CHAPTER IV

THE FUNCTIONAL EQUATION :

£(xy¥) + £(x + y, 2) = £(y, 2) + £(x, ¥ + 2)

ON TOPOLOGICAL GROUP

In this chapter we will discuss the functional equation :

(A) £(x, y) + 2(x + y, ¥ /¥ Elyy el REf(x, ¥ +2)
where s o W ¢ " O ¢ SR R‘k) is a symmetric continuous on an abelian
topological group G X G into ﬁék) s @ Euclidean k - space,

Our purpose is to give conditions which guarantee the

existence of a continuous funetion g + G —~>R‘k) such that
(B) f(x, ¥y) = gx)+ g(y) - alx + y)
for-all %y ¥y i &4
As in chapter IITI we shall assume that
f(o; ) = Q ',

(k)

where ¢ and 0 are the identities of G and R respectively,

Definition 4,1 Let n be a positive integer larger than 1.A

group (G, +) is said to be an n - divisible group, if for all

/ /
Y in G there exists y in G such that ny =y e
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Definition 4,2 Let G be an n - divisible topological group, ¥ be

§
an ordinal, TIf there exists a ¥ - sequence 1x_"§( « < %) in G such

that
(1) nxX . 4 = X, for all «< ¥ ,
(2) the union of all subgroups Sd ( « <« ¥ ) which each
a : e
O is defined by s
A < 5 j 2 /~:/\;‘>J/
) = i x.ﬁ/ Ee e}, \i\ "
";./:‘ ,\7 ;

is dense in G, then we say that G is (¥, n) divisible,

Lemma 4.3 Let H be a subgroup of an abelian topologisal group

(Gy +), Let f : G x G— R bo symmetric and continuous and satisfy
(A) £(x, ¥) + £(x + y£8B) = f(y, z) + £f(x, ¥ + 2)
for all x, y, 2, in Ge Tet g : H — R be such that

(B) f(x, ¥) g(x) + g(y) - g(x + ¥)

for all % y, ih He

For a given £ > O and a compact subset K of H such that
*® *
there oxists a neighborhood N of e such that N ¢ K, there
exists a neighborhood N of ¢ such that for all x, y, in H with

y -x €N and x, ¥y, in K, we have

g(y) - g‘(x)i < €

Proof, et L « lim sup ,g(x)l as x— ¢ in H,

It follows from (B) that for any x €« H we have

$ix, %) = g(x) + g(x) - g(2x).
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This implies
2g(x) = gé2x) + £(x, x).

Therefore,

2 lim sup 'g(x)'é lim sup ’g(2x), + lim sup !f(x,x)i

X—> € X-—>e X—> 06
Hence 2L &« L + 1lim sup f(x,x) .
X—>e
Since f is continuous and f(e,e) = O, hence
A ’ | . ] | |
lim sup |f(x, x)| = lim Rl X x)’,
X-s@€ X —e :
= 0=
Therefore 2L /70

From the definition of 1 , we see that [ ) 0, hence

L = 0, i.e. 1lim sup fg(x)! = 0. Therefore 1lim g(x) = O
X~ 0 X— e
X 'e-H

Choose a neighborhood N1 of e such that

(4a3.1) el < gy

for z £ N,(.

X

Since f is continuous and Kx K is compact, hence f is

uniformly continuous on K x K. Choose a neighborhood N2 of e

such that
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(4e3.2) if(x, Z) - f(xﬁ ZSE < €/a
. /4 V| / /
whenever (xy, 2) - (x, 2) € N2><N2 0 €%, 8) Ix,8)C KEx K &
= *
Let N = Nqﬂ NafiN .

Let x, ¥y @ K be such that y -« x ¢ N .
*
Since Yy ~-x &N Q_Na and y - x € N& K, hence we have

!f(x,y - x) - f(x,e)j < E/a .

Therefore
(ke343) if(x,y - 5 |<5%= H/g
Since Xe y=-X CH and (B) holds on H, hence we have

f(xy, y=-x) = glx) + g(y - x) - g(y) .
Therefore :

lg(x) - E(Y)! & %fo, y - x)f + lgly = 0| .
Since Y= x &N &Ny it follows from (4.3.7) .that

ety - 0l < E/2

Hence

e - e < e s0 + lar-n] < & .
Lemma 4.4 Lot G be an abelian ¢ = compact Hausdorff

topological grdup which has the property ({" N) for some limit
ordinal [, Let H, f and g be as in lemma 4,3. Then g can be
extended tot® continuous on H, the closurc of H, and f and g

satisfy



(B) £(x, y) = 8(x) + g(y) =~ g(x + y)

for B %, ¥, %W

Proof, Let x be in H. Since ¢ has property (I” N), hence there
exists a [ - net {yg%(q(i") in H converging to x, We shall

show that {g(y&.)}{“ <p) 1is cauchy.

