CHAPTER V

DATA AND EXPERIMENTS

Impulse Voltage Testing Plant

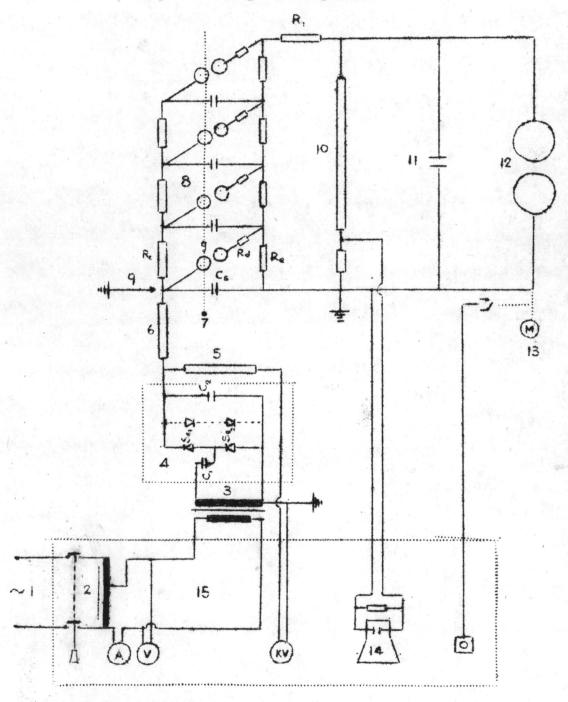


Fig. 5-1 Completed circuit diagram for testing purpose.

Explanation of the Diagram

- 1. AC supply mains
- 2. Potentiometer
- 3. High voltage transformer
- 4. Charging equipments
- 5. Measuring resistance
- 6. Limiting resistance
- 7. Movable insulating rod
- 8. Impulse generator
- 9. Earthing device
- 10. Resistance potential divider
- 11. Capacitance load
- 12. Measuring sphere gaps
- 13. Gaps controlled motor
- 14. Oscillograph
- 15. Control desk

Electrical Data

A. Impulse generator

 C_s = impulse capacitors. Type CP 231 E00104 M, NTK, JAPAN 0.1 μ F / 10 KV \pm 10 %

 R_{c} = charging resisters. Type Wire-wound 5-W.

10 K- / 10 KV ± 10 %

 R_e = discharging resistors. Type wire-wound 25-W. 887.5--/ 10 KV \pm 5 %

 R_d = internal damping resistors. Type wire-wound 50-W. 54 \sim 10 KV \pm 5 % 30 \sim 10 KV \pm 5 %

g = spark gaps. Type steel balls.

2.5 cm. diameter + 1 %

 R_1 = series resistor. Type wire wound 25-W 2800 $^{\sim}$ / 30 KV \pm 5 %

B. Charging equipments

Se₁, Se₂ = Selenium rectifiers. Type CR 212, RCA

max.peak inversed voltage 10 KV

max. current at 20°C 1 A

 C_1 , C_2 = condensers. Type CP 231 E00104 M, NTK, JAPAN 0.1 μ F / 10 KV \pm 10 %

Measuring resistor. Type, Carbon 1-W 277 M- $^{\sim}$ / 10 KV \pm 20 %

Limiting resistor. Type, Liquid (Water)

Several megohms

Earthing device. Type, hot stick with lead connecting to ground rod, low impedance.

H.V. Transformer. Type CSP/A 1 \(\noting 50 \text{ Hz., Oil-immearsed.} \) U.S.A.

Rated voltage. L.V coils 240 - 480 V

H.V coil 12 KV

Power out put 5 KVA

C. Controlled desk

Main power supply: provided by push bottons with automatic circuit breakers

220 V AC 50 Hz.

Potentiometer : Type Yamabishi Electric Co., Ltd. JAPAN

AC voltage variation 0 - 240 V 50 Hz.

AC voltmeter : for main supplied voltage 0 - 240 V 50 Hz.

DC kilovoltmeter : by means of a microammeter with a high series resistance to indicate the DC charging voltage 0 - 8 KV Scale 0 - 50 MA

Impulse voltmeter: measures both positive and negative polarities of the samples of impulse voltage taken from a resistor divider.

Accuracy: impulse wave to be recorded > 0.5 \(\mu \)S, error = 2%.

impulse wave to be recorded 0.2-0.5 \(\mu \)S, error = 3%.

Multiplying factors 1, 2, 4, 6

Precision moving coil microammeter used in conjunction with the impulse voltmeter to measure the impulse voltage

Series number 331700/1

Calibrating value 0 - 200 V

Oscilloscope (C.R.O.) Type 565 Dual-Beam Textronix Inc. U.S.A.

Response time = 0.035 MS.

Scales: $X = 0.1 - 10 \mu S/Div.$

Y = 10 V/Div.

Photographic camera. Type Kodax, Retina IV, 35 mm.

Lens 2.8 f 50 mm

Single len reflex

provided with two closed up lens

Film. Type 400 ASA 20 Exposures, 35 mm.

Gaps controlled motor. For adjusting the measuring sphere gaps.

AC supply 220 V 50 Hz.

D. Accessories

Resistance potential divider. Type wo/oA 55.3189 EML

HAEFELY & CIE AG 4000 BASEL 28, Switzerland

resistance values. $R_1 = 7376 \Omega$

$$R_2 = 76 \Omega$$

Dividing ratios

Theoretical $\frac{7376 + 76}{76} = 98.2$

Positive wave $\frac{580 \times 169.6 \times 1}{171.5 \times 6} = 95.5$

Negative wave $\frac{580 \times 171.2 \times 1}{173.3 \times 6} = 95.5$

Dividing ratio to be used = 95.5 both for positive and negative polarities.

Load capacitors

200 pF / 350 KV ± 10 %

2000 pF / 700 KV + 10 %

3000 pF / 700 KV + 10 %

4000 pF / 700 KV + 10 %

Resistors- Type-wire-wound 25 W

181--/ 32 KV ± 10 %

2800 ~-/ 32 KV ± 10 %

3075 - 32 KV + 10 %

7200 - 32 KV + 10 %

Inductors. Type air core, copper coils

5.12 MH / 32 KV + 10 %

7.42 UH / 32 KV + 10 %

12.0 AH / 32 KV + 1 %

15.58 MH / 32 KV ± 1 %

Measuring Sphere gaps. Type copper alhoy, with one gap earthed
25 cm in diameter

Calculated and Experimental Data of 1/50 Wave
Calculated Impulse Circuit

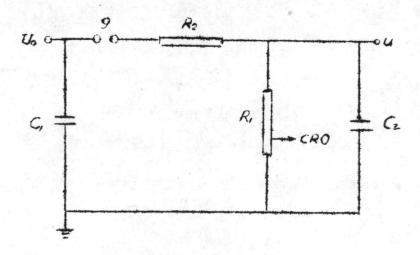


Fig. 5-2 Impulse circuit for 1/50 wave.

