CHAPTER II

DIVISION SEMINEAR-RINGS

<u>Definition 2.1.</u> A <u>division seminear-ring</u> is a seminear-ring (D,+,.)such that (D,.) is a group. If D is also left distributive then D is called a <u>division semiring</u>.

<u>Definition 2.2</u>. Let $(S,+,\cdot)$ be a seminear-ring and $T \subseteq S$. T is said to be a <u>subseminear-ring</u> of S iff $(T,+,\cdot)$ is a seminear-ring. A subseminear-ring of a seminear-ring is said to be a <u>division</u> subseminear-ring iff it is a division seminear-ring.

<u>Remark</u>. A near-field is never a division seminear-ring since the additive identity has no multiplicative inverse.

Example 2.3.

(1) Q^+ and R^+ with the usual addition and multiplication are division seminear-rings. Also, if we define $x + y = \min\{x, y\}$ or $x + y = \max\{x, y\}$ and use the usual multiplication we get division seminear-rings.

(2) Let $D = \{1\}$. Then D is a division seminear-ring.

(3) Let (D_{y}, \cdot) be a group. Define + on D by x + y = y for all x, y in D. Then $(D_{y}+, \cdot)$ is a division seminear-ring which is in fact a division semiring.

(4) Let (D_{y}) be a group. Define + on D by x + y = x for all x, y in D. Then $(D_{y}+, \cdot)$ is a division seminear-ring which is in fact a division semiring.

(5) If D_1 and D_2 are division seminear-rings then $D_1 \times D_1$

with the usual product structure is a division seminear-ring.

Note that Examples (1), (2), (3) and (4) are division semirings. We shall now prove a theorem which gives us a way to construct a whole family of examples of division seminear-rings which are not division semirings.

<u>Theorem 2.4</u>. Let (D, \cdot) be a group such that $D = D_1 * D_2$ for some subgroups D_1 , D_2 of D. Then there exists a unique binary operation + on D such that

(1) (D,+,.) is a division seminear-ring,
(2) x + x' = x for all x, x' in D₁,
(3) y + y' = y' for all y, y' in D₂,
(4) D₂ + D₁ = {1},
(5) D = D₁ + D₂.

(Therefore, from (2) and (3) we see that D_1 and D_2 are division subseminear-rings of D.). Furthermore,

- (6) $(D_{,+}) \cong (D_{1,+}) \times (D_{2,+}),$
- (7) (D,+) is a rectangular band and

(8) The left distributive law holds iff $D = D_1 \times D_2$ as multiplicative groups (i.e. D_1 , $D_2 \notin D$).

<u>Proof.</u> To define + on D, let d, $d \in D$. By Lemma 1.13(2), there exist unique d_1 , d_1 in D_1 , d_2 , d_2 in D_2 such that $d = d_2d_1$ and $d = d_1d_2$. By Lemma 1.13(3), there exist unique \overline{x} in D_1 , \overline{y} in D_2 such that $\overline{x}d_2 = \overline{y}d_1$. Define $d + d = \overline{x}d_2 = \overline{y}d_1$.

For d_1 in D_1 and d_2 in D_2 , $d_1 = 1d_1$ and $d_2 = 1d_2$. By Lemma 1.13(3), there exist unique \bar{x} in D_1 , \bar{y} in D_2 such that $\bar{x}d_2 = \bar{y}d_1$. Thus $d_1 + d_2 = \bar{x}d_2 = \bar{y}d_1$. Claim that for all d in D there exist unique d_1 in D_1 , d_2 in D_2 such that $d = d_1 + d_2$. To prove existence, let $d \in D$. By Lemma 1.13(2), there exist unique c_1 , d_1 in D_1 , c_2 , d_2 in D_2 such that $d = c_2d_1 = c_1d_2$. Thus $d = d_1 + d_2$. Hence (5) holds. To prove uniqueness, suppose that $x_1 \in D_1$, $y_1 \in D_2$ are such that $d = x_1 + y_1$. Then there exist unique $\overline{x} \in D_1$, $\overline{y} \in D_2$ such that $d = x_1 + y_1 = \overline{x}y_1 = \overline{y}x_1$. Thus $c_2d_1 = \overline{y}x_1 = \overline{x}y_1 = c_1d_2$, so by Lemma 1.13(2), $x_1 = d_1$ and $y_1 = d_2$.

For
$$d_1$$
, $d_1 \in D_1$ and d_2 , $d_2 \in D_2$, we have that
 $(d_1 + d_2) + (d_1' + d_2') = \overline{y}d_1 + \overline{x}d_2'$ for unique $\overline{x} \in D_1$, $\overline{y} \in D_2$.
 $= \overline{y}d_1 = \overline{x}d_2'$ for unique $\overline{x} \in D_1$, $\overline{y} \in D_2$.
 $= d_1 + d_2'$.

To show $(D,+,\cdot)$ is a division seminear-ring, let d, d, $d \in D$. Then there exist unique x, x, $x' \in D_1$, y, y, $y' \notin D_2$ such that d = x + y, d = x + y and d = x + y. Then

$$d + (d' + d'') = (x + y) + [(x' + y') + (x' + y'')]$$

= (x + y) + (x' + y'') = x + y'' and
$$(d + d') + d'' = [(x + y) + (x' + y'')] + (x'' + y'')$$

= (x + y') + (x'' + y'') = x + y''.