Let €>0 be given.a Since G = L

K where each K
N= a .n

o Nee

is a compact neighborhood of the identity e of G, hence x & Kn

for some ny Since }:y,&?;(x< my converges to x, hence there exists
an ordinal B, < 7 such that yﬁ € K, for all B> FO
From lemma 4,3, there exists a neighborhood N of ¢ such

that

g(x) - g(y) a——

for all x, y, in K and x-y € N.
5
By theorem 2.,5.3 the convergent net ?’_\1%}(&(;—) is

!
cauchy . Hence there exists P such that yFa - y,3 € N for all

1

/
PP, 2 p. It follows that

,3(Y°¢) - g(yp) £ R

for all oc.)P » max (Foaﬁl\) .
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Therefore {Q(YO{)](&C ) is cauchy. sSince R is complete,
hence ig(yﬂ)}(,\(;’) is convergent, Therefore lim (g(yd))oé.\’ ")

exists,
‘To show that lim (g(yu),,'(< r) dis independent of the choice
of y 4 let {yd.hf(o((p‘) and {y;}(dq,) be I'= nets which converge

to x. We must show that,

3 .-’ - I
lim (g(y, )y t< ) = 1lim (g(xd), <)
Define
Z =
G)zl"’ n2 ywx%’+ n 3
3
/
Z
®?+n2+1 yw'§+n,

where 3 and n are ordinals and n < o .
By lemma 2.5.k4, %za&j(vm py is cauchy..

Therefore { g’(zd )}(o(< ™) is cauchy.

5

"
Since R is complete, hence (g‘(z% )j'<°<<p) is convergent,

Therefore 1lim (g(z ™) s (< ") oxists,

s X 1 ¢ /
Since %g(yd; )§(0<<P) and [g(y_ )}(.0(41") are subnets of

%g(z,&)?}(xct’) y hence, by theorem 2,5,1 we have

/ .
lim (g(y )y <) = 1lim (8ly. ), < i)

We define g(x) as the limit of 8(y. )e Hence by theorem 2,7.1
we have g is continuous relative to H .,

Set Pix, 7)1 fx, y) - g(x) - g(y) + g(x + y)
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for -all x4y ¥y in H, F is continuous on H x ﬁ; and by the
assumption T is zero on H x H, hence F is identically zero, This

proves that

£(x, y) = g(x) + g(y) - g(x + y)

for: all Xe, Ty A0 H o

Lemma 4,5 let G be an abelian n - divisible torsion free
* i
g - compact Hausdorff topological group which has the property

(FN) for some limit ordinal ' , ILet f : G x G — R be symmetric

and continuous and salisfy

(A) f(xy y) & £(0X ¥ 34 2) = £y, 28) + £€xy ¥ + )
for all x, y, z, in G, " L¢t/S BeIx subgroup of G such that there
exists a function g : § — R satisfying

(B) f(xy y)o = g(x) + g(y) - g(x + y)

for all x, y, in 8. Lot t be in G such that nt ¢ S, Then there

exists a continuous extension § of g such that f and Z satisfy

(B) on s5{t], the closure of S[t].

P
Proof. Let g be defined as in case II of lemma 3.5. Then

pes A b o &
g is an extension of g such that f and g satisfy (B) on S LE] e

By lemma 4,4, g can be oxtended to g which is continuous

on 8 [t] and g and f satisfy (B) on.S[t] .

Lemma 4,6 Let G be an n - divisible torsion free topological

group. Then there exists an ordinal ¥ such that G is (¥ , n)

divisible,



Proof. In the case that G = ie} s the ordinal ¥ = 1. 8, =< ? > ie}

Hence G is (1, ¥ ) divisible.

