CHAPTER III

METROD OF CALCULATION

III.I The deterwination of radio wave refractivity.

To make calculation 46 observation stations are chosen to collect the data of atmospheric pressure, teaperature, and relative huraidity in percent at the surface of the earth. The stations are located at different parts of Tinailand as listed below.

The climatological data of these stations are collected during the period of 1951-1970. Five to eight observations at intervals of three hours each are taken daily at 01.00, 04.00, 077.00, 10.00, $13.00,16.00,19.00$, and 22.00 local standard time.

From the available data, the value of the radio wave refractivity at the surface of the earth can be obtained by the following steps.
i) Changing the temperature from degree Celcius(${ }^{\circ}$ C)to degree Kelvin (K^{*}) by adding 273 to each value.
ii) From mean temperature, read the value of saturated vapour pressure over water, e_{s}, from Smithsonian Meteorological Table 94, (APPENDIX III)
iii) The saturated vapour pressure obtained from (ii) is used for the calculation of the vapour pressure using the formula.

Vapour pressure (e) $=e_{s} \times \frac{R H}{100} . \mathrm{mb}$.

Where RH , is the relative humidity, expressed in per-cent
iv) The radio wave refractivity at the surface of the earth, N_{s}, in various months are calculated by substituting the values of temperature, and vapour pressure, e (mb) in the formula.
$N_{s}=\frac{77.6}{T} \quad\left[P+\frac{4810 e}{T}\right]$

- ... จฬาลงกรณ์มหาวิทยาลัย

For example, the climatological data for the period 1951-1970, at Chiang Rai is shown in Table No. 1.

Table No. 1

The climatological data for the period 1951-1970 at Chiang Rai

Chulalongikorn University

The given procedure of calculation gives the results as tabulated in Table No. 2.

Table No. 2

Results calculated from climatological data for the period 1951-1970 at Chiang Rai

Month -		$\begin{gathered} \mathrm{e} \\ \mathrm{~s} \\ (\mathrm{mb}) \end{gathered}$	e (mb)	N_{s}
January	292.8	23.085	18.191	348.28
February	294.7	25.950	18.483	346.02
March	297.	30.932	20.471	349.65
April	300.	36.282	23.7 .28	360.13
May	300.	37.358	28.056	375.37
June	300.3	36.282	29.534	381.94
July	299.9	35.440	29.309	381.68
August	299.5	34.615	29.527	383.34
September	299.5	34.615	29.007	381.76
October	298.2	32.050	26.473	376.98
November	296.0	28.086	22.918	363.58
December	293.2	23.664	19.310	352.75
Average	297.7	31.109	24.265	365.15

For the other values of the radio wave refractivity in each month of each weather station can be obtained by the same method of calculation. The resultsfor the surface refractivity of the earth from 46 weather stations are shown in the map of Thailand for each month and year, the contour of the isorefractivity lines are constructed as shown in Fig. 6 to 18 . and the seasonal variation in average value $N_{s}\left(\bar{N}_{s}^{*}\right)$ is shown in Fig. 18.a:

Fig. 18.a. Graph showing the seasonal variations of N
III. 2 The determination of earth effective radius coefficient

There are four observed stations in Thailand, at Bangkok, Chiang Mai, Songkhla, and Ubon Ratchathani to collect data of atmospheric pressure, temperature, and relative humidity. The geometrical data of these stationsare tabulated below.

Station	Location	Latitude	Longitude	Elevation (m)
Bangkok	Central	$13^{\circ} 44^{\prime} \mathrm{N}$	$100^{\circ} 30^{\prime} \mathrm{E}$	13
Chiang Mai	Northern	$18^{\circ} 47^{\prime} \mathrm{N}$	$98^{\circ} 59^{\prime}$ E	314
Songkhla	Southern	$07^{\circ} 11^{\prime} \mathrm{N}$	$100^{\circ} 37^{\prime}$	5
Ubon Ratchathani	Northeastern	$15^{\circ} 15^{\prime} \mathrm{N}$	$104{ }^{\circ} 53^{\prime} \mathrm{E}$	123

These stations are the only weather stations in Thailand using radiosonde to obtain the data of the atmosphere. A balloon carrying radiosonde equipment is launched every day at 0.00 SMT at each station. It sends down the required data from the ascending balloon to the receiving ground station by radio wave in FM system at frequency of 403 MHz . The ground station/will record the data in the form of graph. From the graph the data are converted into discrete height, the corresponding atmospheric temperature, and dew-point temperature at the different atmospheric pressure levels. The data are shown at the durface of the earth and at the pressure level of $1000 \mathrm{mb}, 850 \mathrm{mb}$, $700^{\circ} \mathrm{mb}, 400 \mathrm{mb}, 300 \mathrm{mb}, 200 \mathrm{mb}, 150 \mathrm{mb}, 100 \mathrm{mb}, 70 \mathrm{mb}, 50 \mathrm{mb}, 30 \mathrm{mb}$, and 20 mb , respectively. The balloon carrying radiosonde weighted about 500 grams with ascending rate of 300 meters per minute. before launching, the base line of baroswitch, temperature element and hygrister are checked to make sure that the correct measurement will be obtained.