In figure 5-2,

 C_1 = impulse generator capacitance

R₁ = discharging resistance

R₂ = series resistance

C₂ = load capacitance

g = spark - gaps

U = DC charging voltage

u = Impulse voltage

Calculated Data of 1/50 wave

Referring to graphical method in Chapter II

$$t_{1} = 1 \text{ MS.}$$

$$t_{2} = 50 \text{ MS}$$

$$\frac{t_{1}}{t_{2}} = 0.02$$

$$\frac{d\theta_{1}}{d\theta_{1}} = 2.96$$

$$\frac{d\theta_{2}}{d\theta_{2}} = 0.0146 \text{ MS}^{-1}$$

$$p_{2} = \frac{d\theta_{1}}{d\theta_{1}} = 2.96 \text{ MS}^{-1}$$

$$p_{3} = 97.5 \%$$

$$\frac{c_{1}}{c_{2}} = 12.5$$

$$c_{1} = 0.025 \text{ MF}$$

$$c_{2} = 2000 \text{ pF}$$

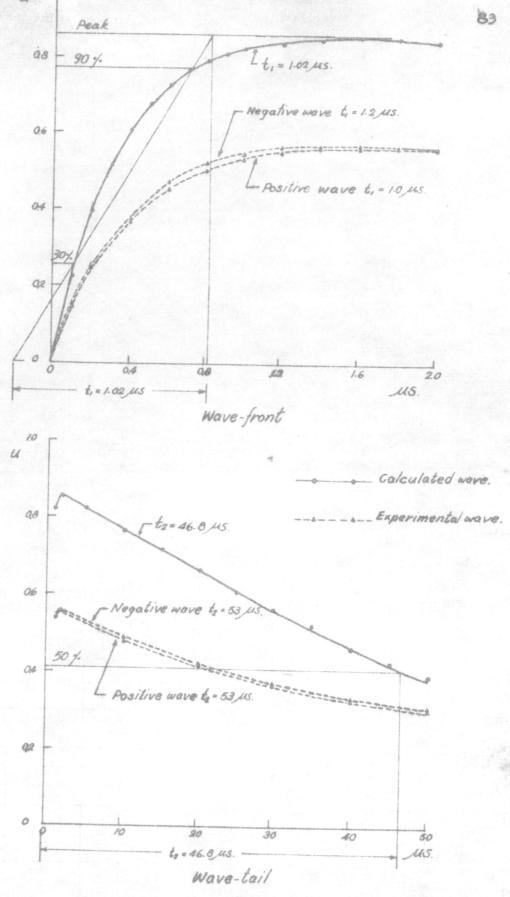
$$c_{2} = 2000 \text{ pF}$$

$$c_{3} = \frac{1}{c_{2}\sqrt{p_{1}p_{2}}} \approx 192 \text{ MF}$$

$$R_{2} = \frac{c_{1}}{c_{2}} R_{2}$$

$$\approx 2400 - C$$

$$u = \frac{U_{0}}{c_{2}R_{2}} \frac{1}{p_{2}-p_{1}} (e^{-p_{1}t} - e^{-p_{2}t})$$


$$= 0.882 U_{0} (e^{-p_{1}t} - e^{-p_{2}t})$$

The wave shape of impulse voltage $\dot{\mathbf{n}}=0.882~\mathrm{U_0}~(~<^{-0.0146t}~-~(^{-2.96t}~)$ is plotted to scale in the graph-paper by the using of the calculated values in table 5.

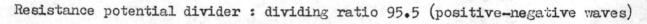
Table 5 . Calculated varues for plotting equation

$$u = 0.882 (e^{-0.0146t} - e^{-2.96t})$$

(1)	(2)	(3)	(4)	(5)	(6)=(3)-(5)	u=0.882(6)
t US	0.0146t	2.96t	€-0.0146t	€-2.96t	€-0.0146t - €-2.96t	u=0.882 (£-0.0146t -2.96t)
0.0	0.0000	0.000	1.000	1.000	0.000	0.000
0.1	0.0015	0.296	0.999	0.745	0.254	0.223
0.2	0.0029	0.592	0.998	0.552	0.446	0.394
0.3	0.0044	0.888	0.996	0.411	0.585	0.516
0.4	0.0058	1.184	0.995	0.307	0.688	0.607
0.5	0.0073	1.480	0.993	0.228	0.765	0.675
0.6	0.0088	1.776	0.992	0.170	0.882	0.726
0.7	0.0102	2.072	0.990	0.127	0.864	0.763
0.8	0.0117	2.368	0.989	0.094	0.895	0.790
0.9	0.0131	2.664	0.988	0.071	0.917	0.808
1.0	0.0146	2.960	0.986	0.052	0.934	0.825
1.2	0.0175	3.550	0.984	0.029	0.955	0.832
1.4	0.0204	4.150	0.979	0.016	0.963	0.850
1.6	0.0234	4.740	0.977	0.009	0.968	0.853
1.8	0.0263	5.330	0.975	0.005	0.970	0.856
2.0	0.292	5.920	0.970	0.003	0.963	0.850
3.0	0.0438	8.880	0.957	0.0003	0.957	0.843
4.0	0.0584	11.840	0.942	New Stole	0.942	0.832
5.0	0.0730	14.800	0.930		0.930	0.823
6.0	0.0876	17.760	0.917		0.917	0.808
7.0	0.1022	20.720	0.903		0.903	0.797
8.0	0.1168	23.680	0.888	_	0.888	0.783
9.0	0.1314	26.640	0.877	_	0.877	0.773
10.0	0.1460	29.600	0.865		0.865	0.763
15.0	0.2190	44.400	0.802		0.802	0.718
20.0	0.2920	59.200	0.749	_	0.749	0.660
25.0	0.3750	74.000	0.688		0.688	0.607
30.0	0:4380	. 88.800	. 0.645	_	0:645	0.569
35.0	0.5100	103.600	0.600		0.600	0.530
40.0	0:5840	118.400	0.558		0.558	0.459
45.0	0.6570	133.200	0.520	_	0.520	0.423
50.0	0.7300	148.000	0.479		0.479	0.394
55.0	0.8030	162,800	0.446		0.446	0.368

1.0

Fig. 5-3 Plotted front and tail of wave equation $u=0.882/\epsilon^{-0.0464}$ representing a standard unity-amplitude \$50 wave; $U_0=1.0$.

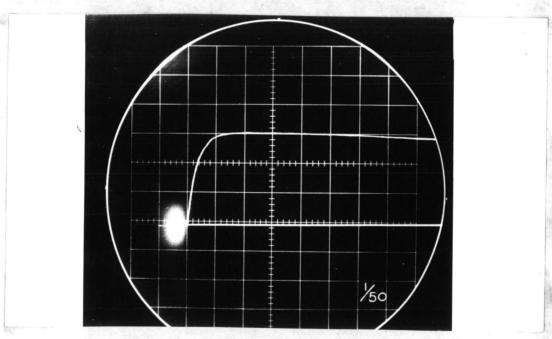

Experimental Data of 1/50 Wave

Measurements

D-C Charging voltage

Microammeter 4 x 5 KV (4 multi-stages)

Impulse voltage

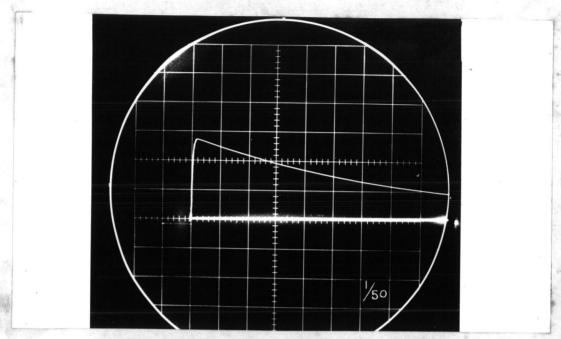


Impulse voltmeter: multiplying factor 4

C.R.O. scales X = 1, 10 μ S/Div.

