (6). The proofs that (4) is not order
isomorphic to (5) and (6) is not order isomorphic to (7) are similar

to the proof that (2) is not order isomorphic to (3). "

Theorem 4.29. Let (K,+,°*,< by a type II distributive seminear-field

of infinity type such that for any x,y,z € K, x <y implies X+2 <y+2
or for any X,y,z € K, X €y implies z+x < z+y. Assume that

(le<,+,-,<) is order isomorphic to ({an n e Z}’+r"’$)' Then

(K,+,*,< is order isomorphic to exactly one of the following:
(1) ({znl ne Z}U{"’}ﬁr,',s)-

(2) (F)+ y*, < )-
r

.

(3) (F,+r,°,S )-

”;
(4) (F,+r,*;€ )i
(5) (Fot %, <

k6)  LH, % s955.).

(7) (H,+r,',S2)-

Proof: The proof is similar to the proof of Theorem 4.28. "
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Remark 4.30. ‘Let £: '(R+, ) = (R+,°) be an isomorphism such that

fof = IR+ and let A be an O-set of [R+ such that (IR+,-,<A) is order

isomorphic to (R+,', <) where <Ais the compatible partial order having
A as its positive cone.

Let K(f,A) = (RTx {ohy {=} U (R*x {1}) where f and A are
defined as above. Then the following are examples of type II

distributive seminear-fields of infinity type:

(1) (K(£f,n) ,+2,',<3) where +y is defined as in Remark 4.26

(1) and * and <3 are defined as follows: w*® = @ey = @ for all

w € K(f,A) and for any x,y € R,
(x,0)+(y,0) = (xy,0),
(x,1)(y,1) = (£(x)y,0),
(x,0)¢(y,1) = (£(x)y,1),
(y,1)(x,0) = (yx,1),

(x,0) €82 <

AL £q.1¥,1),

(x,0) <3 (y,0) if and only if x <y and
(x,1) <3 (y,1) if and only if x sAy.

(2) (K(f,A),+r,’,~<3) where . is defined as in Remark

4.26 (5) and - and <3 are given in (1).

Proof: (1) It is clear that e is associative and e is

distributive over ) in K(f,A). Let (x,i),(y,j),(z,k) & K(f,A)

where x,y,z € |R+ and i,j,k € {0,1}. Then
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'(xyz,O) if i =9 =k =04

(f(xy)z,1) if i=3j=0 and k=1,
(f(x)yz,1) if.i=k=0 and j=1,
: (xyz,0) if j=k=0andi=1,
[(x,l)(y,j)](z,k)=(x,1)[(y,j)(z,k)]={
(f(x)yz,1) if i=j=1 and k=0,

(f(xy)z,0) if i=k=1 and j=0,

(xf(y)z,0) if j=k=1andi =0,

| (x£(y)z,1) if i=j=k=1.

Hence + is associative.

For each x € R', (x,0)(1,0)=(x,0) and (x,1)(1,0)=(1,0)(x,1) =
(x,1), hence (1,0) is the multiplicative identity of K(f,A). For each
x e RT, (x,O)(x-1 ,0) = (1 ,0) and (x,1)(f(x)-1,1)= (1,0), hence every
element of K(f,A) has an inverse.

Therefore (K(f,A),+2,') is a distributive seminear-field of

infinity type.

