CHAPTER III

PARTIALLY ORDERED DISTRIBUTIVE NEAR-RINGS

In this chapter, some fundamental theorems of partially

ordered distributive near-rings are given.

Definition 3.1. A partial order < on a distributive near-ring R is

said to be compatible if it satisfies the following properties:
(i) For any x,y,z€ R, x <y implies x + z €y +z and
Z +X <z +Yy.
(ii) For any x,y,z € R, x <y and 0 < z imply xz < yz and

zX L zy.

Definition 3.2. A system (R,+,*,<) is called a partially ordered

distributive near-ring if (R,+,*) is a distributive near-ring and <

is a compatible partial order on R.

Example 3.3. (1) Every distributive near-ring is a partially
ordered distributive near-ring with respect to the trivial partial
order. :
4

(2) Every subnear-ring of a partially ordered distributive
near-ring is a partially ordered distributive near-ring.

(3) (Z,+,*,9, (@,+,*,<) and (R,+,*,<) are partially ordered
distributive near-rings.

(4) Let (G,+,<) be a partially ordered group. Define the

operation * on G by x°y = 0 for all xv,y € G. Then (G,+,*,Q is a
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partially ordered distributive near-ring.
(5) Let ne Z and Mn(R) be the set of all n x n matrices

having entries in R. Define the relation < on Mn(R) by (aij) < (bij)

if and only if aij < bij for-alli,je £1.2,..n). Then o
(Mn(R),+,°,<) is a partially ordered distributive near-ring

(6) Let R[X] be the set of all polynomials with coefficients

@ o]
in R. Define the relation < on R[X] by I a’l;lXn <z ann if and only
n=0 n=0

if an <.bn for all n e Zg. Then (R[X],+,*,<) is a partially ordered

distributive near-ring.

Let R be a partially ordered distributive near-ring and A a

subset of R. The positive cone of A, denoted by PA’ is {x e A l x > 0}.

The following statements hold:

(1) (PR,+,°) is a distributive seminear-ring containing 0.
s = =
(2) P M(-p3 {o}.

(3) - x+ PR+ X = PR for all x € R.

(4) PH = PR(W H where H is a subset of R.

Proposition 3.4. Let R be a partially ordered distributive near-ring.

Then the subnear-ring H is convex in R if and only if PH is a convex

subset of PR'

Proof: This proof is similar to the proof of Proposition .

2.6.
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Proposition 3.5. Let R be a partially ordered distributive

near-ring. Then the following statements hold:

(1) Ris directed if and only if P generates (R,+).
(2) Ris a lattice if and only if it is directed and PR is

a lattice.

(3) R is complete if and only if every subset of PR has an
infimum.

(4) R is totally ordered if and only if R = PRU(—PR).

Proof : This proof is similar to the proof of Proposition

2.8(4), (5) and (6). 4

Definition 3.6. A subset A of a distributive near-ring R is called

an O-set of R 1if it satisfies the following conditions:
(i) A M-a) = {o}.
i)  a? i
(iii) A + A CA.

(iv) - X+ A +xCA for all x £ R.

Note that for any distributive near-ring R, {0} is an O-set
of R and for zny partially ordered distributive near-ring R, the

positive cone of R’ is an O-set of R”.

Theorem 3.7. Every distributive near-ring has a maximal O-set.

Proof: This proof is similar to the proof of Theorem 2.10.

#
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Let R be a distributive near-ring and A an O-set of R.
Define a relation <on R as follows: For x,y e R, x <y if and only
if y - xe A. The proof that <is a partial order on R and for any
X,¥,2€ R, x <y implies that x + 2z <y +z and z + x <z +yis -
similar to the proof of Theorem 1.19. Let Xx,y,z€ R be such that
X Ky énd z >0. Theny - x, ze A. Since A2C_A, so
yz - xz = (y-x)z € A which implies that xz < yz. Similarly, zx < zy.
Hence <is a compatible partial order on R. The proof that < is the
unique compatible partial order on R having A as its positive cone
is similar to the proof given in the note, page 9 . Hence we have

the following theorem.
Theorem 3.8. A subset A of a distributive near-ring R is an O-set
of R if and only if there exists a unique compatible partial order

<on R such that A is the positive cone induced by <..