Y = 10 V / Div.

Experimental Wave Shapes

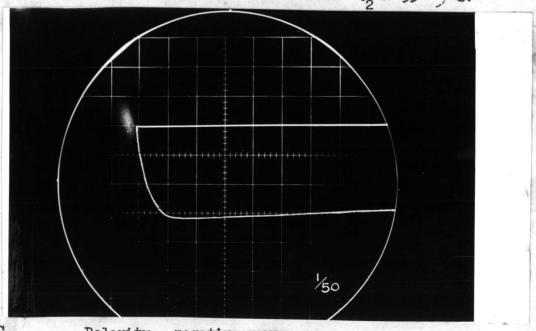


Polarity - positive wave

A. Scales X = 1 MS/Div.

Y = 10 V / Div.

Duration of wave front t₁ = 1.0 MS

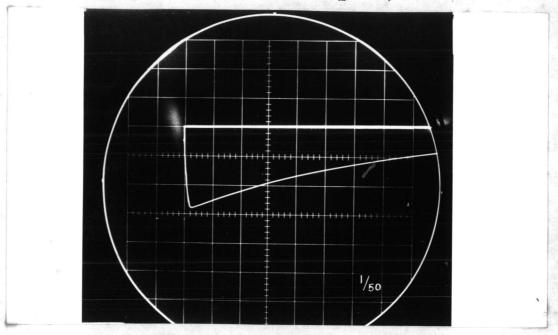


Polarity - positive wave

scales X = 10 us / Div.

Y = 10 V / Div.

Time to half value of wave-tail $t_2 = 53$ μ s.


C. Polarity - negative wave

Scales X = 1 us/Div.

C.

Y = 10 V / Div.

Duration of wave-front $t_1 = 1.2 \mu S$.

Polarity - negative wave

D. Scales X = 10 \u03bas / Div.

Y = 10 V / Div.

Time to half-value of wave tail $t_2 = 53 \mu S$.

Fig. 5-4 Experimental wave shapes of the calculated impulse circuit of 1/50 wave $\left(u = 0.882 \text{ U}_{0}((-0.0146\text{t}_{-}(-2.96\text{t})))\right)$, showing the front and tail of waves for both positive and negative polarities.

Efficiency

Total DC charging voltage = 4 x 5 KV.

impulse voltage = $4 \times 95.5 \times 30 \text{ V}$ = 11.25 KV.

$$\gamma = \frac{11.25}{20} = 56.25 \%$$

Calculated and Experimental Data of 1.5/40 wave Calculated Impulse Circuit

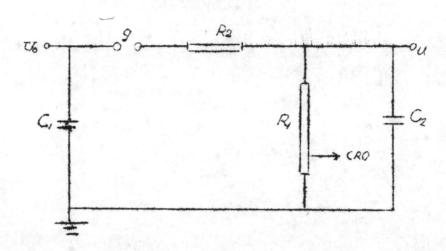


Fig. 5-5 Impulse circuit for 1.5/40 wave

In figure 5-5,

C₇ = impulse generator capacitance

R₁ = discharging resistance

R₂ = series resistance

C₂ = load capacitance

g = spark-gaps

U = DC charging voltage

u = impulse voltage

Calculated Data of 1.5/40 wave

Referring to graphical method in Chapter II

$$t_2 = 40 \mu s$$
 $\frac{t_1}{t_2} = 0.0375$

$$\theta_{2} = 0.74$$

$$\theta_{1} = \frac{\theta_{2}}{t_{2}} = 0.0185 \text{ Ms}^{-1}$$

$$p_{2} = \frac{\theta_{1}}{t_{1}} = 1.87 \text{ Ms}^{-1}$$

$$p_{3} = 75\%$$

$$\frac{c_{1}}{c_{2}} = 8$$

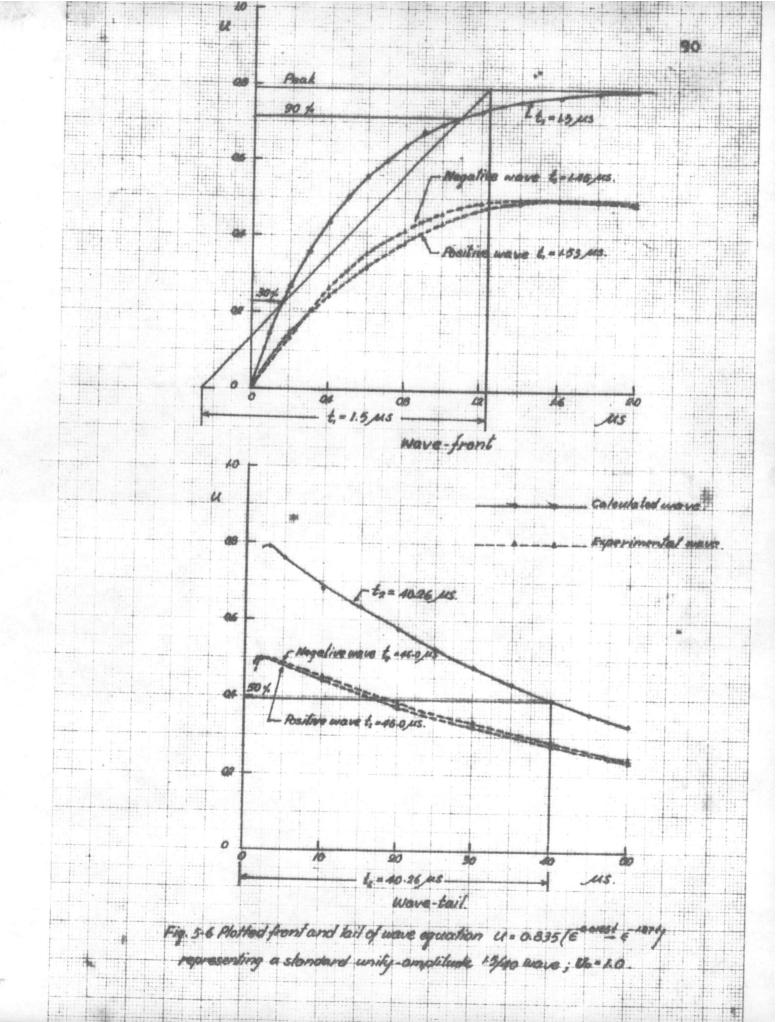
$$c_{1} = 0.025 \text{ M.F}$$

$$c_{2} = 3000 \text{ pF}$$

$$R_{2} = \frac{1}{c_{2}} \sqrt{p_{1}p_{2}} = 216 \text{ mg}$$

$$R_{1} = \frac{c_{1}}{c_{2}} R_{2} = 1800 \text{ mg}$$

$$u = \frac{u}{c_{2}R_{2}} \frac{1}{p_{2}-p_{1}} \left(e^{-p_{1}t} - e^{-p_{2}t} \right)$$


$$= 0.835 \text{ U}_{0} \left(e^{-0.0185t} - e^{-1.87t} \right)$$

The wave shape of the impulse voltage $u = 0.835 U_0 (t^{-0.0185t} - (^{-1.87t}))$ is plotted to scale in the graph-paper by using the calculated values in table 5.