Thus d + (d' + d') = (d + d') + d', so (D, +) is a semigroup. Let x, y, z $\in D$. Then there exist unique $x_1, \bar{x_1}, y_1, \bar{y_1} \in D_1, x_2, \bar{x_2}, y_2, \bar{y_2} \in D_2$ such that $x = x_1 x_2 = \bar{x_2} \bar{x_1}$ and $y = y_1 y_2 = \bar{y_2} \bar{y_1}$. Since xzand $yz \in D$, there exist unique $a_1, a_2 \in D_1, b_1, b_2 \in D_2$ such that $xz = a_1 + b_1$ and $yz = a_2 + b_2$. Then there exist unique $a_3, a_4 \in D_1, b_3, b_4 \in D_2$ such that $a_1 + b_1 = a_3 b_1 = b_3 a_1$ and $a_2 + b_2 = a_4 b_2 = b_4 a_2$. Thus $xz = b_3 a_1$ and $yz = a_4 b_2$. Then $z = x^{-1} b_3 a_1 = y^{-1} a_4 b_2$. Then $x^{-1} b_3 a_1 = y^{-1} a_4 b_2$ $(\bar{x}_2 \bar{x}_1)^{-1} b_3 a_1 = (y_1 y_2)^{-1} a_4 b_2$.

$$x_{2} b_{3}a_{1} = x_{1}y_{2}y_{1}a_{4}b_{2}.$$

Since $\bar{x}_{1}y_{2}^{-1}c_{0}$, there exist unique $c_{1} \in D_{1}$, $c_{2} \in D_{2}$ such that $\bar{x}_{1}y_{2}^{-1} = c_{2}c_{1}.$
Then $\bar{x}_{2}^{-1}b_{3}a_{1} = c_{2}c_{1}y_{1}a_{4}b_{2}$
 $c_{2}^{-1}\bar{x}_{2}^{-1}b_{3}a_{1} = c_{1}y_{1}a_{4}b_{2}.$
Since $c_{1}y_{1}a_{4} \in D_{1}$ and $c_{2}^{-1}\bar{x}_{2}^{-1}b_{3} \in D_{2}$, $a_{1} + b_{2} = c_{1}y_{1}a_{4}b_{2}.$ From $x = x_{1}x_{2}$
 $= \bar{x}_{2}\bar{x}_{1}$ and $y = y_{1}y_{2} = \bar{y}_{2}\bar{y}_{1}$, we have that $x = \bar{x}_{1} + x_{2}$ and $y = \bar{y}_{1} + y_{2}.$
Then there exist unique $\bar{x} \in D_{1}$, $\bar{y} \in D_{2}$ such that $\bar{x}_{1} + y_{2} = \bar{x}y_{2} = \bar{y}\bar{x}_{1}.$
Thus $\bar{x}_{1}y_{2}^{-1} = \bar{y}^{-1}\bar{x}$ so $\bar{x} = c_{1}.$ Then we have that
 $xz + yz = (a_{1} + b_{1}) + (a_{2} + b_{2}) = a_{1} + b_{2} = c_{1}y_{1}a_{4}b_{2}$ and
 $(x + y)z = [(\bar{x}_{1} + x_{2}) + (\bar{y}_{1} + y_{2})]y_{-}a_{4}b_{2}$

$$= (\bar{x}_{1} + y_{2})(y_{1}y_{2})^{-}a_{4}b_{2}$$

= $\bar{x}y_{2}y_{2}y_{1}a_{4}b_{2} = \bar{x}y_{1}a_{4}b_{2} = c_{1}y_{1}a_{4}b_{2}$

Therefore (x + y)z = xz + yz for all x, y, $z \in D$. Hence (D, +, .) is a division seminear-ring. Thus (1) holds.

Claim that x + 1 = x for all x in D_1 . To show this, let $x \in D_1$. Then there exist unique $\overline{x} \in D_1$, $\overline{y} \in D_2$ such that $\overline{x}1 = \overline{y}x$. Thus $1\overline{x} = \overline{x}1 = \overline{y}x$, so $\overline{x} = x$. Therefore $x + 1 = \overline{x}1 = x1 = x$. So we have the claim. Let x, $x' \in D_1$. Thus $xx' \stackrel{f}{\in} D_1$, so $xx' \stackrel{f}{=} 1 = xx'$. Thus $x + x' = (xx' \stackrel{f}{=} 1)x' = (xx' \stackrel{f}{=} 1)x' = x(\underline{x} \stackrel{f}{=} \frac{y}{x}) = x1 = x$. Thus (2) holds.