The data of atmospheric temperature, dew-point temperature and height are recorded daily. Then these data are averaged and published monthly in each five years for distribution to the public. Only the data during the period of 1966 to 1970 for the weather stations at Bangkok, Chiang Mai, Songkhla, and Ubon Ratchathani for recent data are used here.

From the available data, the value of refractivity the gradient of the refractive index, the earth effective radius coefficient and censtant b can be obtained by the following steps.
i) With the aid of a dew point slide rule we can calculate the relative humidity expressed in percent, from the values of dew -point temperature and atmospheric temperature which expressed in degree Celsius.
ii) Calculate the refractivity at different elevation by the same procedure as stated in section III.1.
iii) Plot refractivity, N versus height, H on graph papers. Use H as abscissa and N as ordinate
vi) Evaluate the gradient of refractivity, $\frac{\mathrm{dN}}{\mathrm{dH}}$. To the first approximation, this can be done by assuming that $\frac{d N}{d H}=\frac{\Delta N}{\Delta H}$; This assumption is quite reasonable if the graph is approximately linear in the interval. The values of $\mathrm{N}_{\mathrm{s}}, \mathrm{H}_{\mathrm{S}}$ and $\mathrm{N}_{\mathrm{s}}+1 \mathrm{~km}$. $\mathrm{H}_{\mathrm{s}}+1 \mathrm{~km}$ are the value at the surface of the earth at the height of 1 kilometre above the earth surface respectively. Thus

since,

$$
N=(n-1) \times 10^{+6}
$$

Therefore

$$
\frac{\mathrm{dn}}{\mathrm{dh}}=10^{-6} \frac{\mathrm{dN}}{\mathrm{dH}}=10^{-6} \frac{\Delta \mathrm{~N}}{\Delta \mathrm{H}}
$$

v) The value of radio wave propagation constant (K) can be obtained by substution the value of $\frac{\mathrm{dn}}{\mathrm{dh}}$ to the formula.

$$
K=\frac{1}{1+a \frac{\mathrm{dn}}{\mathrm{dh}}}
$$

vi) Calr-late the value of constant b from the formular
(1) $-(5)$

$$
\mathrm{N}=\mathrm{N}_{\mathrm{s}}[\exp \cdot(-\mathrm{b})-1]
$$

Sample of calculation, the data of January pressure, atmospheric temperature, and dew-point temperature of Ubon Ratchathani weather station for the period 1966 to 1970 are shown below.

GPM (m)	$P(\mathrm{mb})$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\mathrm{d}}\left({ }^{\circ} \mathrm{C}\right)$
123.00	1014.54	19.10	15.70
1514.00	850.00	15.70	10.30
3141.00	700.00	7.10	-4.20
5851.00	500.00	-6.20	-20.70
9656.00	300.00	-32.50	-45.30

By the procedure which is mentioned before, the results calculated from the meteorological data above can be tabulated in Table No. 3.

Table No. 3

The results calculated from the meteorological data at Ubon Ratchathani weather station for the period 1966 to 1970 in January

H (GPM) (m)	CALOTGKO C	$\mathrm{e}_{\mathrm{s}} \mathrm{mb}$	RH $\%$	e mb	N N -unit
123.00	19.10	22.101	87	19.228	354
1514.00	15.70	17.827	70	12.579	284
3141.00	7.10	10.082	44	4.436	215
5851.00	-6.20	3.622	31	1.123	151
9556.00	-32.50	0.292	27	0.079	97

From Table No. 3, The graph of N and H is obtained; as shown in Fig. 19, the value of K and b are evaluated. The other values of K and b can be evaluated by the same method.

$\mathrm{H}(\mathrm{KF})$

FI5

III. 3 The Relation between \mathbb{N} and N

For the relation between, $A N$ and N_{S}, the value of K and b that calculated from the radiosondes data is tabulated in Table No. 4.

Table No. 4

The value of earth effective radius coefficient and constant b .