Table 6 . Calculated values for plotting equation

$$u = 0.835 (\in -0.0185t - \in -1.87t)$$

(1)	(2)	(3)	(4)	, (5)	(6)=(4)-(5)	u=0.835(6)
t us	0.0185 t	1.87t	-0.0185t	€ ^{-1,87t}	-(-0.0185t -(-1.87t	u = 0.835 (-0.0185t -(-1.87t)
0.0	0.0000	0.000	1.000	1.000	0.000	0.000
0.1	0:0019	0.187	0.999	0.830	0.169	0.141
0.2	0:0037	0.374	0.997	0.688	0.309	0.258
0.3	0.0055	0.561	0.995	0.570	0.425	0.355
0.4	0.0074	0.748	0.993	0.474	0.519	0.433
0.5	0.0093	0.935	0.992	0.392	0.600	0.500
0.6	0.0111	1.122	0.990	0.326	0.664	0.555
0.7	0.0130	1.309	0.989	0.270	0.719	0.599
0.8	0.0148	1.496	0.987	0.224	0.763	0.638
0.9	0.0167	1.783	0.985	0.168	0.817	0.681
1.0	0:0185	1.870	0.983	0.154	0.829	0.692
1.2	0.0222	2.244	0.987	0.107	0.871	0.728
1.4	0.0259	2.620	0.976	0.074	0.902	0.754
1.6	0.0296	2.990	0.970	0.050	0.920	0.768
1.8	0.0333	3.370	0.967	0.031	0.936	0.780
2.0	0.0370	3.740	0.964	0.024	0.940	0.785
3.0	0.0550	5.610	0.950	0:004	0.946	0.789
4.0	0:0740	7.480	0.932	0.001	0.931	0.778
5.0	0.0925	9.350	0.911	0.0001	0:911	0.761
6.0	0:1110	11.220	0.897	Nog lig Chde	0.897	0.748
7.0	0.1295	13.090	0.880	*	0.880	0.734
8.0	0.1480	14.960	0.863		0.863	0.721
9.0	0.1665	17.830	0.847		0.847	0.705
10.0	0.1850	18.700	0.812		0.812	0.678
15.0	0,2775	28:050	0.758		0.758	0.632
20.0	0.3700	37:400	0.690		0.690	0.577
25.0	0.4625	46.750	0.629		0,629	0.528
30.0	0.5550	56:100	0.575	<u>-</u>	0.575	0.480
35.0	0.6475	65.450	0.523	-	0.523	0.437
40.0	0.7400	74.800	0.476		0.476	0.397
45.0	0.8325	84:150	0.434		0.434	0.362
50.0	0.9250	93.500	0.397		0.397	0.332

Experimental Data of 1.5/40 wave

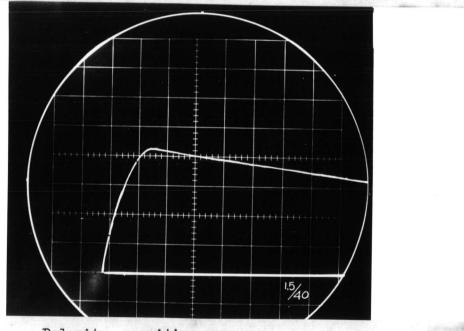
Measurements

DC charging voltage

microammeter 4 x 8 KV (4-multi-stages)

A STANDARD STANDARD

Impulse voltage

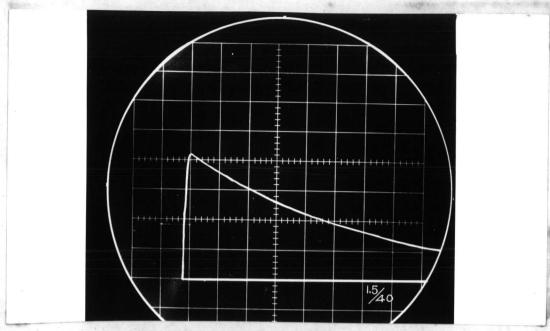

A.

resistance potential divider: dividing ratio 95.5 (positive-negative waves) impulse voltmeter: multiplying factor 4

C.R.O. scales: X = 1, 10 > S / Div.

Y = 10 V/Div.

Experimental wave shapes

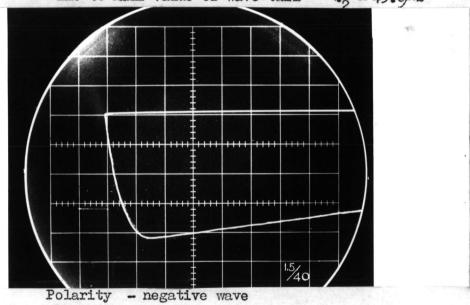


Polarity - positive wave

scales X = 1 MS/Div.

Y = 10 V/Div.

Duration of wave front $t_1 = 1.53 \mu S.$

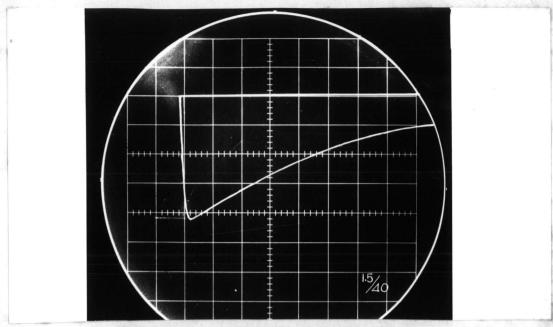


Polarity - positive wave

Scales X = 10 US/Div. B.

Y = 10 V / Div.

Time to half value of wave tail $t_2 = 45.0 \mu S$



C.

scales X = 1 MS/Div.

Y = 10 V / Div.

Duration of wave front t₁ = 1.45 MS

Folarity - negative wave

Scales $X = 10 \mu S / Div.$ Y = 10 V / Div.

Time to half value of wave tail t2 =46.0 \(\mu S. \)

Fig. 5-7 Experimental wave shapes of the calculated impulse circuit of 1.5/40 wave u = 0.835 U₀ (-0.0185t -1.87t) showing the front and tail of waves for both positive and negative polarities.

Efficien**c**y

Total DC charging voltage = 4 x 8 KV.

Average experimental impulse voltage for

Positive wave = $4 \times 95.5 \times 42 \text{ V}$ = 16 KV

Negative wave = $4 \times 95.5 \times 42 \text{ V}$ = 16 KV

Therefore

D.

Mositive wave = 50.0 %

Mositive wave = 50.0 %

Calculated and Experimental Data of 1/5 wave Calculated Impulse Circuit

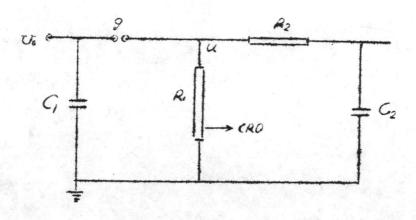


Fig. 5-8 Impulse circuit for 1/5 wave.