Let u,v,w € K(f,A) be such that u €3 v and w <3 @ Then

u+£w=u <3v=v+2wandw+£u=w=w+2v. It is clear that

ifu €,v ¢, ® oru <£,%® <_ v then uw <

3 3 3 3vw and wu <, wv. Assume

3

that « <3u <5 v. Then u = (x,1), v = (y,1) and w = (z,0) for some

X,Y1,Z € RT. Hence x <, y¥.- Thus xz <, V2 and f(z)x gAf(z)y. Also,

we get that uw = (x,1)(z,0) = (xz,1) <3 (yz,1) = (y,1)(2,0) = vw and

wu = (z,0)(x,1)=(£(2z)x,1) S3 (£(z)y,1) = (2,0)(y,1) = wv.
Therefore (K(f,A),+£, L $3) is an ordered distributive

seminear-field of infinity type.
To show that K(f,A) is complete, let B be a nonempty subset

of K(f,A) which has a lower bound. It is clear that if BN (R*x{o}) £ g
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then inf (B) exists, so we are done. Assume that BN (R+x {0}) = g.
If there does not exist a lower bound of B in R {1} then inf (B) ==,
so we are done. Assume that there exists a lower bound of B in

Rt x {1}, say (y,1). Then B = D x {1} where DC R'. Then (y,j)s3(x,1)

for all x€ D, so y <Ax for all xe D. Since (R+,°,$A) is order

isomorphic to ([R+,' » <), (fR+,' ,SA)is complete. Then inf (D) exists,

say z. Thus z \<Ax for all x € D, so we have that (z,1) <3 (x,1)

for all x€ D. Hence (z,1) is a lower bound of B. Let (w,1) be a

lower bound of B. Then (w,1) S3 (x,1) for all x € D, so w sAx for

all xe D. Hence w SA

z, so (w,1) <3 (z,1). This implies that

(z,1) = inf (B). Therefore K(f,A) is complete.
Hence K(f,A) is a type II distributive seminear-field of
infinity type.
(2) It is similar to the proof of (1).

#

Proposition 4.31. Let K(f,A) and K(g,B) be define as in Remark 4.30.

Then K(f,A) is order isomorphic to K(g,B) if and only if there exists

an a € R' such that B = A% and £(x)% = g(xa) for all x € R'.

Proof : Assume that K(f,A) is order isomorphic to K(g,B).

*
Let ¢ : (K(f,A) % %) - (K(g,B), ‘,<3) be an order isomorphism. Since

¢ is isotone, $(RTx {0}) = R " x {0} and ¢ (R*x {1}) = RT x{1}. Then

for each x € R’ there exists a unique pair of elements ¥y and z in

Rt such that ¢(x,0) = (yx,O) and ¢ (x,1) = (zx,1). Define

+ + +

¢.: RV, , 9 - (RY,*, 9 and 4,: R" =R by ¢, (x) =y_ and

1 :
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(x) = z for all x € RT. Then ¢, and ¢, are well-defined and
b, X 1 2
bi jective.

»X, € [R+. Then

To show that ¢1 is a homomorphism, let x 2

1

(yx o »0) = ¢(x1x2,0) = ¢((x1,0)(x2,0)) = ¢(x1,0)4‘(x2,0) =
1.2

I
<
<

(yx ,0)(yx »0) = (yx Yy »0), so , 4 « - Hence ¢'1(x1x2) =

1 2 1.0 372 %9

<
]
<
<
I

¢1 (x1 ) ¢1 (x2) ;

To show that ¢1 is isotone, let XX, € rR+ be such that X, sxz.

*
Then (x1,0) <5 (x2,0), so (yx1,0) = ¢(x1,0) <3 ¢(x2,0) = (yx2,0).

Hence ¢1(x1) =y < Y4

£ /9305,
1 o R

Therefore ¢1 is an order isomorphism. By Proposition 1.45,
there exists an a € R+ suéh that 4'1 (x) = xa for all x € IR+. For each
X € |R+, (¢2(x),1) = (zx,1) =451 —=9101,1) (x,0)) = $(1,)d(x,0) =

(21,1)(yx,0) = (z1yx,1) = (¢2(1)¢1(x),1). Hence ¢2(x) = ¢2(1)¢1(x)

for all x € R'.
a a + +
To prove that f(x)~ = g(x7) for all x € R", let x € R', Then

(412(1)4'1 (£(x)),1) = (¢2(f(x)),1) = (zf(x)’1) = ¢(£(x),1) =
(g(¢,(x))4,(1),1). Hence ¢2(1)¢1(f(x)) = g(¢1(x))¢2(1). Therefore

f(x)? = ¢ (Ex)) = g4, (x)) = g(x®).