Claim that 1 + y = y for all y in D_2 . To show this, let $y \in D_2$. Then there exist unique $\bar{x} \in D_1$, $\bar{y} \in D_2$ such that $\bar{x}y = \bar{y}1$. Thus $1\bar{y} = \bar{y}1 = \bar{x}y$, so $\bar{y} = y$. Therefore $1 + y = \bar{y}1 = y1 = y$. So we have the claim. Let y, $y' \in D_2$. Thus $yy' \stackrel{?}{\in} D_2$, so $1 + yy' \stackrel{-1}{=} y'y' \stackrel{-1}{=}$. Thus $y + y' = (1 + yy' \stackrel{-1}{y})y = (y'y' \stackrel{-1}{y})y = y'(y' \stackrel{-1}{y}) = y'1 = y'$. Thus (3) holds. Note that 1 + 1 = 1 since $1 \in D_1$. Let $x \in D_1$, $y \in D_2$. Then y + x = (1 + y) + (x + 1) = 1 + 1 = 1. Hence $D_2 + D_1 = \{1\}$. Thus (4) holds. To show the uniqueness of +, suppose + is a binary operation on D such that (1) - (5) are true. Claim that 1 + d + 1 = 1 for all $d \in D$. To show this, let $d \in D$. Since (5) is true, there exist $d_1 \in D_1$, $d_2 \in D_2$ such that $d = d_1 + d_2$. Then $1 + d + 1 = 1 + (d_1 + d_2) + 1 =$ $(1 + d_1) + (d_2 + 1) = 1 + 1 = 1$ since (1) - (5) are true. Thus 1 + d + 1 = 1 for all $d \in D$. Thus we have the claim. Next we shall show that x + y = x + y for all $x \in D_1$, $y \in D_2$. To show this, let $x \in D_1$, $y \in D_2$. Thus $x + y \in D$. Then there exist unique d_1 , $\overline{d_1} \in D_1$, d_2 , $\overline{d_2} \in D_2$ such that $x + y = d_1 d_2 = \overline{d_2} = \overline{d_1} + d_2$. From $x + y = \overline{d_2} \overline{d_1}$, we have that $\overline{d_1} \overline{d_1} x^{-1} + 1 = (x + y)x^{-1} + 1 = 1 + yx^{-1} + 1 = 1$. Then $\frac{2}{d_2} + x\overline{d_1} = (\overline{d_2} \overline{d_1} x^{-1} + 1)x\overline{d_1} = 1x\overline{d_1} = x\overline{d_1}$.

Since $d \in D_2$, $xd \in D_1$ and (4) is true, $d_2 + xd_1 = 1$. Thus $xd_1 = 1$, so $x = d_1$. From $x + y = d_1d_2$, we have that $1 + d_1d_2y^{-1} = 1 + (x + y)y^{-1} = 1 + (x + y)y^{-1}$

 $yd_2^{-1} + d_1 = (1 + d_1d_2y^{-1})yd_2^{-1} = 1yd_2^{-1}$

Similarly, we have that $y = d_2$. Therefore $x + y = d_1 + d_2 = x + y$. Therefore x + y = x + y for all $x \in D_1$, $y \in D_2$. Now let d, $d \in D$. Then there exist x_1 , $x_2 \in D_1$, y_1 , $y_2 \in D_2$ such that $d = x_1 + y_1 = x_1 + y_1$ and $d = x_2 + y_2 = x_2 + y_2$. Thus

 $d + d = (x_1 + y_1) + (x_2 + y_2) = x_1 + (y_1 + x_2) + y_2 = x_1 + 1 + y_2 = x_1 + y_2 = d + d.$ Therefore d + d = d + d for all d, $d \in D$. Hence + = +.

To show (6), define f: $D_1 \times D_2 \rightarrow D$ by $f(d_1, d_2) = d_1 + d_2$ for all $d_1 \in D_1$, $d_2 \in D_2$. f is well-defined, one-to-one and onto since for all $d \in D$ there exist unique $d_1 \in D_1$, $d_2 \in D_2$ such that $d = d_1 + d_2$. To show f is a homomorphism, let d_1 , $d_1 \in D_1$, d_2 , $d_2 \in D_2$. Then $f((d_1, d_2) + (d_1, d_2)) = f(d_1 + d_1, d_2 + d_2) = f(d_1, d_2) = d_1 + d_2$ and $f(d_1, d_2) + f(d_1, d_2) = (d_1 + d_2) + (d_1 + d_2) = d_1 + d_2$. Thus $f((d_1, d_2) + (d_1, d_2)) = f(d_1, d_2) + f(d_1, d_2)$. Therefore f is a homomorphism. Hence $(D_{2}, +) \cong (D_{2}, +)$. Thus (6) holds.

To show (7), let $d \in D$. Since 1 + 1 = 1, d + d = (1 + 1)d = 1d= d. Thus d + d = d for all $d \in D$. Let d, $d' \in D$. Since 1 + dd' + 1 =1, d + d' + d = (1 + dd' + 1)d = 1d = d. Thus d + d' + d = d for all d, $d' \in D$. Hence (D,+) is a rectangular band. Thus (7) holds.