In figure 5-8,

C₁ = impulse generator capacitance

R₁ = discharging resistance

R₂ = series resistance

C₂ = load capacitance

g = spark-gaps

U = DC charging voltage

u = impulse voltage

Calculated Data of 1/5 wave

Referring to graphical method in Chapter II

$$\frac{t_1}{t_2} = 0.2$$

$$A\theta_1 = 1.78$$

$$\theta_2 = 1.2$$

$$p_1 = \frac{\theta_2}{t_2} = 0.24 \text{ Ms}^{-1}$$

$$p_2 = \frac{A\theta_1}{t_1} = 1.78 \text{ Ms}^{-1}$$

$$= 72 \%$$

$$\frac{C_1}{C_2} > 10^2$$

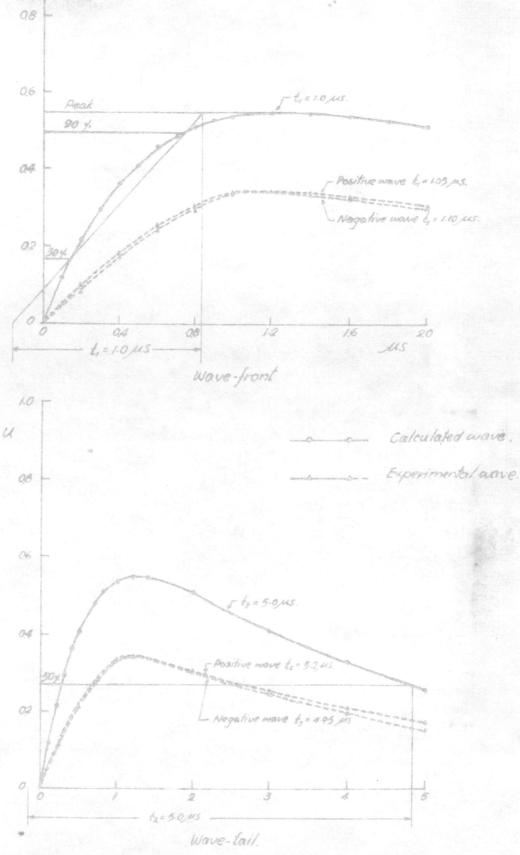
$$C_1 = 0.025 \text{ MF}$$

$$C_2 = 200 \text{ pF}$$

$$R_1 = \frac{1}{C_1 p_1} = 167 \text{ A}$$

$$R_2 = \frac{1}{C_2 p_2} = 2800 \text{ A}$$

$$u = \frac{U}{C_2 R_2} \frac{1}{p_2 - p_1} \left(e^{-p_1 t} - e^{-p_2 t} \right)$$


$$= 0.865 \text{ U}_0 \left(e^{-0.24t} - e^{1.78t} \right)$$

The wave shape of the impulse voltage $u=0.865~U_0~(e^{-0.24t}-e^{-1.78t})$ is plotted to scale in the graph-paper by using the calculated values in table 7.

Table 7 . Calculated values for plotting equation

$$u = 0.865 (-0.24t - -1.78t)$$

(1)	(2)	(3)	(4)	(5)	(6)=(4)-(5)	u=0.865 (6)
us	0.24t	1.78t	←-0•24t	€-1.78t	←-0.24t -←-1.78t	$u = 0.865$ ($e^{-0.24t} - e^{-1.78}$
0.0	0,000	0.000	1.000	1,000	0.000	0.000
0.1	0.024	0.178	0.976	0.838	0.138	0.120
0.2	0.048	0:356	0.953	0.700	0.253	0.218
0.3	0.072	0.534	0.931	0.587	0.344	0.297
0.4	0:096	0.712	0.909	0.489	0.420	0.364
0.5	0.120	0.890	0.887	0.418	0.469	0.406
0.6	0:144	1:068	0:875	0.344	0.531	0:460
0.7	0.168	1.246	0.844	0.288	0.556	0.480
0.8	0.192	1.424	0.828	0.241	0.587	0:508
0.9	0.216	1.602	0.806	0.200	0.606	0.524
1.0	0:240	1.780	0.788	0.170	0.618	0.533
1.2	0,288	2:136	0.750	0.119	0.631	0.547
1.4	0.336	2.492	0.714	0.083	0.631	0.547
1.6	0.384	2.850	0.680	0.058	0.622	0.539
1.8	0.432	3.200	0.650	0.040	0.610	0.528
2.0	0.480	3.560	0.619	0.029	0.590	0.510
3.0	0.720	5.340	0.476	0.005	0.471	0.407
4.0	0.960	7.120	0.383	0.001	0.382	0.330
5.0	1,200	8.900	0.300	0.0013	0.300	0.259
6.0	1.440	10,680	0.238	0.0002	0.237	0.205
7.0	1.680	12.460	0.187	Nogicalble		0.162
8.0	1.920	14.240	0.147		0.147	0.127
9.0	2:160	16:020	0.115		02115	0.099
10.0	2.400	17.800	0.091		0.091	0.079

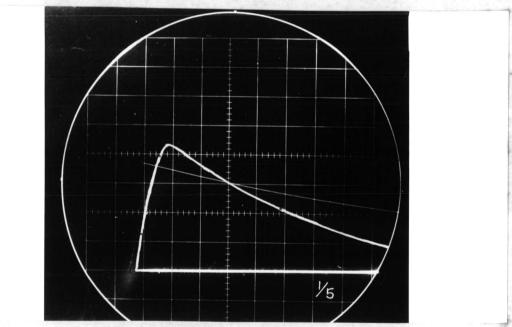
U

Fig. 5-9 Plotting front and tail of wave equation $U = 0.865 / \epsilon^{-0.264} = \epsilon^{1.784}$ representing a standard unity-amplitude 1/5 wave; U=10.

Experimental Data of 1/5 wave Measurements

DC charging voltage

microammeter: 4 x 6 KV (4-multi-stages)

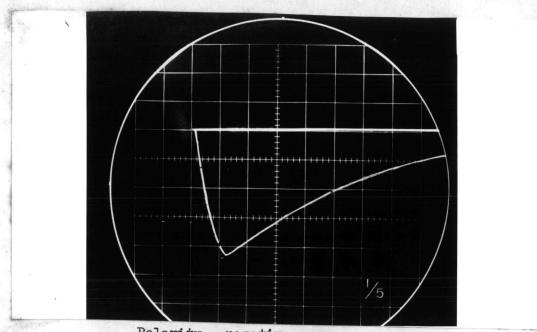

Impulse voltage

resistance potential divider: dividing ratio 95.5 (positive-negative waves impulse voltmeter: multiplying factor 2.

C.R.O. scales X = 1 MS / Div.

Y = 10 V / Div.

Experimental wave-shapes


Polarity - positive wave

A. scales X = 1 AS / Div.

Y = 10 V / Div.

Duration of wave front $t_1 = 1.05 \text{ ps.}$

Time to half value of wave tail $t_2 = 5.2 \mu S$.

Polarity - negative wave

B.

Scales X = 1 MS/Div.

Y = 10 V/Div.

Duration of wave front $t_1 = 1.1 MS$.

Time to half value of wave tail $t_2 = 4.95 \, \text{M} \, \text{S}.$

Fig. 5-10 Experimental Wave-shapes of the calculated impulse circuit of 1/5 wave $u=0.865~U_{0}(\epsilon^{-0.24t}-\epsilon^{-1.78t})$, both positive and negative waves.