Next, we shall show that B = Aa. Let x € A. Since A is the

positive cone induced by sA, 1 <Ax. Then (1,1) <3 (x,1), so

% .
(z,,1) = ¢(1,1) <, $(x,1) = (z ,1). Hence z £, Z_, SO we get that
1 3 X X

1 °B
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w1 ” b
x = ¢ (x) = 4'2(1) (¢2(1)¢1(x)) = ¢2(1) ¢2(x) =z,

z € B. Thus
1 b, 4

A" C B. Let x € B. ©Since B is the positive cone induced by \<B,
* - - -
1 <gx. Them (1,1) < (x,1). Hence &3'(1),1) = ¢ (1,1 <, ¢ (x,1)=

.(¢51(x),1), ™ ¢51(1) <

< 8 (x). 'Thus [¢51(1)]-_1¢;1(x) € A. From

(60,1 = #6010 = LD e = AN E 6,00 =

-1 =1 -1 -1 -1
(¢2 ‘(1),1)(4'1 (x),0) = (4’2 (1)(|'1 (x),1), we have that ¢2 (x) =

1
= 7Za _ 4-1 S-S o | = .
¢2 (1)‘|’1 (x). Also, x = ¢1 (x) = [¢2 (1] ¢2 (1)"’1 (x) =

[<I)£1(1)]_'1 ¢;1(x) € A. Then x € 2%. Hence B C A%. Therefore B = AZ.

Conversely, assume that there exists an a € R+ such that

B = A% and £(x)° = g(xa) for all x € R'. Define

*
Qe aGICCE R 540 5 i) (K(g,B),+2,, ‘,<3) as follows: ¢(®) =« and for

3
+ a a & '
each x e R, ¢(x,0) = (x ,0) and ¢(x,1) = (x ,1). It is clear that

¢ is a bijection and (I:(w1 == w2) = ¢(w1) +y ¢(w2) for all Wy W

) e K(f,A).

2

Let (x,i),(y,j) € K(f,A) where x,y € rRY and i,j € {0,1}. Then

(x%y%,0) ifi =7 =0,
(£(x)%%,1) ifi=0and j =1,
(l’((x,l)(y,‘_‘])) = ¢(x,i)¢(y,3)= < % &
' (x7y ,1) ifi=1and j =0,

I
-
.

[ (£0%®,00  if i =3

Hence ¢ is a homomorphi sm g
‘.

To show that ¢ is isotone, let u,v € K(f,A) be such that

u <, v. Itis clear that if u ¢,v <,® oru <,® <_,v then

3 3 3 3 3

*

¢(u) 63 ¢(v). Assume that «® <3u <3v. Then u = (x,1) and v = (y,1)

for some x,y € RY. Thus x <, ¥» S0 x_1y € A. But B = A%, so
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y = y e B. Also, x° <p ya. It follows that 4¢(x,1) =

*

(x2,1) \<3 (ya,1) = {(y,1). Hence ¢ is isotone.

Therefore ¢ is an order isomorphism. #

Theorem 4.32. Let (K,+, *,<) be a type II distributive seminear-field

of infinity type such that for any x,y,z € K, x <y implies x+zgy+2
or for any x,y,z € K, x <y implies z+x < 2z+Yy. Assume that

(D§,+,',<) is order isomorphic to (!R+,+2,°,<). Then (K,+,°,< is
order isomorphic to exactly one of the following:

(1) (RY,+,,° A,

2)

(2) (K(f,A),+2,',<3) where f: (|R+,°) = (R+,') is an

isomorphism such that fo f = I£R+ and A is an O-set of (R+ such that

+

(R ,',~<A) is order isomorphic to (R+,’,<) where <_ is the compatible

A

partial order having A as its positive cone and +9s * and <3 are

defined as in Remark 4.30 (1).