To show (8), assume that the left distributive law holds. Claim that $D_1 = \{x \in D \mid x + 1 = x\}$ and $D_2 = \{x \in D \mid x + 1 = 1\}$. From (2) and (3), $D_1 \subseteq \{x \in D \mid x + 1 = x\}$ and $D_2 \subseteq \{x \in D \mid x + 1 = 1\}$. Now let $x \in D$ be such that x + 1 = x. Since $x \in D$, there exist unique $\overline{x} \in D_1$, $\overline{y} \in D_2$ such that $x = \overline{x} + \overline{y}$. Thus $x = x + 1 = (\overline{x} + \overline{y}) + 1 = \overline{x} + (\overline{y} + 1) = \overline{x} + 1 = \overline{x}$, so $x = \overline{x} \in D_1$. Therefore $D_1 = \{x \in D \mid x + 1 = x\}$. Let $x \in D$ be such that x + 1 = 1. Since $x \in D$, there exist unique $\overline{x} \in D_1$, $\overline{y} \in D_2$ such that $x = \overline{x} + \overline{y}$. Thus $1 = x + 1 = (\overline{x} + \overline{y}) + 1 = \overline{x} + (\overline{y} + 1) = \overline{x} + 1 = \overline{x}$, so $\overline{x} = 1$. Thus $x = \overline{x} + \overline{y} = 1 + \overline{y} = \overline{y} \in D_2$. Thus $D_2 = \{x \in D \mid x + 1 = 1\}$. Thus we have the claim. To show that D_1 , $D_2 \notin D_1$ let $d_1 \in D_1$, $d_2 \in D_2$ and $d \in D$. Then $dd_1d^{-1} + 1 = dd_1d^{-1} + dd^{-1} = d(d_1 + 1)d^{-1} = dd_1d^{-1}$ and $dd_2d^{-1} + 1 = dd_2d^{-1} + dd^{-1} = d(d_2 + 1)d^{-1} = 1$. By the claim, $dd_1d^{-1} \in D_1$ and $dd_2d^{-1} \in D_2$. Thus D_1 , $D_2 \notin D$. Hence $D = D_1 \times D_2$.

Conversely, assume that $D = D_1 \times D_2$. Claim that $d_1d_2 = d_2d_1$ for all $d_1 \in D_1$, $d_2 \notin D_2$. To prove this, let $d_1 \in D_1$ and $d_2 \notin D_2$. Then $d_1d_2d_1^{-1}d_2^{-1} \notin D_1 \cap D_2 = \{1\}$, since D_1 , $D_2 \notin D$. Thus $d_1d_2d_1^{-1}d_2^{-1} = 1$, so $d_1d_2 = d_2d_1$. Thus we have the claim. To show that the left distributive law holds, let x, y, $z \notin D$. Then there exist unique x_1 , y_1 , z_1 in D_1 and x_2 , y_2 , z_2 in D_2 such that $x = x_1x_2 = x_2x_1 = x_1 + x_2$, $y = y_1y_2 = y_2y_1 = y_1 + y_2$ and $z = z_1z_2 = z_2z_1 = z_1 + z_2$. Thus $\begin{array}{l} xy + xz = x_{1}x_{2}y_{2}y_{1} + x_{2}x_{1}z_{1}z_{2} = x_{2}y_{2}x_{1}y_{1} + x_{1}z_{1}x_{2}z_{2} = x_{1}y_{1}x_{2}z_{2} = \\ x_{1}x_{2}y_{1}z_{2} \quad \text{and} \quad x(y + z) = x((y_{1} + y_{2}) + (z_{1} + z_{2})) = x(y_{1} + z_{2}) = \\ xy_{1}z_{2} = x_{1}x_{2}y_{1}z_{2} \cdot \quad \text{Thus} \quad x(y + z) = xy + xz \cdot \quad \text{Therefore the left distributive law holds.} \quad \text{Thus (8) holds.} \end{array}$

So we see that every Zappa-Szép product of a group which is not a direct product gives us an example of a division seminear-ring which is not a division semiring.

Definition 2.5. Let G and G be groups and suppose that $G = G_1 * G_2$, $G' = G'_1 * G'_2$ for some subgroups G_1 , G_2 of G and G'_1 , G'_2 of G. Let f: $G \rightarrow G$ be an isomorphism. Then f is said to preserve the Zappa-Szep products iff $f(G_1) = G'_1$ and $f(G'_2) = G'_2$.

<u>Theorem 2.6.</u> Let G and G be groups such that $G = G_1 * G_2$ and $G = G_1 * G_2$ for some subgroups G_1 , G_2 of G and G_1 , G_2 of G. Let f: $G \rightarrow G$ be a map. Then f is a division seminear-ring isomorphism with respect to the addition given in Theorem 2.4 iff f is a group isomorphism preserving the Zappa-Szép products.

<u>Proof.</u> By Theorem 2.4 and its proof, there exist unique \neq and + on G and G respectively such that $G_1 = \{x \in G \mid x + 1 = x\}$, $G_2 = \{x \in G \mid x + 1 = 1\}$, $G_1' = \{x \in G' \mid x + 1' = x\}$ and $G_2' = \{x \in G' \mid x + 1' = 1\}$ where 1 and 1 are the identities of G and G' respectively.

Assume that f is a division seminear-ring isomorphism. Then f is a group isomorphism from (G,.) to (G,.'). To show that $f(G_1) \subseteq G_1'$ and $f(G_2) \subseteq G_2'$, let $g_1 \in G_1$ and $g_2 \in G_2$. Then

> $f(g_1) + 1' = f(g_1) + f(1) = f(g_1 + 1) = f(g_1)$ and $f(g_2) + 1' = f(g_2) + f(1) = f(g_2 + 1) = f(1) = 1'.$

010001

Thus $f(g_1) \in G_1'$ and $f(g_2) \in G_2'$, so $f(G_1) \subseteq G_1'$ and $f(G_2) \subseteq G_2'$. To show that $G_1' \subseteq f(G_1)$ and $G_2' \subseteq f(G_2)$, let $g_1' \in G_1'$, $g_2' \in G_2'$. Since f is onto, there exist $x \in G$, $y \in G$ such that $f(x) = g_1'$ and $f(y) = g_2'$. Then $f(x + 1) = f(x) + f(1) = g_1' + 1' = g_1' = f(x)$ and

$$f(y + 1) = f(y) + f(1) = g'_2 + 1' = 1' = f(1).$$

Since f is one-to-one, x + 1 = x and y + 1 = 1. Thus $x \in G_1$ and $y \in G_2$. Thus $g'_1 \in f(G_1)$ and $g'_2 \in f(G_2)$. So $G'_1 \subseteq f(G_1)$ and $G'_2 \subseteq f(G_2)$. Therefore $f(G_1) = G'_1$ and $f(G_2) = G'_2$. Hence f is a group isomorphism preserving the Zappa-Szép products.