Assume that G ¢ {e} o First we shall show that there

exists an ordinal ¥ and a family of subgroupd isd}wu)

such that if «< B < ¥ , then SO(C S
o((ﬁ

B
be & choice function for G. Define S, = {e} and Yo = ;C(G-So) ¥

Suppose that Sd and ') have been defined for all

———

®X<B and G-US, % g . We shall define SB and yg as follows

ALP
Case 1 B =7 § ¥ for some ordinal § .
£ 3
Define Sg. = <S8 (J 1 yé.} S
*
Since yS & SC sy hence there exists ¥y in G such that
¥
n = °
Bk YS
*
Define 7. = Yy .
. a
Case 2 "B is a limit ordinal.
Define S = U s, y and y, = (G=8_) .
B B B B

We claim that there exists an ordinal number ¥ such that

G-US, = @ . Suppose the contrary, 2.e. for all ¥ ,
¥
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SN FEE o NE
Ay
3 )

Take ¥ = G , where PG is the power set of G. Hence
LR T,
ol L X

(4.6.1) RR LB
ALY

/
If ¥ is finite then by

-
we have ie’ yo, eoey .‘,’x, Oi

/

% &

Hence
/
If ¥ is infinite ‘ca

limit ordinal.

By the definition of

the definition of iﬁx}(d<5”

g S / = U ;5&
"N ol <%’
=550
oL e ¥’
‘
rdinal, then by lemma A-35, ¥ is a
we have

SLS‘(}(#,( vs/\

iyo(} C:: so'\-f-‘) and
Uivadn e Us,
0’\4\5/ ALY
/
Since ¥ is a limit ordinal, hence
L, U S«
AL N AL %
Hence U1 %l e 1 o 1T - P
i dey’ o &%
i 2 ——-—_-Ta-"
Therefore L)1~SA% < U 3“
i / ALX
L <X

By the choice of ¥

and since G is torsion free, it can be
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F /
shown that Yy (AL¥ ) are distenct. Hence X = U,{‘é,,.‘g
ALX
/ bt ot
Therefore . A 8, i
s< s’
{ N
This together with (4.6.1) imply ¥ & G
Hence PG £ G which is a contradiction.

Then there exists an ordinal ¥ and a family isdﬁcau X)

of subgroups of G such that U g, = G .
ALK
% -
% £ B = § + 1 andnx:xg
Let xB = .
ﬁ(G-SB) if B is a limit ordinale.

Observe that x‘3 = y‘3 « By the above construction and since

2 " ¢ {1 i
G is torsion free, we see that ] X3 Cef< X)) is a ¥ =~ sequence

and E xx}(,“}() generates the ¥ « sequence of subgroups
’ ] :
{8, cacy) . Therefore G is ( X = n) divisible.
Theorem 4,7 Let G be an abelian n - divisible torsion free
*
€ - compact Hausdorff topological group which has the property( " N)

for some limit ordinal [, Let f : Gx G—> R be symmetric and

continuous and satisfy
(a) f(x,y) + fx+y,z) = f(y,2z) + £f(x,y+2)

for all x,y,2y in G. Then there exists a continuous function
g : G— R such that

{B) 2(x,¥) = g(x)+g(y) - glx+y)

Tor-all %yy, in G

Proof From lemma 4.6, there exists an ordinal ¥ such that G

is (¥ yn) divisible. For each o< X , we shall define g, on §,
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/

1) It X < x4 then gl’,gd: +

(2) f and each g, satisfy (B) on s i
This will be done by transfinite induction,
Define g, on 5, = fe} by putting

!
e .

g (e)

(o]

Clearly f and g, satisfy (B) on S,

Let P<¥ Dbe any ordinal number sueh that g, have been

defined so that f and g, satisfy (B) on 3 for all o« < B,

ok
Case 1, P = &+ 1 for some ordinal §
Since 88 has been defined on S,y hence by lemma 4,5,
there exists are extension é.s of 8¢ on S.S ( xs} such that f
and g satisfy (B) on SEEEN AN
Put gP = g‘ .
Then gp is defined on SF5 = 5 [xs] and f and g

satisfy (B) on Sg o It canle shown that (1) holds,

Case 2, F is a limit ordinal,

In this case, we put

g LR e
P o((ﬁ
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Clearly (1) holds. ¥From (1), it follows that gp is well~defined

on S. = U5, and f, g satisfy (B) on S_ .
P LR 4 P

R

Hence, for each pL ¥ 4 if g, has been defined on & _ ,

and f and g satisfy (B) on S, for all «<¢ B ¢ then gy

can be defined on S so that f and g[s satisfy (B) on S .

P 3

Therefore g, can be defined on 3 so that f and 8«

satisfy (B) on 5, for alE'd L.
Define & S 7 XL
AL

It follows from (1) that, g is well-defined on S = [} B o s

(2) implies that f and g satisfy (B) on S where 5 = G. By lemma
ko3 and lemma 4.4, g can be extended to be continuous on G

such that f and g satisfy (B) on G .