Efficiency

Total DC charging voltage 4 x 6 KV = 24 KV

Experimental impulse voltage for

Positive wave = $2 \times 95.5 \times 43 \text{ V} = 8.2 \text{ KV}$

Negative wave = $2 \times 95.5 \times 43 \text{ V} = 8.2 \text{ KV}$

Therefore

M positive wave = 34.1 %

negative wave = 34.1 %

Chopped Impulse Voltage

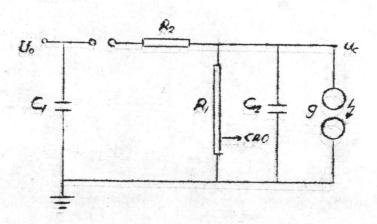


Fig. 5-11 Chopped impulse voltage testing circuit

C₁ = impulse generator capacitance

R₁ = discharging resistance

R₂ = series resistance

Co = load capacitance

g = sphere gaps

U = charging voltage

ue = chopped impulse voltage

t = Time to chopping

Measurement

Resistance potential divider:

dividing ratio = 95.5

Impulse voltmeter: Multiplying factor = 4

Scales
$$X = 1 \text{ / S/Div.}$$

 $Y = 10 \text{ V / Div.}$

Experimental Data

$$C_2 = 2000 pF$$

$$u_c = 4 \times 95.5 \times 38 \text{ V}$$

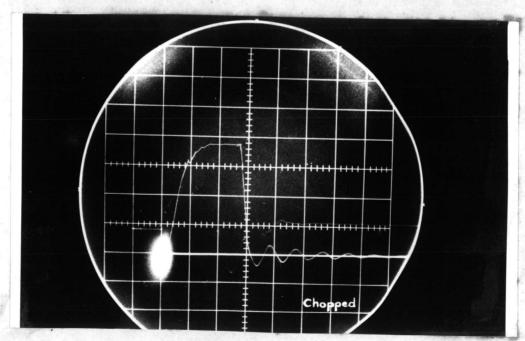


Fig. 5-12 Chopped Impulse Voltage

Voltage Efficiency of the Impulse Generator

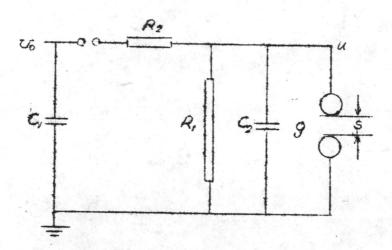


Fig. 5-13 Testing circuit used to find the voltage efficiency

C₁ = Impulse generator capacitance

R₁ = discharging resistance

R = series resistance

C₂ = load capacitance

g = measuring sphere gaps. 25 cm. diameter

U = charging voltage

u = impulse voltage at standard condition

u = impulse voltage

Kd = air density correction factor

7 = voltage efficiency

Experimental Data

$$C_2 = 2000 pF$$

p = 767.2 mm.Hg.
t = 33.8°C
H = 68%
Kd =
$$\frac{0.386 \text{ p}}{273 + \text{t}}$$

= 0.965
u = $\frac{\text{un}}{\text{Kd}}$ = 32.8 KV
 $\gamma = \frac{\text{uo}}{\text{Uo}}$ = 58.6 %

Effect of C1/C2 Ratio on Wave-front

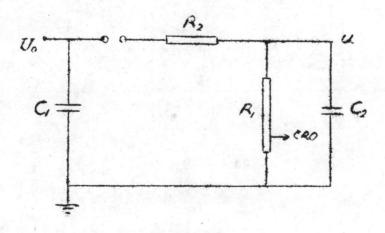


Fig. 5-14 Impulse testing circuit for various load capacitances

 C_{η} = impulse generator capacitance

R₇ = discharging resistance

R₂ series resistance

C = load capacitance

 $\frac{c_1}{c_2}$ = ratio of generator to load capacitance

U = charging voltage

u = impulse voltage

Measurement

Resistance potential divider : dividing ratio = 95.5

Impulse voltmeter: Multiplying factor = 4

C.R.O. Scales X = 1 MS / Div.

Y = 10 V / Div.

Experiment Data

 $C_2 = 2000 \text{ pF} \text{ and } 4000 \text{ pF}$

$$U_0 = 27.32 \text{ KV}$$

$$u_1 = 4 \times 95.5 \times 35 V = 13.4 \text{ KV}$$

$$u_2 = 4 \times 95.5 \times 32 \text{ V} = 12.2 \text{ KV}$$

$$\frac{C_1}{C_2} = 12.5, t_1 = 1.2 \text{ A.S.}$$

$$\frac{c_1}{c_2} = 6.25$$
; $t_2 = 2.0$ MS.

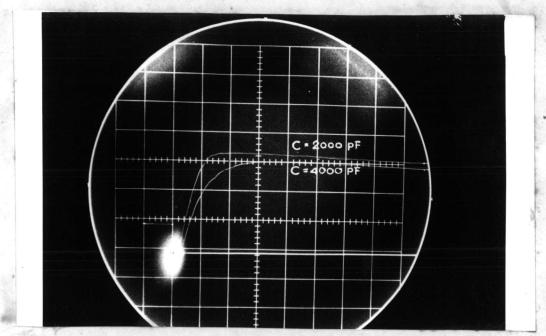


Fig. 5-15 Wave-shapes showing the effect of ${\rm C_1/C_2}$ ratio on wave-front

Effect of Included Inductance on Wave-front

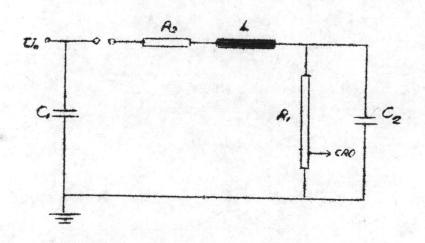


Fig. 5- 16 Impulse testing circuit with included inductance

C₁ = impulse generator capacitance

R = discharging resistance

R₂ = series resistance

Co = load capacitance

included inductance

U = charging voltage

u = impulse voltage

t, a duration of wave-front

Measurement

Resistance potential divider : dividing ratio 95.5

Impulse voltmeter: multiply factor = 4

C.R.O. Scales $X = 1 \mu S/Div$.

Y = 10 V / Div.

Experimental Data

C7 = 0.025 MF

 $C_2 = 2000 \text{ pF}$

 $R_7 = 2400 -$

R₂ = 216 ---

 $U_{0} = 27.32 \text{ KV}$

 $u = 4 \times 95.5 \times 30 \text{ V}$

= 11.5 KV (average)

 $L = 5.12 \mu H; t_1 = 1.3 \mu S$

 $L = 7.42 \mu H; t_1 = 1.5 \mu S$

 $L = 12.0 \mu H; t_1 = 1.85 \mu S$

 $L = 15.58 \mu H$; $t_1 = 2.0 \mu S$

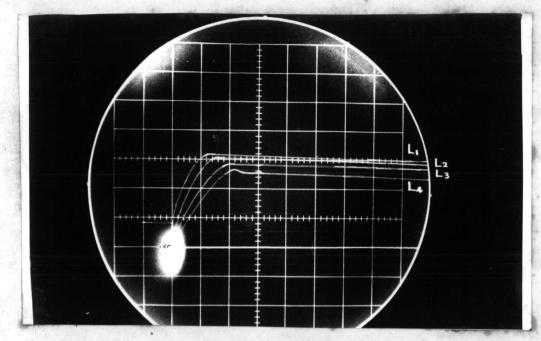


Fig. 5- 17 Wave-shapes showing the effect of included inductance on wave-front

Discussions and Conclusions

The discussions and conclusions can be stated as follow :-

1. The parameters R and C of the impulse circuits are obtained by the graphical method. The calculated wave shapes, which are compared to the standard wave shapes, are given below.