Conversely, assume that f is a group isomorphism preserving the Zappa-Szép products. We must show that f(g + h) = f(g) + f(h)for all g, $h \in G$. To prove this, let g, $h \in G$. Then there exist g_1 , h_1 , \overline{g}_1 , $\overline{h}_1 \in G_1$, g_2 , \overline{g}_2 , h_2 , $\overline{h}_2 \in G_2$ such that $g = g_1g_2 = \overline{g}_2\overline{g}_1$ and $h = h_1h_2 = \overline{h}_2\overline{h}_1$. Let $x_1 \in G_1$, $x_2 \in G_2$ be such that $\overline{g}_1 + h_2 = x_1h_2 = x_2\overline{g}_1$ From $x_1h_2 = x_2\overline{g}_1$ we have that $f(x_1)f(h_2) = f(x_1h_2) = f(x_2\overline{g}_1) =$ $f(x_2)f(\overline{g}_1) = f(\overline{g}_1) + f(h_2)$. Similarly, we have that $f(g) = f(\overline{g}_1) + f(g_2)$ and $f(h) = f(\overline{h}_1) + f(h_2)$. Therefore $f(g + h) = f(\overline{g}_1 + h_2) = f(x_1h_2)$ and $f(g) + f(h) = (f(\overline{g}_1) + f(g_2)) + (f(\overline{h}_1) + f(h_2))$

Thus f(g + h) = f(g) + f(h) for all g, $h \in G$. Therefore f is division seminear-ring isomorphism.

We shall now show that in the finite case the family of division seminear-rings constructed in Theorem 2.4 is the only type of example that exists. Lemma 2.7. If (D,+,.) is a finite division seminear-ring, then (D,+) is a band.

<u>Proof</u>. Let $(D, +, \cdot)$ be a finite division seminear-ring. Then (D,+) is a finite semigroup. By Theorem 1.15, there exists a d in D such that d + d = d. Let $x \in D$. Then $x + x = (d + d)d^{-1}x = dd^{-1}x = x$. Thus x + x = x for all $x \in D$. Therefore (D, +) is a band.

<u>Theorem 2.8.</u> Let D be a finite division seminear-ring. Then there exist unique division subseminear-rings D_1 , $D_2 \subseteq D$ such that

- (1) x + y = x for all x, $y \in D_{19}$
- (2) x + y = y for all x, $y \in D_2$,

$$(3) (D_{, \cdot}) = (D_{1^{, \cdot}}) * (D_{2^{, \cdot}}) (= (D_{2^{, \cdot}}) * (D_{1^{, \cdot}})).$$

Furthermore,

- (4) $(D,+) \cong (D_{1},+) \times (D_{2},+),$
- (5) $D_2 + D_1 = \{1\},\$
- (6) (D,+) is a rectangular band,

(7) D is left distributive iff D₁, D₂ ≤ D as multiplicative groups.

<u>Proof</u>. Let $D_1 = \{x \in D \mid x + 1 = x\}$ and $D_2 = \{x \in D \mid x + 1 = 1\}$ By Lemma 2.7, 1 + 1 = 1. Thus $1 \in D_1 \cap D_2$, so $D_1 \neq \emptyset$ and $D_2 \neq \emptyset$. To show that D_1 is a division subseminear-ring of D and (1) holds, let x, $y \in D_1$. Then xy + 1 = (x + 1)y + 1 = xy + (y + 1) = xy + y = (x + 1)y = xy and (x + y) + 1 = x + (y + 1) = x + y, so xy, $x + y \in D_1$. Since (D_1) is a finite group, there exists an $n \in \mathbb{Z}^+$ such that $x^n = 1$. So $x^{-1} = x^{n-1} \in D_1$. Hence D_1 is a division subseminear-ring of D. Since $xy^{-1} \in D_1$, $xy^{-1} + 1 = xy^{-1}$. Thus $x + y = (xy^{-1} + 1)y = xy^{-1}y = x$.

To show that D_2 is a division subseminear-ring of D and (2)

holds, let x, $y \in D_2$. Then xy + 1 = xy + y + 1 = (x + 1)y + 1 = 1y + 1= y + 1 = 1 and (x + y) + 1 = x + (y + 1) = x + 1 = 1, so xy, x + y are in D_2 . Similarly, $x \in D_2$. Thus D_2 is a division subseminear-ring of D. Since $xy^{-1} \in D_2$, $xy^{-1} + 1 = 1$. Thus $x + y = (xy^{-1} + 1)y = 1y = y$.

To show (3), we show that $(D, \cdot) = (D_2, \cdot)^* (D_1, \cdot)$. Let $d \in D$. Then $d + 1 \in D_1$ and $d(d + 1)^{-1} \in D_2$ since (d + 1) + 1 = d + (1 + 1) = d + 1 and $d(d + 1)^{-1} + 1 = d(d + 1)^{-1} + (d + 1)(d + 1)^{-1}$ $= (d + (d + 1))(d + 1)^{-1}$ $= ((d + d) + 1)(d + 1)^{-1}$ $= (d + 1)(d + 1)^{-1}(By Lemma 2.7, d + d = d)$ = 1.