Station	Bangkok				Songkhla		n R	chãāni
month	K				K	- b	K	b
January	1.59	-0.156	1.51	-0.1437	1.64	-0.1488	1.49	-0.1358
February	1.57	-0.142	1.59	-0.1584	1.72	-0.1598	1.54	-0.1460
March	1.67	-0.1505	1.66	-0.1643	1.87	-0.1766	1.57	-0.1481
April	1.65	-0.1486	1.67	-0.1621	1.86	-0.1725	1.47	-0.1302
May	1.75	-0.1578	1.73	-0.1637	1.72	-0.1579	1.66	-0.1523
June	1.78	-0.1633	1.78	-0.1673	1.78	-0.1648	1.59	-0.1428
July	1.76	-0.1623	1.67	-0.1542	1.72	-0.1579	1.56	-0.1388
August	1.71	-0.1549	1.68	-0.1561	1.76	-0.1634	1.51	-0.1296
September	1.56	-0.1355	1.72	-0.1598	1.52	-0.1332	1.67	-0.1511
October	1.64	-0.1467	1.65	-0.1542	1.67	-0.1523	1.50	-0.1294
November	1.59	-0.1446	1.61	-0.1522	1.62	-0.1448	1.56	-0.1481
December	1.57	-0.1444	1.50	-0.1398	1.63	-0.1485	1.54	-0.1460
Sum	19.84	-1.8029	19.77	-1.8722	20.51	-1.8807	18.66	-1.6982
Average	1.65	-0.1502	1.65	-0.1560	1.71	-0.1567	1.55	-0.1415

The mean value of $K,(\bar{K})$, can be done by $\bar{K}=\sum_{1} K / n, n$ is number of K.

$$
\overline{\mathrm{K}}=\frac{19.84+19.77+20.51+18.66}{48}=1.64
$$

Then the value of standard deviation, σ, is calculated by the formula

$$
\sigma=\sqrt{\frac{\sum(K-\bar{K})^{2}}{(n-1)}}=0.979 \times 10^{-2}
$$

The mean value and the standard deviation for the values of K and b are

$$
\begin{array}{ll}
\overline{\mathrm{K}}=1.64, & \sigma_{\mathrm{k}}=0.979 \times 10^{-2} . \\
\overline{\mathrm{b}}=-0.1511, & \sigma_{\mathrm{b}}=-0.1336 \times 10^{-3}
\end{array}
$$

The variation of the mean values of the refractive index of the atmesphere may be approximated by the following exponential formula

$$
n(h)=1+N_{s} \exp (0.1511 \mathrm{~h}) \times 10^{-6}
$$

where
$\mathrm{N}_{\mathrm{s}} \quad=$ the radio wave refractivity at the surface of the earth
h $\quad=$ the height above the surface of the earth expressed in kilometres

From the above relation N at a difference height of 1 km above the surface of the earth is determined by
$\Delta N \quad=N_{S}[\exp (-b)-1]$

$$
\begin{aligned}
& =\mathrm{N}_{\mathrm{s}}[\exp (-0.1511)-1] \text { ลัย }, \\
& =0.1631 \mathrm{NGKORN} \text { UNIVERSITY }
\end{aligned}
$$

The value of K is,
$K=\frac{1}{1+6370\left(0.1631 N_{\mathrm{s}}\right) \times 10^{-6}}$
$=\frac{1}{1+0.00104 N_{s}}=\frac{a_{e}}{a}$
and the value of a_{e}
$a_{e} \quad=\quad \frac{6370}{1+0.00104 N_{s}}$

The values of N_{s} in relation to the values of K and a_{e} at a difference height of 1 km . is tabulated in Table No. 5.

Table No. 5
The relation between N_{s} and $\Delta N, K$, ee.

N_{s} N -unit	AN N -unit	K	ae Km
100	16.31	1.12	
150	24.47	1.19	7,109
200	32.62	1.26	7,547
250	40.78	1.35	8,043
300	48.93	1.45	8,600
350	57.09	1.57	9,259
400	65.42	1.71	10,016
450	73.40	1.88	10,908
500	81.55	2.08	11,974
550	89.71	2.34	13,250
600	97.86	2.66	14,906

The relation between N_{s} and a_{e} is plotted in Fig. 20, and the relation between N_{s} and K is shown in Fig. 21.

The relation between N_{s} and K in Fig. 21 is used to make contour of K in the map of Thailand, and the map of earth effective radius coefficient of Thailand are drawn in Figs. 22 to 34.

\qquad Fig 20 Graph showing the relation between the radio wave refractivity at the surface(is $)$ and the earth effectverasius (a_{e})。

Fif 21 Graph shoming the relation besiveen the - rasio wave refractivity at the surface (r_{S}) and the ridio wave propagation constame (X)