Corollary 3.9. Let R be a distributive near—ring,,a the set of all

O-sets of R and ﬁ the set of all compatible partial orders on R.

Then ’a and ﬁ are order isomorphic.

Corollary 3.10. Every distributive near-ring has a maximal

compatible partial order.

Corollary 3.11. Let o@ be the set of all compatible partial orders

on Z and g the set of all subseminear-rings of Z; containing 0.

7
Then £ and g are order isomorphic.

Proof : Let A be an O-set of 2. Suppose that there exists
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an ne€ % such that n € A. Then n2 € A. But

2 . 2 2
-n =n+n+ ... +n (n times), so -n~ € A. Hence n € A (-4),
so n = 0, a contradiction. Therefore every O-set of Z is a subset

of Zg. We see that every subseminear-ring of Z; containing 0 is an

O-set of Z. Then we get that g is order isomorphic to the set of all
O-sets of Z by the identity map. Hence, by Corollary 3.9,4’2 is
order isomorphic to % . "

Note that J is a subseminear-ring of Zg containing 0 if and

only if J is a seminear-ring ideal of 2; (that is, (J,+) is a

subsemigroup of Zg, JZSCJ and Z’; J CJ). Hence by Corollary 3.11,

+

/2
aé is order isomorphic to the set of all seminear-ring ideals in ZO'

Definition 3.12. Let R and R’ be partially ordered distributive

near-rings. A map £: R~ R’ is called an order homomorphism of R

into R* if f is isotone and a homomorphism. An order homomorphism

f: R~> R” is called an order monomorphism if f is injective and

f(PR) = Pf(R)’ an order epimorphism if f is onto and f(PR) = PR',

an order isomorphism if f is a bijection and f-1 is isotone. R and

R’ are said to be order isomorphic if there exists an order

’

isomorphism of R onto R’ and we denote this by R = R .

P

Proposition 3.13. Let R and R’ be partially ordered distributive

near-rings. Then the following statements hold:
(1) If £f: R * R’ is a homomorphism then f is isotone if and

only if f(PR) QPR,.
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(2) If £f: R » R’ is an order homomorphism then ker f is a

convex ideal in R.

Proof: This proof is similar to the proof of Proposition

2.15 by using Proposition 1.36(1). "

Theorem: 3.14. Let (R, be a partially ordered distributive

near-ring and J a convex ideal of R. Then there exists a compatible
partial order on 36 such that the projection map © is an order

epimorphi sm.

¥
Proof: Define a relation < on 36 as follows: For «o,B € 36,

o <? B if and only if there exist a € @ and b € B such that a <b.

*
The proof that < is a partial order on 56 and for any a,B,y € 36,

* * *
o £ Bimplies a + v €« B +yand vy +a < ¥y + B is similar to the

*
proof of Theorem 2.16. Let «,B,y € 36 be such that ¢ ¢ B and

[ol s? Y. Then there exist a€ a, be B, c € [0] and d € ¥ such
that a <b and ¢ <d. Thus 0 <d - c which implies that

a(d-c) <b(d-c). Since [d-c] = [dl-[c] = [d]-[0] = [d], so we get
that [alld] = [alld-c] = [a(d-c)] < [b(d-c)] = [blld-c] = [bl[d].
Hence oy <? By. Similarly, ya 4? YB. Therefore s? is compatible.

The proof that n is an order epimorphism is similar to the proof of

Theorem 2.16. 4

Definition 3.15. Let R be a distributive near-ring and J an ideal

of R. A compatible partial order on J is a partial order < on J such

that
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(i) for any X,y,z € J, X £y implies x + 2z £y + z and

Z +X <2 +Y,

* 2 * *
(ii) (P.)°"CP_ where P_={xe J | x > 0} and
- J J J
* *
(iii) - x + PJ + X (;PJ for all x € R.