Thus $d = d(d + 1)^{-1}(d + 1) \in D_2D_1$. Therefore $D = D_2D_1$. Let $x \in D_1 \cap D_2$. Then x = x + 1 = 1. Hence $D_1 \cap D_2 = \{1\}$. Thus $(D_1, \cdot) = (D_2, \cdot) * (D_1, \cdot)$. By Lemma 1.13(1), $(D_1, \cdot) = (D_1, \cdot) * (D_2, \cdot)$.

Claim that

-

(a) d + d + d = d for all d, $d \in D$. (Hence (D,+) is a rectangular band. Thus (6) holds.)

(b) For all $d \in D$ there exist unique $d_1 \in D_1$, $d_2 \in D_2$ such that $d = d_1 + d_2$.

To show (a), let d, $d \in D$. Since $dd^{-1} + 1$ and $1 \in D_1$, 1 + $(dd^{-1} + 1) = 1$. Thus d + d + d = $(1 + dd^{-1} + 1)d = 1d = d$.

To show (b), let $d \in D$. By (a), (1 + d) + 1 = 1, so $1 + d \in D_2$. Again by (a), d = d + 1 + d = d + (1 + 1) + d = (d + 1) + (1 + d)which is in $D_1 + D_2$, so we get the existence part of (b). To show uniqueness, let $d_1 \in D_1$, $d_2 \in D_2$ be such that $d = d_1 + d_2$. Then $d_1 = d_1 + 1 = d_1 + (d_2 + 1) = (d_1 + d_2) + 1 = d + 1$ and $d_2 = 1 + d_2 = (1 + d_1) + d_2 = 1 + (d_1 + d_2) = 1 + d_1$, so we get the uniqueness part. Hence we get (b).

all $d_1 \in D_1$, $d_2 \in D_2$. By (b), f is a bijection. To show f is a homomorphism, let d_1 , $d_1 \in D_1$, d_2 , $d_2 \in D_2$. Then $f((d_1, d_2) + (d_1, d_2)) = f(d_1 + d_1, d_2 + d_2)$ เล่าง ลกาบันวิทยาเว $= f(d_1, d_2) = d_1 + d_2$ and $f(d_1, d_2) + f(d_1, d_2) = (d_1 + d_2) + (d_1 + d_2)$ Palaunsain $= d_1 + (1 + d_2) + (d_1 + 1) + d_2$ $= d_1 + (1 + (d_2 + d_1) + 1) + d_2$ $= d_1 + 1 + d_2 = d_1 + d_2$ Therefore $f((d_1, d_2) + (d_1, d_2)) = f(d_1, d_2) + f(d_1, d_2)$. Thus f is a homomorphism. Hence $(D_{9+}) \cong (D_{1^{9+}}) \times (D_{2^{9+}})$. Thus (4) holds. To show (5), let $d_1 \in D_1$, $d_2 \in D_2$. Then $d_2 + d_1 = (1 + d_2) + (d_1 + 1) = 1 + (d_2 + d_1) + 1 = 1.$ Therefore $D_2 + D_1 = \{1\}$. Thus (5) holds. To show (7), assume that D is left distributive. Let $d_1 \in D_1$, $d_2 \in D_2$ and $d \in D$. Then $dd_1d^{-1} + 1 = dd_1d^{-1} + dd^{-1} = d(d_1 + 1)d^{-1} = dd_1d^{-1}$ and $dd_2d^{-1} + 1 = dd_2d^{-1} + dd^{-1} = d(d_2 + 1)d^{-1} = d1d^{-1} = 1.$ Thus $dd_1 d \in D_1$ and $dd_2 d \in D_2$, so $D_1 \notin D$ and $D_2 \notin D_2$ The converse can be proved as in Theorem 2.4. To show the uniqueness of D_1 and D_2 , suppose that D_1 , D_2 are division subseminear-rings of D such that (1) - (3) hold. Let $d_1 \in D_1$, $d_2 \in D_2$. Since (1) and (2) hold, $d_1 + 1 = d_1$ and $d_2 + 1 = 1$. Thus $d'_1 \in D_1$ and $d'_2 \in D_2$, so $D'_1 \subseteq D_1$ and $D'_2 \subseteq D_2$. Let $d_1 \in D_1$, $d_2 \in D_2$. Since (3) is true, there exist unique d_1 , $c_1 \in D_1$, d_2 , $c_2 \in D_2$ such that $d_1 = d_1 d_2$ and $d_2 = c_2 c_1$. Now $d_1 \in D_1 \subseteq D_1$ and $d_2 \in D_2 \subseteq D_2$, so $d_1 1 = d_1 d_2$ in $D_1 D_2$. Thus $d_1 = d_1 \in D_1$. Similarly, $d_2 \in D_2$. Thus $D_1 \subseteq D_1$ and $D_2 \subseteq D_2$. Hence $D_1 = D_1$ and $D_2 = D_2$.

To show (4), define f: $D_1 \times D_2 \rightarrow D$ by $f(d_1, d_2) = d_1 + d_2$ for

<u>Remark.</u> Since properties (1) - (5) are true, the given addition in a finite division seminear-ring must be the same as the addition which comes from Theorem 2.4.

