INVESTIGATION OF THE STARTING TORQUE

OF

SINGLE-PHASE CAPACITOR-START INDUCTION MOTOR

BY VARYING CAPACITANCE OF

STARTING CONDENSER

by

Treekul Sophonsiri.

B. Eng., Chulalongkorn University, 1962

007036

Thesis

Submitted in partial fulfillment of the requirements for the Degree of Master of Engineering

in

The Chulalongkorn University Graduate School
Department of Electrical Engineering

April, 1967

(B.E. 2510)

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Engineering.

7. Nilanidhi.

Thesis	committeeP. Patty bongse
	Appm Kengpl
	Ithpor Pademolowit
	•

Thesis Supervisor. April Mang pl.

Date. May 8, 1967...

ABSTRACT

This thesis deals with the investigation of the starting torque of single-phase capacitor-start induction motor at various starting capacitances.

The investigation of the starting torque was performed using three methods. The first method of investigation was to calculate the starting torque from the motor equivalent circuit. The motor equivalent circuit was obtained from mo-load test and locked-rotor test. The second method of investigation was to calculate the starting torque from actual measurements. The starting torque was obtained by multiplying the torque arm length by the reading on the balance. The third method of investigation was to calculate the starting torque from the motor physical parameters. The motor physical parameters were obtained by disconnecting the motor into parts.

The results obtained from these three methods of investigation, when compared, were quite satisfactory. Some errors which occured were discussed.

Thesis T	itle .Investigation of the Starting Torque of Single Phase
	Capacitor-Start Induction Motor Start by Varying
	Capacitance of Starting Condenser
Name	TreeKul Sophonsiri
Departmen	at .Electrical Engineering
Date	April 18, 1967

ABSTRACT

This thesis deals with the investigation of the starting torque of single-phase capacitor-start induction motor at various starting capacitances.

The investigation of the starting torque was performed using three methods. The first method of investigation was to calculate the starting torque from the motor equivalent circuit. The motor equivalent circuit was obtained from no-load test and locked-rotor test. The second method of investigation was to calculate the starting torque from actual measurements. The starting torque was obtained by multiplying the torque arm length by the reading on the balance. The third method of investigation was to calculate the starting torque from the motor physical parameters. The motor physical parameters were obtained by disconnecting the motor into parts.

The results obtained from these three methods of investigation, when compared, were quite satisfactory. Some errors which occured were discussed.

หัวข้อวิทยานิพนซ์	การหาสทาร์ทิ้งหอร์คของอินคัดขั้นมอเตอร์เฟสเดียว แบบแคปแปซีเตอร์
	สคาร์ท โดยเปลี่ยนคาสคาร์ทติ้งคอนเคนเซอ
4 10	นายครีกูล โสภณศิริ
แผนกวิชา	วิศวกรรมไฟฟ้า
วันที่8เ	ที่อนพฤษภาคม พ.ศ. 2510

บทคักยอ

วิทยานิพนธ์ฉบับนี้ ว่าด้วยการครวจหาและทดสอบการ เปลี่ยนแปลงคำของสตาร์ทติ้งทอร์ค ของอินดัดชั้นมอ เตอร์ แบบแคปแปซี เตอร์สตาร์ทที่คำต่าง ๆ ของสตาร์ทติ้งแคแปซีแตน

การตรวจหาได้กระทำโดยวิชีตาง ๆ สามวิชี คือโดยการคำนวณหาจาก อีควิวา เล้น เซอคิท ซึ่งได้มาจากการทำโนโลด เทส และ ลอดโรเตอร์ เทส โดยการวัดสตาร์ทติ้งทอร์ค จริง ๆ ของมอเตอร์ โดยใช้ทอร์คอาร์ม และเครื่องชั่ง และโดยการรื้อมอเตอร์ออกเป็นส่วน ๆ เพื่อวัดขนาื่อโล้ยละเอียดของส่วนต่าง ๆ ของมอเตอร์ที่เกี่ยวกับทอร์คและตรวจดูลักษณะการพันของ ขดลวดต่าง ๆ แล้วนำผลที่ได้รับมาคำนวณหาสตาร์ทติ้งทอร์ค ที่ควรจะได้รับตามหญีษฎี