Remark 3.16. (1) If R is a partially ordered distributive near-ring
and J an ideal of R then the restriction of the partial order on R
to J gives a compatible partial order on J.

(2) Let R be a distributive near-ring and J a subnear-ring
of R which is also an ideal and let < be a partial order on J. If
€ is a compatible partial order on J as an ideal then ¢ is a partial

order compatible with the subnear-ring structure of J.

Theorem 3.17. Let R be a distributive near-ring and J a prime ideal

of R. Assume that % has a compatible partial order < and J has a

* s * *
compatible partial order < such that ba, ab € PJ for all a € PJ,

(bl e PR/\ {3}. Then there exists a compatible partial order on R
J

x
such that < 1is the restriction of the partial order on R and the
projection map m is an order epimorphism.
*
Proof : Let A = PJU (U @ ). The proof that

; aeP% \ {5}

AM(-a) = {0}, A+ACAand - X +A +xCAis similar to the proof

of Theorem 2.19. To show that AZQA, let a,b € A. 1If a,b e P:; then

* * *
ab € PJ, so we are done. Assume that a 4 PJ or b 4 PJ.
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Case 1: a,be ) @ . Then a€ o and b € B for some
acp_ \{J}
J

«,8 € P, \{J}. Also, [abl = [al[b] = oB > [0]. Since a,b ¢ J and J

%

is a prime ideal in R, so ab 4 J which implies that [abl > [0]. Hence

ab € L ¢ ‘
aeP_ \{J}

%

* p *
Case 2: ae€ P_and be U o or aek J @ and be P.

= acP_ \ {J} acP_ \{J}
R/ R.
J /3

( *
By assumption, we get that ab € PJ.

Hence A? C A. Therefore A is an O-set of R. 3y Theorem 3.8,
there exists a compatible partial order on R such that A is the
positive cone of R. Using a proof similar to the procZ of Theorem

*
2.19 we can show that < is the restriction of the partial order

on R and n is an order epimorphism. -
T

Theorem 3.18 (First Isomorphism Theorem). Let R and R* be partially

ordered distributive near-rings and f: R * R’ an order epimorphism.
Then %@er £ ~ R’. Furthermore, there exists an crder i somorphi sm
between the set of all subnear-rings of R containing k=r f and the
set of all subnear-rings of R’ and there exists an crdar isomorphism
between the set of all ideals of R containing ker £ and the set of

all ideals of R’.

Proof: The proof is similar to the proci cf Thsorem 2.21

by using Proposition 1.36 and 3.13. 3

Remark 3.19. Let R be a partially ordered distributive near-ring,



15

H a subnear-rings of R and J a convex ideal in R. Then HMJ is a

convex ideal of Hand H + J is a subnear—ring of R.

Proof: If is clear that HMJ is a convex ideal of H. To
show that H + J is a subnear-ring of R, let x,y € H + J. Then

21_- a2 for some h1, h. e H, a1, aze J. Hence

1 1

x =h_+ a and y = h 2

X -y = h1+ a;= a,- h2 = (h1—h2)+(h2+ (a1-a2)-h2) eH+J and

+aa2)eH+J.

Xy = (h1+a1)(h2+ az) = h1h2+ (h1a2+ ::11h2 1

Theorem 3.20 (Second Isomorphism Theorem). Let R be a partially

ordered distributive near-ring, H a subnear-ring of R and J a convex

ideal in R such that PH+J & PH .. Then }?/HOJ = H + J/J s

Proof: The proof is similar to the proof of Theorem 2.23. #
Remark 3.21. Let R be a partially ordered distributive near-ring,
H and K convex ideals in R such that H C K. Then %is a convex
ideal of R/H .