<u>Theorem 2.9</u>. Let D and D be finite division seminear-rings. Then D \cong D as division seminear-rings iff there exists a multiplicative group isomorphism f: D \rightarrow D preserving the Zappa-Szep products of the division subseminear-rings given in Theorem 2.8.

<u>Proof.</u> Since D and D are finite division seminear-rings, there exist unique division subseminear-rings D_1 , $D_2 \subseteq D$, D_1' , $D_2 \subseteq D'$ such that $D = D_1 * D_2$ and $D = D_1' * D_2'$ as in Theorem 2.8. Let 1 and 1 be the identities of D and D respectively.

Assume that f: $D \rightarrow D'$ is a division seminear-ring isomorphism. Then f is a group isomorphism. Claim that f preserves the Zappa-Szép products. We must prove that $f(D_1) = D_1'$ and $f(D_2) = D_2'$. Let $d_1 \in D_1$, $d_2 \in D_2$. Then $f(d_1) + 1' = f(d_1) + f(1) = f(d_1 + 1) = f(d_1)$ and $f(d_2) + 1' = f(d_2) + f(1) = f(d_2 + 1) = f(1) = 1'$, so $f(d_1) \in D_1'$ and $f(d_2) \in D_2'$. Thus $f(D_1) \subseteq D_1'$ and $f(D_2) \subseteq D_2'$. Now let $d_1' \in D_1'$ and $d_2' \in D_2'$. Since f is onto, there exist x, $y \in D$ such that $f(x) = d_1'$ and $f(y) = d_2'$. Then $f(x + 1) = f(x) + f(1) = d_1' + 1' = d_1' = f(x)$ and $f(y + 1) = f(y) + f(1) = d_2' + 1' = 1' = f(1)$. Since f is one-to-one, x + 1 = xand y + 1 = 1. Thus $x \in D_1$ and $y \in D_2$, so $d_1' \in f(D_1)$ and $d_2' \in f(D_2)$. Thus $D_1' \subseteq f(D_1)$ and $D_2' \subseteq f(D_2)$. Therefore $f(D_1) = D_1'$ and $f(D_2) = D_2'$.

Conversely, assume that f: $D \rightarrow D'$ is a group isomorphism preserving the Zappa-Szép products. We must show that f(c + d) = f(c) + f(d) for all c, $d \in D$. Let c, $d \in D$. Then there exist unique c_1 , \overline{c}_1 , d_1 , $\overline{d}_1 \in D_1$, c_2 , \overline{c}_2 , d_2 , $\overline{d}_2 \in D_2$ such that $c = c_1c_2 = \overline{c}_2\overline{c}_1$ and $d = d_1d_2 = \overline{d}_2\overline{d}_1$. There exist unique $\overline{x} \in D_1$, $\overline{y} \in D_2$ such that

20

 $\overline{c}_1 + d_2 = \overline{x}d_2 = \overline{y}\overline{c}_1$ There exist unique $\overline{\overline{x}} \in D'_1$, $\overline{\overline{y}} \in D'_2$ such that $f(\overline{c}_1) + f(d_2) = \overline{\overline{x}}f(d_2) = \overline{\overline{y}}f(\overline{c}_1)$ Claim that $\overline{\overline{x}} = f(\overline{x})$. Note that $f(x) \in D'_1 \text{ and } f(y) \in D'_2 \text{ for all } x \in D_1 \text{ and } y \in D_2 \text{ since } f \text{ preserves the}$ $\text{Zappa-Szep products. From } \overline{x}d_2 = \overline{y}\overline{c}_1$, $f(\overline{x})f(d_2) = f(\overline{y})f(\overline{c}_1)$. Thus $f(d_2)f(\overline{c}_1)^{-1} = f(\overline{x})^{-1}f(\overline{y})$. From $\overline{x}f(d_2) = \overline{y}f(\overline{c}_1)$, we have that $f(d_2)f(\overline{c}_1)^{-1} = \overline{x}^{-1}\overline{\overline{y}}$. Thus $f(\overline{x}) = \overline{x}$. Therefore $f(c+d) = f(\overline{c}_1 + c_2 + \overline{d}_1 + d_2) = f(\overline{c}_1 + d_2) = f(\overline{x}d_2)$ and $f(c) + f(d) = f(\overline{c}_2)f(\overline{c}_1) + f(d_1)f(d_2)$ $= \overline{x}f(d_2) = f(\overline{x})f(d_2) = f(\overline{x}d_2).$

Thus f(c + d) = f(c) + f(d) for all $c_0 d \in D_0$. Therefore f is a division seminear-ring isomorphism.

In Example 2.3(2), the binary operations of + and \cdot are equal. This can only happen when the order is one as the following theorem shows.

Theorem 2.10. Let $(D, +, \cdot)$ be a division seminear-ring such that + and \cdot are equal. Then ||D|| = 1.

Proof. Suppose ||D|| > 1. Let $x \in D \setminus \{1\}$. Then $x^2 = x \cdot x = x + x = (1 + 1) \cdot x = (1 \cdot 1) \cdot x = 1 \cdot x = x$. Thus $x^2 = x$, so x = 1, a contradiction. Hence $||D|| = 1 \cdot \frac{\mu}{T}$

<u>Definition 2.11</u>. Let $(S, +, \cdot)$ be a seminear-ring and $a \in S$. Then a is an additive zero iff a + x = x + a = a for all $x \in S$ and a <u>multipli</u>cative zero iff $a \cdot x = x \cdot a = a$ for all $x \in S$.