เมื่อนำผลของการทรวจสอบทั้งสามวิธีมา เปลี่ยบ เพียบปรากฏว่า ผลลัพธ์ที่ได้มีความ แตกต่างกันบ้างเล็กน้อย และสา เหตุของความแตกต่างใด้ถูกนำมาวิเคราะห์โดยละเอียด

ACKNOWLEDGEMENT

The author wishes to express his gratitude and appreciation to Mr. Amnat Sakarin whose suggestion led to the undertaking of this problem and under whose guidance the experiments were completed. The author is espectially indebted to Mr. Arpon Kengpol for many valuable suggestions and a careful reading of the manuscript, and also to Niran Kanchanakanti which helped to make this work successful.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	×
Chapter 1	
INTRODUCTION	1
Introduction	1
Common starting arrangement	2
Capacitor motor	3
Repulsion-start, induction-rum motor	5
Purpose of this thesis	5
Chapter II	
THEORY OF STARTING TORQUE CALCULATION	
Introduction	6
Calculation of the starting torque from the	6
equivalent circuit	
The equivalent circuit	6
Derivation of equivalent circuit	12
Derivation of starting torque from equivalent	14
circuit parameters	

Page

Current flows in the starting winding only	17
Both winding carrying current	19
Power of the rotating field and the torque	24
Determination of the equivalent circuit parameters	25
No-load test	25
The lock-rotor test	28
Calculation of the starting torque from the	30
physical parameters of the motor	
Winding distribution factor	31
The length of half mean-turn	31
The resistance of main stator winding	31
The rotor resistance	32
The leakage reactance	32
The zigzag leakage reactance	33
The end connection leakage reactance	33
The skew leakage reactance	33
The magnetizing reactance	34
The slot reactance factor	34
The total leakage reactance	34
The ratio of effective conductor	35

	1 64
The total main winding resistance	. 35
The rotor resistance in term of starting winding	. 35
The total resistance in term of starting winding	•• 35
The total leakage reactance in term of starting winding.	•• 35
The maximum starting torque	35
Chapter III	
EXPERIMENTAL DETERMINATION	
Introduction ······	• 40
Determination of the starting torque from equivalent	41
circuit parameter.	
The main-winding equivalent circuit	41
The starting-winding equivalent circuit	. 46
Starting torque calculation from the equivalent-circuit	• • 50
parameter	
Determination of starting torque from physical ************************************	55
dimensions of the motor	
The main winding	55
The starting winding	58
The rotor	60
Measurement of the starting tonava	60

Page

Chapter I	V
-----------	---

CONCLUSION	AND	DISCUSSION		74
BIBLIOGRAPE	Y.	••••••	• • • • • • • • • • • • • • • • • • • •	77

LIST OF FIGURES

		Page
Fig	2.1	Voltage and current diagram of the 9
		induction motor
Fig	2.2	Equivalent circuit of the single phase13
		induction motor
Fig	2.3	Equivalent circuit of the main winding14
Fig	2.4	Simplified main winding equivalent16
		circuit
Fig	2.5	Equivalent circuit of the starting 18
		winding.
Fig	2.6	Simplified starting winding
Fig	2.7	Equivalent circuit of single phase 26 motor at no-load
Fig	2.8	Equivalent circuit of single phase 29
		motor at stand-still
Fig	2.9	Slot reactance factor curve
Fig	2.10	End ring coefficient curve
Fig	2.11	Air gap coefficient curve
Fig	3.1	The equivalent circuit for main winding 46
Fig	3.2	The equivalent circuit for starting 49
		winding.
P4 e	3.3	Stator runching for 1/4 N.P. 70

			Page.
		capacitor start motor	
Fig.	3.4	Enlarged view of stator teeth	71
Fig.	3.5	Rotor punching for 1/4 H.P	72
		capacitor start motor	
Fig.	3.6	Starting torque V.S. starting	73