*

Corollary 4,8 Let V bo a ¢ = compact Hausdorff topological
vector space which has the groperty ([° N) for some limit ordinal [,
let (B be a basis of Ve Let f : VxV —S R be symmetric and

continuous and satisfy

(4) f(xy y) + f(x + 3, 2) = f(y, 2) + g(x, y+z)

for all x, y, z, in V, Then there oxista a continuous function
SRS SRR (U e such that

(B) £(xy ¥) = g(x) + g(y) - g(x + y)

for all x, y, 2% in V,
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Proof. Let V be a topological vector space. It follows that
(v, +) is a torsion free 2 - divisible abelian topological group.
Hence, the conclusion of the corollary holds,

(k)

Theorem 4,9 TLet @ be a'group. Let £ :Gx G —R and
fi £ 6 x8 < Wi i =1, veeey k bo such that
f(x, ¥) = (£4(xy )y oee, fk(x’ ¥)),
for all x, y, in G, Then f satisfies
(4) Hx, 7) + Sy ,ce) = f(y,_z) + =, ¥ 4z)

Tor 411 %, ¥i 8y 41 G s if and only if, for each i = Ti g vy Ba

fi satisfies

/ : -
(A) fi(x, y) + fi(x + ¥y zZ) = fi(y, z) + fi(x, y+2)
for akk %, Yy %, in G.

Proof., Assume that f satisfies (A),
For eaéh L =dy 24 eeas ky log p; * mi(gl_,ia be defined
by pi(t1, "”~tk) = ti where tq' Sy tk € R e It is clear

that each 1 is linear and fi‘= P, o e

i

Hence we have

fi(x,y) + fi(x+y,Z) (piof)(x,y) + (piof)(x+y, z),

pi(f(X.y)) +pi(f(x + ¥y 2)),
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pi(f(y,z) + f(xy ¥+ 2)= £f(x + 3, 2))+ pi(f(x + Ty 8)),

]

p; (£(yy 2)) + p (£(x,y + 2)) - Py (£(x + ¥y 2)) + p,(£(x + y,2)),

fi(y, z) + fi(x, Y+E) = £.(x + ¥y, 2) + fi(x + Yy 2),

fi(y, 2) + fi(x, ¥+ 8) o

/
Conversely, assume that fi' Y6 Tk satisfy (A) « Then

f(x1 Y) * f(X + Y Z) (f,‘(x'y)’ooo’ fk(x' Y)) +(f‘1'(x R 8 Z),-ov,

fk(x + Yy 2)),

= (f1(x. y) + f1(x + Yy Z)’ ooo,fk(x’ y)

+ fk(x T Z))|

u

(f1(y, Z) % f1(x, v o+ z),...,fk(y, z)

¥ fk(x, Y+ .2)),
= (f1(y, B) ) wiey £,(y, 2)) + (f1(x, Y+ 2)yeen,
fk(x, y+ Z)),

w (Y, B) + (%, ¥ % 8)s

This completes the proof of thecorem 4.9.

Theorem 4,10 Let (G, +) be as in theorem 4,7, Tet f : G x G —»Qék)

be symmetric and continuous and satisfy
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(A) £0xy ¥) %+ finey, 8) = Uy, 8) + Tx, y+ 8)

for all Xy ¥y 2y in G, Then there exists a continuous function

g6 ——§m§k), such that

(B) f(x, ¥) = g(x) + g(y) - g(x + y)

for all xy ¥, 4o G,

Proof. Let fi’ i="1ye0ey k be such that

f(X, Y) = (fi(x’ Y)’ woey fk(x'y))

for all x,y, in G. By theorem 4.9, we have
’ ﬁ
(Aa) fi(x,y) * fi(x+y, z), = fi(y; z) + fi(x, Y+2)

for all x,y, z, in Gs It can be shown that fi is symmetric

and continuous.

Theorem 4,7 asserts that for each i , there exists a

continuous function g : G —» R such that

/ .
(B) £,(xy ¥) = g;(x) + g;(y) - gy (x + ¥)

for all x, 'y, in G.

et g : G —_awfk)

be given by
gix) * = (84(x)y eeey g (x)),

for x in Ge Therefore g is continuous and we have
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£(x,y)

(fq(x,y), e fk(xgy))'

= (81(x) + 81(Y) - 51(x + YDy eeey 8k(x)
+ gk(y) - gk(x +5)),

= (g1KX),.--, B (%)) + (g1(y),---. 8, .(¥))

- (31(3 + y), eeny gk(x + y))'

= g(X) S5 m(y)onglx + y) .

e

This completes the proof of theorem 4,10

Theorem 4,11 Let G be a g roup, Tet f : G x G —> (R, + ) and
let h : (R, +)-—>(R+, « ) be an isomorphism, ILet ¢ = hof .