Proof : TE D:IL< = @ then K is order isomorphic to (1). Assume

that Di( # @§. For simplicity, we shall assume that Di =R'. Let

i i f -1_f 2 £ i
A DK' By Lemma 4.27, DK — wDK =w DK' Then w € DK' Let x,y € DK‘
f
Then x = wd1 and y = wd2 for some d1 ,d2 € D . Hence x+y = w(d1+d2)=
wd1 = x. Thus for each x,y € DT(, X +y = X. Since (D§,+,',<) is
order isomorphic to (R+,+ ,*»<) and w2 € Df, w2 = d2 for some 4 € Df.
2 K o o) K
: -1 i -1 £
Sinced we D, d w=wr for some r € D_. Therefore w =4 wr =
o K o K [o}
d (d wr)r = dzwr2 = w3r2. Hence 1 = w2r2 = d2r2, sodr =1. Let
o o o o [¢)
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a=wd . Then a2 = (wd-1)(wd_1) = w(d_1w)d-1= w(wr)d_1= wzrd"1 B
o) o o o o o o)

2 -1 . i i £
dord = dor = 1. Since a € DK’ by Lemma 4.27, we get that DK = aDK_
f f : . £
DKa. Hence for each d € DK there exists a unique X3 € DK such that
da = axy-

Define f: (R+,°) -'(R+,') by £(d) = X4

e R be such that f(d1) = f(dz).

for all d e RT. So we

get that f is well-defined. Let d1,d2

Then X3 = X3 » SO axg = ax, . Hence d1a = dza, so d1 = d2. Therefore

1 2 1 2
T < + ¢ 1 £ £
f is injective. Let r ¢ R . Since aDK = DKa, ar = da for some 4 ¢ DK'
But da = aX3, SO r = Xg. Hence f(d) = Xq =r. Thus f is onto.

To show that f is a homomorphism, let d1,d € R+. Since

2

ax = (d,d,))a = 4d,(d,,3) =tditax, ) = (d.a)x = axX: X.tiux =

d1d2 12 3 (i, 1 d2 1 d2 d1 d2 d1d2
Xq X3 -+ Thus f(d1d2) IF SRl W Ve el f(d1)f(d2). Hence f is a

2 2 F—
homomorphi sm.

Therefore f is an isomorphism. For each 4 ¢ R+, d = da2 =

(da)a = (axd)a = a(f(d)a) = a(axf(d)) = Xgq) = f(£(d)) = £o0 £(d),

so we have that fof = IR+'

Let A = {d ¢ Di a <adl. Then A # @ since 1 € A. We shall

show that A is an O-set of a group Di. Since A_1= {d e D;I ad < a},

so A M A_1 = {1}. Let d1,d28 A. Thus a < ad1 and a < adz, so we get

that a < ad2 < ad1d2. Hence d1d2 € A. Therefore A2<; A. Since

(Di,') = (R+,'), xAx_'1 = A for all x ¢ Di. Hence A is an O-set of a

group Di. By Theorem 1.19, there exists a compatible partial order

i
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<, on DIf; such that A is the positive cone induced by <

E A+ Since
bt AU A E is a total order on Df
K - ) \A Ko

To show that (le<’SA) is complete, Let H be a nonempty subset

of Di which has a lower bound, say d € le(. Let he H. Then d <Ah,

w6 B! & Ao Hernce a < ahd™! » so ad < ah. Therefore, we have that

ad is a lower bound of aH. Since K is complete, so inf (aH) exists,
say Xx. Then x ¢ D;, so x = ar for some r € le{. Claim that
r = inf (H). Since ar = x < ah for all h € H, so he Ve A for all

h e H, hence r <Ah for all h € H. Then r is a lower bound of H.