	Standard	waves	Calculate	ed waves	Errors		
Figures	t ₁ (MS)	t ₂ (MS)	$t_1(\mu s)$	t ₂ (MS)	t ₁ (%)	t ₂ (%)	
5-3	1.0	50.0	1.02	46.8	2.0 .	6.4	
5-6	1.5	40.0	1.50	40.26	0	0.65	
5-9	1.0	5.0	1.0	5.0	0	0	

But a tolerance of not more than \pm 30 % on t_1 and \pm 20% on t_2 is allowed, so that, the graphical method is satisfied in this thesis.

2. In figures 5-4, 5-7 and 5-10, the experimental wave shapes are obtained without any oscillation. The errors, compared to the standard wave shapes, are given as:

	Standard	Ex	cperime	ntal v	waves	Errors						
Figures	t _l (us)	t ₂ (jus)		.tive	Negat	ive	Posit	ive	Nega	tive		
e gr			t ₁ (us)	t ₂ (us)	t_(16:3)	t ₂ (us)	t ₁ (%)	t ₂ (%)	t ₁ (%) t ₂ (%			
5-4	1.0	50.0	1.0	53.0	1.2	53.0	0	6.0	20.0	6.0		
5-7	1.5	40.0	1.53	45.0	1.45	46.0	2.0	12.5	3.3	15.0		
5-10	1.0	5.0	1.05	5.2	1.1	4.95	5.0	4.0	10.0	1.0		

The errors are within the allowed tolerance.

3. The comparisons of the experimental wave shapes (dotted lines) to the calculated wave shapes (full lines) are also shown in figures 5-3, 5-6 and 5-9. The differences of the times t₁, t₂ and of the voltage efficiencies between them

are well shown in table below:-

	Calcul	ated wa	ves	Experimental waves						
Figures	+ (1.9)	+ (49)	n (%)	Pos	Positive			Negati ve		
	12,243)	t ₂ (us)	7 (70)	ta (us)	t2 (us)	7(%)	t ₂ (us)	t2(45)	7 (%)	
5-3, 4	1.02	46.8	85.6	1.0	53.0	56.25	1.2	53.0	56.25	
5-5, 7	1.50	40.26	78,9	1.53	45.0	50.0	1.45	46.0	50.0	
5-9, 10	1.0	5.0	54.7	1.05	5.2	34.1	1.1	4.95	34.1	

The values of t₁ and t₂ for both positive and negative waves of the experimental data are slightly different from that of the calculated data; because the self inductance and the stray capacitance of the whole impulse circuit effect the wave shapes of the impulse voltages. In addition, the performance of the experiments may result some errors.

- 4. As in 3; the voltage efficiencies obtained by the experimental data are lower than that obtained by the calculated data. Because the voltage efficiencies are limited by the self inductance and the stray capacitance which tend to lower the peak value of the impulse voltages; and they are limited by voltage drops in the high resistors and connecting leads between the various components of the circuits. The high resistors are the series or damping resistor and the resistor divider. Sometimes, the voltage efficiencies may be limited by the attemation of the delay cable.
- 5. The measuring sphere gaps with 25 cm. in diameter is used in recording the output impulse voltage should be avoided in this thesis; since the sparking distance of these gaps is at least 1 cm., and the value of impulse voltage, from Appmendix III; is 31.7 KV. higher than that (23 KV.) of the generator. Therefore the charging voltage of the stage capacitors will be increased to 14 KV. in

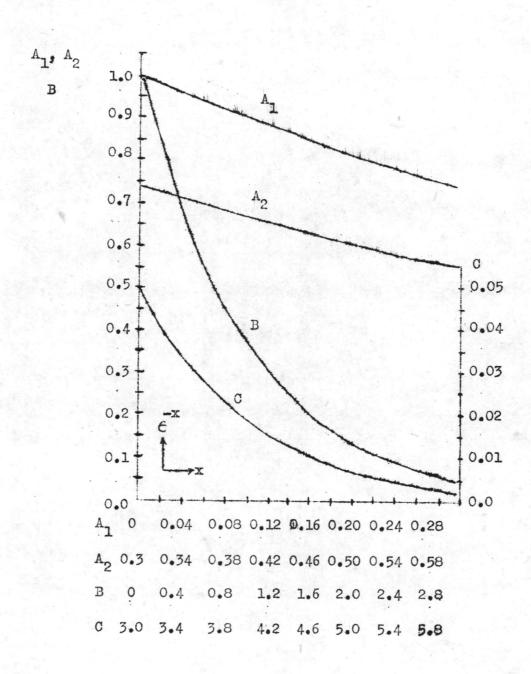
- order to give 50% flashover voltage at the gaps. This 14-KV. charging voltage may damage these stage capacitors. However, the voltage efficiency is obtained to be 58.6%.
- 6. In figure 5-12, the chopped impulse voltage is obtained, by means of the spark gaps. The impulse voltage is chopped on the wave-tail; and the time to chopping is $t_3 = 2.7 \mu S$.
- 7. In figure 5-15, with varying the load capacitance C_2 , 2000 pF and 4000 pF, compares to the generator capacitance C_1 , 0.025/ α F. Both the duration of wave-front (t_1) and the magnetude of the peak value of the impulse voltage (\bar{u}) are slightly varied corresponding to the decreasing ratio of C_1/C_2 . That is, for a constant $U_0 = 27.32$ KV; when the ratio C_1/C_2 is 12.5, $t_1 = 1.2 \mu$ S. and $\bar{u} = 13.4$ KV; but when the ratio C_1/C_2 is reduced to 6.25, $t_1 = 2.0 \mu$ S. and $\bar{u} = 12.2$ KV.
- 8. In figure 5-17, with varying the series inductance L, the durations of the wave-front (t_1) of the impulse voltage have nominal values for slightly different values of L; but the magnetude of the peak value of the impulse voltage (\bar{u}) varies little for the chosen range of L, for $U_0 = 27.32$ KV. constant, \bar{u} is 11.5 KV average. With L varies from 5.12, 7.42, 12.0 and 15.58 μ H., t_1 varies from 1.3, 1.5, 1.85, and 2.0 μ S. respectively. All the waves are obtained without oscillation. The critical oscillating condition is given by $R_2 \gg \sqrt{\frac{4L}{C}}$, for $R_2 = 216 \Omega$, $C = \frac{C_1 C_2}{C_1 + C_2} = 0.00185 \mu$ F, L $\leq 21.6 \mu$ H.
- 9. In taking oscillagrams, the author uses the 400 ASA film in recording the experimental wave-shapes from the C.R.O., the wave-front is not clear enough in the negative film, and it gets lost in the positive oscillogram. In this case, it is, for the author, better to rely on a hand-drawn reproduction in

- order to obtain the clear oscillogram. In other case, the polaroid film of 3000 ASA is used, but this 3000 ASA poloroid is now absent from the market.
- 10. As a straight forward, the author likes to suggest ones who might study this generator to set the series inductance to a high value, so that the wave will oscillate, and then to vary the series resistance until the oscillation. is damped out. Also ones would vary the discharging resistance and study its effect on the wave-tail of the impulse voltage. In applications, ones should test any insulation by the impulse voltages of this generator in order to study the characteristics of the insulations.