Then f satisfies

(4e1141) P(Xyy) + I(x + ¥y 2) =_ £(¥y, 2) + £(x,y + 2)
for all x, y,2 in G, 4f and only if ¢ satisfies

(e 1%:2) @(xy¥) ¢« U(x+3,2) = P(yy 2)e @(x, ¥ + 2)

for all x4¥, %y in Ge

Proof, Assume that f satisfies (4.11.1)

Since h is a homomorphism, hence we have
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@(xy ¥)o F(x + ¥y, 2) (hef)(x,¥7)e (hpf)(x + ¥y, 2),

= h(f(x,y))e h(f(x + y, 2)),

= h(f(x,y) + £(x + ¥, 2)),

= h(f(y, z) + £(x, y +2 )),

= Wy, 3)). h(f(x, y+2)),

PYLZY « P(xXy 7 + 2)o

"

Conversely, assume that ¢ satisfics (4.11.2), i.c.

P(xy Yo Plx+y,2) = Yy, 2)e ¥ x, v + 2) ,

Hence

i

(hof)(xy Y)e(hgf)(x + ¥y 2) = (hgf)(y,2)e (hof) (X, y+z).

h(f(x| Y))c h(f(x +-¥y z)) h(f(y'1 Z))o h(f(x’ y + z)).

Since h is an isomorphism, hence

h(f(x, y) wEUxALGYEY0

n

h(i(yy2) '+ £(xy ¥ + z)),

f(xyy) + f(x + 3y, 2) f(yy 2) + £(xy ¥ + 2) »

This completes the proof of theorem 4,11 .
Theorem 4,12 Let (G, +) be as in theorem 4,7, TLet

¢ 26 xG — (mf, . ) be symmetric and continuous and satisfy

(4012.',) “F(X, y') . (‘f)(x + Y Z) = kF(y’ Z) . (‘P(x’ i 2 Z)

for all x, y, 2z, in G, Then there exists a continuous function
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©: 6 —>(g, *) such that

¥Yim 71 =, Bl .G/ Clx+ ¥,
Proof. Let h: (R, +) —(RT * ) be defined by
h(x) = o for all x in R .

Then h is an isomorphism and is continuous,

Set f(x, y) = In (Y(x, 7)) &
Hence f is continuous and symmetric and Y = ht o
By theorem 4,11, f satisfies

f(xey) + £(x + ¥y 2) = f(y, 2) + £(%X, ¥ + 2)
for all x, y, 2, in G,

By theorem 4,7, there exists a continuous function

g : G —> R such that

f(xy, y) = g(x) + g(y) - s(x + ¥).
Set G (x) = o8(%)
Then ¥ is continuous,
But P (x, ¥) i o %y ¥ henee
¢ (x; ¥) 5 B(X)+8(y) .~ g(x+y)

o8(x) _-es(y) 0 -g(x+y)

@ix) o Bhy) # Bl » ¥) »

"
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This completes the proof of theorem 4,12,

Lemma 4,13 Let h : g —®R be a continuous function satisfying

(4.13.1) Hi{x +¥y) = h(x) + h(y) ,

for all x,. v, in ® ., Then h (r) = rh(1) for all rational

number r,

Proof.  Since h is a homomorphism, hence h(0) = O .

Therefore h(0,.a) - h(0) = O = O.,h(a) " for all aecm.
Assume that m is a non - negative integer such that
h(ma) £ //mh(a) .

Then, h((m + 1) a) h(ma + a),

1

= h(ma) + h(a),
2 mh(a) + h(a),
= (m + 1) h(a) .

Hence h(na) = nh(a) for all non - negative integer n.

/ 1
For any negative integer m, - m is a positive integer,

Hence we have

D« HiD) h(ma + (-m)a) ,

i

h(ma) + h((-m) a),

il

h(ma) + (=m) h(a),

Thus h(da) dh(a) 5

]
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Therefore h(na) = nh(a) for all integer n.

Let r be any rational number say r = 2 where p, q are

q
in teger and q > 0 ,
1
h(1) = h(q. -)
q
’ = q h(l)
q
Henceo h(l) = ~ HE1) %
q q
Now , we have
n(r) X ‘n@ ;
q
1
= pCh(') 3
q
1
= Pe a h(1)’
= r h(1) °
Lemma L,14 Let V be a topological vector space with @R as a

basise Let h : V — R be a continuous function satisfyinge

(1‘{‘01401) h(x + y)

h(x) + h(y),

(ke14.2) h(v) for all v € @

n
o

Then h(x)

i
o

for all .z dn V.
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Proof, For each v ¢ ® , let Tv : R —V be defined by

g

P 2
- B (=)
£or woedR:.,

It is clear that each ”ﬁ"v' is linear and continuous.