Let t € D1f< be a lower bound of H with respect to < Then t <_h

A A

for all h € H, so ¥ ¢ A for all h € H. Thus a < aht ™" for all

h € H, so at < ah for all h € H. Since x = inf (aH), at < x = ar.
1

Hence rt~ € A, so t Sa ¥- Therefore r = inf (H) with respect to <5-

£ .
Hence (DK,sA) is complete.
Therefore (Dif(,' ,<A) is a complete totally ordered group.
: £ £ Z
Since DK is uncountable, by Theorem 1.15, (DK,‘,SA) is order

isomorphic to (R+, 9.
Let K(f,A) be a type II distributive seminear-field of
infinity type given in Remark 4.30 (1). Define

n: (K,+,*,Q - (K(£f,n) »+2)"<3) by

" (x,0) if x ¢ Di,
nix) = @® if x = =,

[ (@,1) if %

ad for some 4 € Di.

Clearly, n is well-defined, bijective and n(x+y) = n(x) +, Nly) for
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all x,y € K.
To show that n(xy) = n(x)n(y) for all x,y € K, let

x,y € K\ {=}.

Case 1: X,y € Dlji. Then n(xy) = (xy,0) = (x,0)(y,0) =n(x)n(y).
£ i £
Case 2: X € DK and y € DK' Then y = ad for some 4 € DK' Hence

nixy) = n(xad) = n(af(x)d) = (£(x)d,1) = (x,0)(d,1) = n(x)nly).

Case 3: X.'e D]I_< and y € Di. Then x = ad for some d € le<. Hence

nixy) = nlady) = (dy,1) = (d,1)(y,0) = n(x)n(y).

Case 4: X,y € DI1<‘ Then x = ad and y = ar for some d,r € le(. Hence

xy = adar = aaf(d)r = £(d)r, so n(xy) = (£(d)r,0) = (d,1)(r,1) =
n(x) n(y) .

Therefore n is a homomorphism.

To show that n is isotone, let x,y € K be such that x <y.

It is clear that if x <y £® or x <® <y then p(x) <3 n(y).

Assume that ®<x <y. Then x = ad and y = ar for some d,r € Di.

So we have that ad < ar which implies that rd-1 € A. Hence d < 'r,

A
so n(x) = (d,1) $3 (r,1) = n(y). Thus n is isotone.

Therefore n is an order isomorphism.

Theorem 4.33. Let (K,+,°*,<) be a type II distributive seminear-field

of infinity type such that for any x,y,z € K, x <y implies
X +2z <y + 2z or for any x,y,z € K, x <y implies z + x €z + Y.

Assume that (Df,+,',<) is order isomorphic to (R+,+ 55 €5
K Y
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Then (K,+,*,<) is order isomorphic to exactly one of the following:

(1) (RL,+.,°,9.

+

(2) (K(f,A),+r,°,-< ) where f: (R ,°) - (R+,°) is an

3

isomorphism such that fo f = I[R+ and A is an O-set of R’ such that

(RT',&A).is order isomorphic to (R+,',<) where <, is the compatible

A

partial order having A as its positive cone and +r, * and <, are

3

defined as in Remark 4.30 (2).

Proof: The proof is similar to the proof of Theorem 4.32. "

Regarding type III distributive seminear-field of infinity
type we cannot classify them and we close this chapter by giving
some examples of type III distributive seminear-fields of infinity
type. Note that if K is typE%_III distributive seminear-field of
infinity type then x + y = @ for all x,y € K.

+

(1) &, 9w

(2) ({2n|n€ Z}U{W},‘,S).

(3) ((R'x {0h W {=2} U ®R*x {1}) ,+,,9

where °* and < are the ones given in Remark 4.26 (1).
() ({2 ne 2} x OhU U {2 ne 2} x {11 ,4+,°,9

where °* and < are the ones given in (3).
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