APPENDIX I

A List of Impulse Wave Constants for waves of The General Form

$$u = \frac{U_0}{K} \frac{1}{p_2 - p_1} (e^{-p_1 t} - e^{-p_2 t})$$


P				
$\frac{t_1}{t_2}$ wave	$\angle \theta_1$	θ_{2}	^p ₁	p ₂
<u>0•5</u> 5	2.41	0.87	0.174	4•82
<u>1</u> 5	1.78	1.20	0.240	1.78
<u>1</u> 10	2•41	0.87	0.087	2•41
1 <u>•5</u> 40	2.80	0.74	0.185	1.87
<u>1</u> 50	2.96	0.73	0.0146	2•96

The values of K depend on the circuit parameters R, L, and C of the various impulse testing circuits.

The waves conform to IEC regulations, i.e. the fronts of the waves are 1.67 times the time taken for the voltage to rise from 30 per cent to 90 per cent of the peak values.

APPENDIX II24

Values of e^{-x} for the plotting of Impulse Waves

APPENDIX III²⁴

Breakdown Voltages in KV (peak) of Sphere-gap in air at 20°C and 760 mm of Hg barometric pressure, for <u>Negative</u> impulse

Sphere				Sphe	ere di	ameter	(cm.)					
spacin cm.	g 2	5	6.25	10	12.5	15	25	50	75	100	150	200
0.05	2.8							101		1		
0.10	4.7	1									W. 1	
0.15	6.4										1	
0.20	8.0	8.0										
0.25	9.6	9.6					i i					
0.30	11.2	11:2										
0.40	14.4	14.3	14.2									
0.50	17.4	17.4	17.2	16.8	16.8	16.8						
0.50	20.4	20.4	20.2	19:9	19.9	19.9						
0.70	23.2	23.4	23.2	23.0	23.0	23.0						
0.80	25.8	26.3	26.2	26.0	26.0	26.0						
0.90	28.3	29.2	29.1	28.9	28:9	28.9						
1.00	30.7	32:0	31.9	31.7	31.7	31.7	31.7		1			
	(35.1)		37.5	37.4	37.4	37.4	37.4					
1.40	(38.5)	42.9	42.9	42.9	42.9	42.9	43.9					
1.50	(40.0)	45.5	45.5	45.5	45.5	45.5	45.5					
1.60		48:1	48.1	48.1	48:1	48.1	48:1					
1.80		53.0	53.5	53.5	53.5	53.5	53.5					
2.00		57.5	58.5	59:0	59.0	59.0	59.0	59.0	59.0			
2.20	10.	61.5	63.0	64.5	64.5	64.5	64.5	64.5	64.5		1.0	
2.40		65.5	67.5	69.5	70:0	70.0	70.0	70.0	70.0			
2.60		(69.0)		74.5	75.0	75.5	75.5	75.5	75.5			. 49
2.80		(72.5)	A STATE OF THE REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF TH	79.5	80.0	80.5	81.0	81:0	81.0			
3.00			79.5	The second second second	85.0	85.5	86.0	86.0	86.0	86.0		
3.50		(82.5)	(87.5)	95.0	97.0	98.0	99.0	99.0	99.0	99.0		
4.00		(88.5)	(95.0)	105	108	1.10	112	112	112	112		
4.50			(101)	115	119	122	125	125	125	125		
5.00	- }		(107)	123	129	133	137	138		+138	138	
5.50				(131)	138	143	149	151	151	151	151	
6.00				(138)	146	152	161	164	164	164	164	

Note: The figures in brackets, which are for spacings of more than 0.5 D, are of doubtful accuracy.

APPENDIX III

Breakdown Voltages in KV (peak) of Sphere-gap in air at 20°C and 760 mm of Hg barometric pressure, for Positive impulse voltages; one sphere earthed

Spher gap	е			Sphe	re dia	meter	(cm.)					
spac-	2	5	6.25	10	12.5	15	25	50	75	100	150	200
0.05				h de si se est				<u>† </u>		100		1
0.10	100						- NO. 1					
.15												
20												
.25	/											
.30	11.2	11.2										3.6
•40	14.4	14.3	14.2									
•50	17.4	17.4	17.2	16.8	16.8	16.8						
.60	20.4	20.4	20.2	19.9	19.9	19.9						
.70	23.2	23.4	23.2	23.0	23.0	23.0						
.80	25.8	26.3	26.2	26.0	26.0	26.0						1
.90	28.3	29.2	29.1	28.9	28.9	28.9		1.241				
.00	30.7	32.0	31.9	31.7	31.7	31.7	31.7			1		
.20	(35.1)		37.6	37.4	37.4	37.4	37.4					AL.
•40	(38.5)	43.3	43.2	42.9	42.9	42.9	42.9					
•50	(40.0)	46.2	45.9	45.5	45.5	45.5	45.5					
. 60		49.0	48.6	48.1	48.1	48.1	48.1					
.80		54.5	54.0	53.5	53.5	53.5	53.5					
.00		59.5	59.0	59.0	59.0	59.0	59.0	59.0	59.0			
.20		64.0	64.0	64.5	64.5	64.5	64.5	64.5	64.5			
•40		69.0	59.0	70.0	70.0	70.0	70.0	70.0	70.0			
.60		(73.0)	73.5	75.5	75.5	75.5	75.5	75.5	75.5			
.80		(77.0)	78:0	80.5	80.5	80.5	81.0	81.0	81.0			
.00		(81.0)	82:0	85.5	85.5	85.5	86.0	86.0	86.0	86.0		
•50			(91.5)	97.5	98.0	98.5	99.0	99.0	99.0	99.0		
.00		(97.5)	(101)	109	110	111	112	112	112	112		
.50			(108)	120	122	124	125	125	125	125		100
.00			(115)	130	134	136	138	138	138	138	138	
.50				(139)		147	151	151	151	151	151	
.00			1-	(148)	155	158	163	164	164	164	164	
.50				(156)	(164)	168	175	177	177	177	177	
.00				(163)	(173)	178	187	189	190	190	190	
•50				(170)			199	202	203	203	203	
•00					(189)	(196)		211	214	215	215	
.00					(203)	(212)	233	239	240	241	241	

Note: The figures in brackets, which are for spacings of more than 0.5 D, are of doubtful accuracy.

APPENDIX IV

Matching of the Delay Cable

It is essential to terminated a delay cable with the right value of resistance in order to suppress successive reflection. The matching pesistance must be equal to the surge impedance of the cable.

The surge impedance Z may be regarded as being equal to $\sqrt{L/C}$. Where the inductance and capacitance per cm. length for concentric cylinders are

$$C = \mathbb{K}\left[\left(2 \ln (R_2/R_1)\right) 9 \times 10^{11}\right] \text{ farads/cm.}$$
and
$$1 = \left\{2 \ln (R_2/R_1) + \frac{1}{2}\right\} \times 10^{-9} \text{ henrys/cm.}$$

where K is the permittivity of the medium between the cylinders,

R₂ is the internal diameter of the outer cylinder R₁ is the external diameter of the inner cylinder.

Then the surge impedance which is independent of length can be writter

$$Z = \sqrt{1/6}$$

$$= \sqrt{2 \ln (R_2/R_1)^2 \times 9 \times 10^{-2}/K}$$

$$= \frac{60 \ln (R_2/R_1)}{V}$$

Note that, the 1/2 term in the inductance formula is omitted, and the frequency of impulse waves is high so that they travel along the surfaces of the conductors.

The natural oscillation frequency of the delay cable will be

$$f = 1/2 \% LC$$
 Hz.

where L and C are the total inductance and total capacitance of the delay cable respectively.