Set o W = h O'Jiv 4

Hence hv : R —®R is continuous.

Observe that

hv(x 4 y) ho ’ﬁ’v (x + Y)'
= h(",'?'v(x + Y)),

= nCT (x) + T (),

- he C-’_?v(x) + ho ’JTv(y),
= hV(X) + hv(y) .

By lemma 4,13, we have

(Lhe1k,3) hv(r) rhv('l)

for all mtional number r.
Let p, ¢ V —> R be defined by pv(x) = X where x, 1is

the unique real number given by the representation
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where 7 4is a finite subset of &R .

v .

From h = ho-ﬁ; , Wwo have hv<>pv = (h ~ﬂ;)o P
h,0 D (rv)= ho?&o p_ (rv),

= h(ﬁ;(r));

= hi(rv), -
This together with (4,1443) inply

h(rv)

"

hv(;pv (rv),

4 h (p (rv)),
= h (r),

=‘ rhv(j),

= rh oW (1)

¥ hiv) o

"

Thus

(4.14.4) h(rv)

f

r 0lY),

for all rational number r and all v e R ,
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At x € Vo Thn x o . %Y where x,e®R and *
ve >

is a finite subset of 8 , Since the set of rational numbers is

dense in R , for each v, we can find a sequence '{rvng
converges to X._ 85 n — oo, Hence i P o v} converges
v e VR
to 2, XV . Since h is continuous, hence
ver ¥
ise R P Ei.Y ) E x xvv) i
n— <¢ Ve s Ve G
1R b o R e L = lim S . hiw
B (3, r,™ 3 r L hv)),
n—soco Ve Fr n-—se ve

= ) s
&N lim r nh(v) g
VE :;:. n—yao

al xvh(v).
ve B

"
L xvh(v),
Ve X

]

Therefore h(x)

Since x is arbitrary, hence we have

n
O

h(x) for all x in V,

*
Theorem 4,15 Let V be a ¢ = compact Hausdorff topological

vector space which has the property (" N) for some limit ordinal 7,

(k)

et B hé s hinls of Ve lot T s ¥xV-aR be symmetric and

continuous and satisfy



(A) £(x, ¥) + f(x + ¥, 2) = £lys 2) % £(%, ¥ + 8)

for-all %, ¥, 2z - in W Then there exists a unique continuous

function g : V -—;1;§k> such that g(v) = 0O for all v ¢ 3 and

(B) ixy ¥) g(x) + g(y) - g(x + y)

for all x; ¥y 2, in ¥,

Proof, By virtue of theorem 4,9, it suffices to prove this

theorem in the case k = 1, Hence we shall assume that £ : V x V —1R ,

Woe shall show that V is (¥, ¢ ) divisible for some

ordinal ¥ .,

<Py = 293 « Therefore

If V = {0}, then sot S,

v is (1, 2) divisible, Assume that V # {0§.

Let {vd_}w(;ﬂ be a well - ordering of the basis @,
L
where rL is an ordinal number., /e shall show that V is (co'./ A
divisible,

Define

n
n
—_—
e
S~

and b'd = Vv

Let p<L wn be any ordinal number such that S, x,

~

have been defined for all LF « We shall define S and x

P F

as follows :

Case 1 F = § + 1 for some ordinal §.

Define S

% SSU i*s}>
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13
hence there exists x 4in V such that

Since X, € SS ’
- %
2 X = Xg e Define x‘3 = Tap o
Case 2. F is a limit ordinal,

By theorem 27(1i), P = ‘03 for some ordinal % .
J

=

Define S = POy
P A< B
X = V .
B 3
Wo claim that (4 S* = Ve
F(&)’LF

Clearly Us}g € V o We will show that Vv C U3, .,
pew o peon

Let x be in V, Since iV,</o<< yl} forms a basis of V, hence
5 ; 5

x can be written in the form 4 a v where V, , eeey v, ¢ O3,
E—— * <

and a € ® , Ve may assume that o, <o(4 <en. ¥ °L&: Since

i
% w ¢ hence x must be in S(,o(o( + 1), But
k k k
Sw(o( +1) < me s therfore x e O .
k a(a)*r;L DK&WL