Proof : This proof is similar to the proof of Remark 2.24.#

Theorem 3.22 (Third Isomorphism Theorem). Let R be a partially

ordereé distributive near-ring, H and K convex ideals in R such that

H C K. Then (R/H)/(K/H) = R/K .

Proof : The proof is similar to the proof of Theorem 2.25.

#

Theorem 3.23. Let R and R’ be partially ordered distributive
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near-rings and f: R = R’ an order epimorphism. If J  is a convex

ideal.in R’ then R =R 7,
/é:1(J ) /3

Proof: The proof is similar to the proof of Theorem 2.26.

#

Definition 3.24. Let {(Ra’sﬁ)} el be a family of partially ordered

(¢}

distributive near-rings. The direct product of the family

{(Ra’<ﬁ)}ueI’ denoted by I R,» is the set of all elements (xa)a

ael 1

in the Cartesian product of the family {(Ra’sa)}ael together with

operations + and °* and the partial order <on I Ra defined by

ael
(xa)asl kb (yu)asI < (Xa+ ya)ueI'
(X aer * Vo) g ade) gl 204
(xa)aeI < (ya)asl if and only if Xy & Vo for all o € I.

Note that ( I Ra,+,',<) is a partially ordered distributive
ael

near-ring and PH e I PR . So we see that given some examples
aeT a ae Tl o

of partially ordered distributive near-rings we can construct new
examples of partially ordered distributive near-rings using the

direct product.

Proposition 3.25. Let {(Ra’sﬁ)}ael be a family of partially ordered

distributive near-rings. Then the following statements hold:

(1) I Rd is directed if and only if Ru is directed for
ac I

all a € I.
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(2) I R, is a lattice if and only if Ra is a lattice for
ael

all o € I.

(3) I R, is complete if and only if Ra is complete for
el

all a € I.

(4) T R_is totally ordered if and only if either I = {a}
Qe

and Da is totally ordered or there exists an ub € I such that Da is
o

totally ordered and lDul =1 for all a € I \{mo}.

Proof : The proof is similar to the proof of Proposition 2.28

by using Proposition 3.5.
Finally, we shall characterize those distributive
seminear-ringswhich can be the positive cone of a partially ordered

distributive near-ring.

Theorem 3.26. Let P be a distributive seminear-ring with additive

identity O. Then there exists a partially ordered distributive
near-ring having P as its positive cone if and only if P satisfies
the following properties:

(1) P is additively cancellative.

(ii) P+a=a+?P for all a € P.

(iii) For any a,b€ P, a + b = 0 implies a = b = 0.

(iv) ab +cd = cd + ab for all a,b,c,d € P.

Moreover, if P satisfies properties (i) - (iv) then there exist a
partially ordered distributive near-ring R and a monomorphism

i: P - R such that
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(1) i(P) is the positive cone of R and

(2) if R’ is a partially ordered distributive near-ring and
j: P~ R" is a monomorphism such that j(P) is the positive cone of R’
then there exists a unique order monomorphism f: R = R’ such that
fei = j, that is, R is the smallest partially ordered distributive
near ring having P as its positive cone up to i somorphi sm.

Furthermore, R is directed.

Proof: Since the positive cone of a partially ordered
distributive near-ring R has properties (1)=(iv), so if P is
isomorphic to the positive cone of R then P also has properties (i)-
(iv).

Conversely, assume that P satisfies properties (i)-(iv). By
properties (i) and (ii) of P, we get that for any a,x € P there exists

a unique»xa € P such that x + a = a + X, - Clearly, 4. = a; = a and

0a = 0 for all a € P. Using a proof similar to the proof of

Theorem 2.29 we can show that

(1) (x+y)a 1 GAGK and

for all a,b,x,y ¢ P.