Clearly, a division seminear-ring can have a multiplicative zero a iff it has order one since $1 = aa^{-1} = a$ so for all $x \in D$ x = xa = a = 1. In a division seminear-ring of order one, we see that 1 is both an additive zero and an additive identity but in a division seminear-ring of order > 1 we cannot have this as the following theorems show.

Theorem 2.12. Let D be a division seminear-ring of order > 1. Then D cannot contain any additive identity.

<u>Proof.</u> Suppose D has an additive identity e. Thus e + x = x + e = x for all $x \in D$, so $1 + xe^{-1} = xe^{-1} + 1 = xe^{-1}$ for all $x \in D$. Let $C = \{xe^{-1} | x \in D\}$. Since (D, \cdot) is a group, C = D. Therefore 1 + z = z + 1 = z for all $z \in D$, so e = 1 + e = 1. Let $x \in D \setminus \{1\}$. Then 1 + x = x, so $x^{-1} + 1 = 1$. Since $x^{-1} + 1 = x^{-1}$, so $x^{-1} = 1$. Thus x = 1, a contradiction._#

Theorem 2.13. Let D be a division seminear-ring of order > 1. Then D cannot contain any additive zero.

<u>Proof.</u> Suppose D contains an additive zero a. Then a + x = x + a = a for all $x \in D$, so $1 + xa^{-1} = xa^{-1} + 1 = 1$ for all $x \in D$. Let $C = \{xa^{-1} | x \in D\}$. Since (D, .) is a group, C = D. Thus 1 + d = d + 1 = 1 for all $d \in D$, so a = a + 1 = 1. Let $x \in D - \{1\}$. Thus 1 + x = 1, so $x^{-1} + 1 = x^{-1}$. Since $x^{-1} + 1 = 1$, so $x^{-1} = 1$. Hence x = 1, a contradiction.

<u>Definition 2.14</u>. Let D be a division seminear-ring with 1 as its multiplicative identity. Then the <u>prime division seminear-ring</u> of D is the smallest division seminear-ring contained in D i.e. the prime division seminear-ring of D is the intersection of all division subseminear-rings of D. Note that this intersection cannot be empty since every division subseminear-ring of D must contain 1 (because 1 is the only idempotent in (D, .)).

<u>Proposition 2.15</u>. Let D be a finite division seminear-ring (with multiplicative identity 1). Then the prime division seminear-ring of D is $\{1\}$.

<u>Proof</u>. Since (D,+) is a finite semigroup, by lemma 2.7 we get that 1 + 1 = 1. So $\{1\}$ is close with respect to + and . hence it is a division subseminear-ring of $D_{\bullet,\underline{\mu}}$

<u>Definition 2.16</u>. Let S be a seminear-ring and $x \in S$. Then x is said to be <u>left additively cancellative</u> iff for all y, $z \in S \quad x + y = x + z$ implies y = z. <u>Right additive cancellativity</u> is similarly defined. x is said to be <u>additively cancellative</u> iff it is left and right additively cancellative.

Example 2.17. If S has an additive identity 0, then 0 is additively cancellative.

<u>Definition 2.18</u>. Let S be a seminear-ring and $x \in S$. Then x is said to be <u>left multiplicatively cancellative</u> iff for all y, $z \in S$ xy = xz implies y = z. <u>Right multiplicative cancellativity</u> is similarly defined. x is said to be <u>multiplicatively cancellative</u> iff it is left and right multiplicatively cancellative.

Example 2.19. If S has a multiplicative identity 1, then 1 is multiplicatively cancellative.

<u>Remark</u>. If D is a finite division seminear-ring of order > 1, then D cannot be additively-cancellative by Theorem 2.8. So D can never be

embedded in a near-field.

Theorem 2.20. Let (D,+,.) be a division seminear-ring. Then

(1) If one element of D is left additively cancellative, then every element of D is left additively cancellative.

(2) If one element of D is right additively cancellative,then every element of D is right additively cancellative.(Hence if one element of D is additively cancellative, then every element of D is additively cancellative.)

<u>Proof.</u> (1) Let $d \in D$ be left additively cancellative. Let $x \in D$ and $y, z \in D$ be such that x + y = x + z. Then

 $d + yx^{-1}d = (x + y)x^{-1}d = (x + z)x^{-1}d = d + zx^{-1}d.$ Since d is left additively cancellative, $yx^{-1}d = zx^{-1}d$. Thus y = z since (D,.) is a group.

(2) Let $d \in D$ be right additively cancellative. Let $x \in D$ and y, $z \in D$ be such that y + x = z + x. Then

 $yx^{-1}d + d = (y + x)x^{-1}d = (z + x)x^{-1}d = zx^{-1}d + d.$ Since d is right additively cancellative, $yx^{-1}d = zx^{-1}d$. Thus y = zsince (D,.) is a group._#

<u>Proposition 2.21</u>. Let S be a finite seminear-ring which is multiplicatively cancellative. Then S is a division seminear-ring.

<u>Proof.</u> Since (S,.) is a finite cancellative semigroup, by theorem 1.18, (S,.) is a group. Hence S is a division seminear-ring.