For all p< wy, define g?‘ as in the proof of theorem
L

Lk,7 with the special choice of xfi as given above, Moreover,

we define go(o) = O and in the case that p = w‘i for some
.g : & %
ordinal £ doefine g ' (v,§) 0
Lot g = Lige .

u(lw'ft
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Hence, it follows from €orollary 4.8 that g and f satisfy (B)

on V and we also have g(v) = O for all ve @ .
To prove uniqueness of g, assume that f, 84 and f, g,
satisfy (B). Hence

81(x) + g1(¥) = gy(x + ) = g,(x) + g, (¥) = g,(x + ¥)

This implies

81(x) = gy(x) + go(y) ~ g (¥) = g (x + ¥)= g, (x + ¥)
Set h=81"82 .
Therefore h(x) + h(y) = h(x + ¥) «

Since g and are continuous hence h is continuous,
1 2 e

Observe that

h(e) = gq(v) - gz(v) =0 for all v ¢ @ ,
Hence, by lemma 4,14, we have h(x) = O Wr all x in V,
This implies g1(x) = gz(x) r all x in V, Therecfore

g is unique,

(k)

Corollary 4,16 Let | be a real Tuclidean space of finite
dimension k, with {eq,..., ek} as a basis. Suppose that

Fit R(k)x ﬁékg_;iR‘ is symmetric and continuous and satisfies

() £(xy ¥) + £(x + ¥y 2) = £(y, 2) + £(xy ¥y + 2)
o (K)

for all X ¥y By %n

E 3 TR(Ele1R such that g(eq) £ ees = g(ek) and

s then there exists a unique continuous
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(B) £(xy, ¥y) = g(x) + g(y) - glx + y)
for all =x, ¥, 24. in R(k) -
(k) "
Proof. It can be shown that (g s +) is & compact Hausdorff
(k)

topological vector spaces To show that R has the property

k
QU N), let b = (b1’ ey b

(k)

set A SR ', Hence there exists a sequence {a(n)} in A which

k) be any accumulation point of any

converges to b, Tor ecach n, wec have

a(n) & (agn) 9 eeey ain) )
where lim a(n) = by /o (1, 29 ey k o
i i

/e define a a_)k ~ net as follows

k=1 Ko .
T'or ]3 =w Pyt ow 2p2 oo+ (,.)pk_,' + Pyoa define

(p1+1) (p1+p2+1) (p1+ onopk+ 1)
X = (a1 9 82 g eecccey ak e

p



APPENDIX

Axiom of Choice and Transfinite Numbers.

This appendix is devoted to a brief aceount on the axiom

of choice, ordinal numbers, cardinal numbers,

Before speaking of axiom of choice, a definition is needed.

-,

Definition A-1 A choice function on & set of non - empty sets 2

is a fanction © :J% — (U5 such that for all acd, e(a)ea.

Axiom of choice.

Every set of non - empty sets has a choice function,
e now introduce some definitions which will be udoful later,
Definition A-2 1let X and Y be sets. Then X and Y are said to be
equipotent (denoted by X A Y) if and only if there exists a

one - to - one correspondence between X and Y.

Definition A-3 A set is infinite if it is equipotent to a proper

subset of itself. Otherwise a set is finite.

Definition A-b A well - ordering on a set X is a relation r on X

satisfying
i) Reflexive law : (a, a) e r for all a € x

ii) Antisymmetric law : (a, b) @ r and (by a) € r imply
a=>b dr all a, b & X.
iii) Transitive law : (a, b) ¢ r and (bye) € v imply

(ay ¢c) € r for all a, b,c €X .
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iv) Every non - empty subset S of X contains an element m

such that (m, x) & p for every x ¢ X.

(X, r) is said tote a well - ordered set.

If there is no confusion we sometimes use X to denote both

the well - ordered set and the underlying set on which the

well - ordering defined,

It is customary to denote a well - ordering r by 4 and
write x £ y to denote the fact that (xq ¥)E r « We further agrec

that y > x has the same meaning as x < y, and that x 4_y mean

that (x4 y) ¢ o

Wlo agree that x « y is an abbreviation for '"x <« y and x £ yv

If X is any set then there exists a relation r such that

r is a well - ordering of X,

Remark A =5 Any two elements x and y in a well - ordered sect

(Xy £ ) is either X £y or y o x

Definition A -~ 6 Let (Ay4) and (Be 4 ) be well - ordered setse.
A function f : A-»B is called order - isomorphism if it is

a one - to - one correspondence from A to B and satisfies the

following condition :

For every two elements x & A and y & A .

x £y (in A) if and only if f(x) « f(y) (in B).
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Definition A = 7 If (A, £) and (B, £) are well - ordercd sots
and there exists an order - isomorphism from A to B, we say

that A is order - isomorphic with B.