Define a relation n on P x P as follows: For a,b,c,d ¢ P,
(a,b) v (c,d) if and only if a + db = c + b. The proof that ~ is an
equivalence relation is similar to the proof of Theorem 1.21. Let

P x P

R = - - Define operations + and * on R by

[(a,b)]+[(c,d)]

[(a+cb, d+b)] and

[(a,b)]-[(c,d)] [ (ac+bd, ad+bc)]
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for all a,b,c,d € P. Using a proof similar to the proof of Theorem 2.29
we can show that + is well-defined and (R,+) is a group with [(0,0)] as
the identity and [(b,a)] as the inverse of [(a,b)] for all a,b e P.

Now we shall show that e« is well-defined. Let V,W,X,y € P be
such tha§ (v,w) e [(a,b)] and (x,y) € [(c,d)]. Then (a,b) ~ (v,w) and

(ed)snvii(x, v ), “Soa & My = oV & b

and e £ e TR IR i T SOt S o (*%) .

Multiplying (*) by ¢ and 4, muleiplying (**) by v and w, adding the
result equation and the terms wd + ad + bc + bd, we get that

ac + w.C + vd + bdv+ VC 4 Vyg+ WX + wd + wd + ad + bc + bd
= vc + bc + ad + wbd + vx + vd + wc + Wy g+ wd + ad + bc + bd.

By property (iv) of P, we have that

ac + (bc+wbc)+(vd+vyd)+ bd + vce + wx + wd + wd + ad + bd
= vc + bc + ad + (bd+wbd) + vx + vd + we + (wd+wyd) + ad + bc.

Hence

ac + wc + bc + vy + vd + bd + vc + wx + wd + wd + ad + bd
=vec +bc +ad -+ wd + bd + vx = vd + wc + wy + wd + ad + bc.
By properties (i) and (iv) of 2, we get that

ac + bd + vy + wx + ad + bc = bc + ad + vx + wy + ad + bc,

so that

ac + bd + ad + bc + (VY+WX)ad;bc =ad + bc + vx + wy + ad + bec.

(vx+wy)+(ad+bc), so

[}

Therefore ac + bd + (vy+wx) .
ad+bc

(ac+bd,ad+bc )V (x+wy,vy+wx) . Zence [(ac+bd,ad+bc)]=[(vx+wy,vy+wx)].

Therefore -« is well-defined.
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To show that e« is associative, let a,b,c,d,x,y € P. Then
([(a:b)]1l(c,d)])(x,y)]

= [((ac+bd)x + (ad+bc)y, (ac+bd)y + (ad+bc)x)]

= [ (acx+ady+bcy+bdx, acy+adx+bcx+bdy)]

= [(a(cx+dy) + b(cy+dx), a(cy+dx) + b(cx+dy))]

= [(a,b)][(cx+dy, cy+dx)]

= [(a,b)]([(c,A)]1[(x,y)]).

Hence ¢ is associative.

To show that -« is distroibytive over + in R, let a,b,c,d,x,y € P.
o X3 I

Then by properties (i) and (i\r_if,—we get that

x(a+cb) + y(d+b)+(xd+xb+ya+ycb)+(xd+yc+xb+ya)x d+xb+ya+ycb

xa+ xcb+yd +yb+xd + yc+ xb+ya+ xd+ xb+ ya+ yey

= xa+ (xb+xcb) + yd + (yc+yb) + xd + ya+ xd + xb + ya+yey

= Xa+ XC + xb+ yd + yb + yo+ xd +ya +x(d+b) +y(a+cb)
= xd + yc,+ Xa+yb+ (xc+yd)+(xb+ya) + x(d+b) + y(a+cb)

= xd + ye +xa +yb +xb +ya + (xc+yd)xb_'_ya +x(d+b) +y(a+cb) s

SO

x(a+cb) + y(d+b)+(xd+yc+xb+ya)x(d+b)+y(a+cb)

= (xa+yb+(xc+yd)xb+ya)+(x(d+b)+y(a+cb)).
Hence

(x(a+cb) + y(d+b), x(d+b) + y(a+cb) )’\'(xa-1~yb-*-(xc+yd)X y xd+yc+xb+ya)

b+ya

Therefore

[(x,y)]([(a,b)]+[(c,d)]) = [(x(a+cb) + y(d+b), x(d+b)+y(a+cb))]
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[ (xa+yb+(xc+yd) , xd+yc+xb+ya)l (by(3))

xb+ya

[ (xa+yb, xb+ya)l+[(xc+yd, xd+yc)]

From

ax +c, x +dy + by + (ay+c y+dx+bx)+(cy+dx+ay +bx) ay+c, y+dx+bx

e Aaxs e Ky dy+ by+cy+dx+ ay+ bx+ ay+cby+dx+ bx

and property (iv) of P, we have that

b d
ax+cbx+dy+ (by+cby) +ay+dx+ bx+ (cy+dx+ aY+bX)ay+cby+dx+bx

= ax + (bx+cbx) +dy+by+cy+dx+ ay +ay+c,y+dx + bx.
Also,

ax+c,x+dy+cy + by +ay + dx+ bx + (Cy+dx+ay"'bX)ay+cby+dx+bx

]

ax+cx+bx+dy+by+cy+dx+ay+ay+cby+dx+bx

cy+dx + ax+ by + (cx+dy)+(ay+bx)+(a+cb)y+ (d+b)x

]

cy+dx+ax+by+ay+bx+ (cx+dy)ay+bx+ (a+cb)y+ (d+b)x.

By property (i) of P,

(ax+c, x+dy + by)+(cy + dx + ay + bx) (a+c, )y + (d+b)x

= (ax+ by + (cx+dy)ay+bx+ ((a+cb)y+ (d+b)x).
Thus

((a+cb)x+ (d+b)y, (a+cb)y+ (d+b)x)'\:(ax+by+(cx+dy)ay+bx, (cy+dx)+(a'§r+bx))

Hence

([(a.b)]+[(c,d)])[(x,y)] = [((a+cb)x+ (d+b)y, (a+cb)y + (d+b)x)]

= [(ax+by+(cx+dy)ay+bx, (cy+dx)+(ay+bx))] (by (4))
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[ (ax+by, ay+bx)]+[ (cx+dy, cy+dx)]

[(a,b)]1[(x,y)]+[(c,d)]1[(x,y)]

Therefore (R,+,+) is a distributive near-ring.

Define i: P - R by i(a) = [(a,0)] for all a ¢ P. Using a
proof similar to the proof of Theorem 2.29 we get that i is a
monomorphism and i(P) is an O-set of R. By Theorem 3.8, there exists
a compatible partial order on R such that i(P) is the positive cone.
Since for any a,b € P, [(a,b)] = [(a,0)]1+[(0,b)] = [(a,0)]-[(b,0)] =
i(a)~-i(b), i(P) = PR generates (R,+). By Proposition 3.5(1), Ris
directed.

Assume that R7is a partially ordered distributive near-ring
and j: P - R’ is a monomorphism such that j(P) = PR‘ Define f: R - R’
by f(f(a,b)]) = j(a) - j(b) for all a,b € P. Using a proof similar

to the proof of Remark 1.22 we get that f is well-defined, injective,

f(PR) = Pf(R) and f(a+B) = f(a)+ £f(B) for all o«,B € R. Let

a;b,c;d e P... Then

f(l(a,b)1l(c,d)])

f([(ac+bd, ad+bc)])

j(ac+bd) - j(ad+bc)

j(@)jle) + 3(b)j(d) - j(a)j(d) - j(b)j(c)

j(a)(j(c) - 3(a)) - §(b) (j(c) - j(d))

(j(a) = 3(b)) (j(c) - j(4))

f(l{ayb)] )l (e;23]).

Hence f is a homomorphism. Therefore f is an order
monomorphism. Using a proof similar to the proof of Remark 1.22 we

get that f is the unique order monomorphism such that fe i = 3.

g
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