Definition A = 8 ©Let A be a well - ordered set and suppose a € A

The initial segment of A determined by a is the set I&, defined

as follows :

Ié-1 = txeA/xLa} "

We shall define ordinal numbers as special types of well ~ ordered set .

Definition A - 9 Let A be a set on which a well - ordering < can

be defined such that for all x A, x = I;( e« Then A is called

an ordinal number,

Definition A -~ 10 ., Let «« and % be ordinal numbers, We say that

A P if and only if LG P

Remark A - 11 It can be shown that if o and P are ordinal numbers,
then either '3: oL or FZ_CL r OT LKL B (using the property that
any well - ordered set can not be order - isomorphic with one

of its segments,)

Definition A - 12. Let « and P be ordinal numbers such that <« ¢ p.

We will call p an 1immediate successor of oo if there is no ordinal

number VL such that o 47 <p .
L i

We may define « to be an immediate predecessor of !3 if and

only if "5 is an immediate successor of <« .
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Definition A - 13 Let ? be a non-zero ordinal number; if P has

no immediate predecessor - that is, if P is not equal to L U i=}

for any ordinal < - then E is called a limit ordinal, Otherwise 2

is called a nonlimit ordinal.

Definition A - 1L An ordinal number S is said to be transfinite

ordinal if s is infinite, Otherwise M is called a finite ordinal,

Remarks A - 15 i) @ is an ordinal, The only relation on @ is
@ itself, Clearly it is a woll - ordering on @ and there is no

a & f such that a £ I .

ii) If < is an ordinal and p € < then B is also

an ordinal,

iii) If «£ is an ordinal then o U §x} is an
ordinal, From thig remark we lnow that :
@ is an ordinal,
g U i¢y is an ordinal,
{giu {UP}‘I = {ﬂ J i@ﬁ} is an ordinal,
It is customary to denote @ by O, {ﬁ } by 1, {ﬂ, gﬂ}} by 2
and so on, We shall define w to be a set of all finite ordinals.

It can be shown that w is a limit ordinal.

ot

-+
Definition A - 16 If o« 48 an ordinal then o = o U {«

Remark A - 17 We now have,

x 4 2
wU el = @ = {_OJ‘)"}","')(")-S:

¥

- o i | + i
WS R RS e D e W 0 3



91

and s0 on

It can be shown that for any well - ordered set & o A
there exists a unique ordinal number that is order~isomorphic to
(Xe £ ) »

Definition A ~ 18 Let (X, £ ) be a well - ordered set, The

ordinal of (X, £ ) denoted by @A, is the unique ordinal number that

is order- isomorphic to (X, 4 ).

Remark A - 19 Let (A, £ ) and (By L,) be disjont well - ordered

]

sets. Let C = AU B and % b6 défined on C as follows
Ior 25V £ ©C v X Ly if and only if
i) xed and y<'A and x &y in A or,

11) xe€ B and y & g Shud X £y in B or,

iii) xe A and yg¢ B,

Then (C, £ ) is a well - ordered sct,

Definition A - 20 TLet « and P be ordinal numbers, and let A

and B be disjoint well - ordered sets such that o« = @A and p = ©B
We will define the sun L+ B to be the ordinal number of the

well « ordered set (A By £ ) as defined in remark A - 19, i.e,

Q(AUB).

n

aL.+Fa

Remark A = 21, Using the above definition of sum of ordinal

numbers, it can be seen that o + 1 = o U A



Remark A - 22. Let(A, £ ) and (B, &) be well - ordered sets,
Let C = AxB and define £ on C as follows :
for (a, b), (a,],b,') € C 4 (a,b) £ (a,], b,]) if and only if

i) a < a, andb=b1 or

ii) b Lb1 .

Then (C, £) 4is a well = ordered set,

Definition A - 23, ILet « and P be ordinal numbers, ILet A and B
be well - ordered sets such that o = @A and B = ©B. We will

define the product oL P to be the ordinal number of the well - ordered

set (AxBy, £ ) as defined in remark A - 22 ,

The elementary properties of ordinal -addition,
multiplication and comparison, given in the following theorems

can be seen in [6_! .

Theorem A - 24, Tet £, p and ¥ be ordinal numbers. Then

i) £+ (p+ %) (c+ p)+ ¥,
ii) <(p+ ¥ ) = B+ LY
Cidd) if p>0 then oL Lol P
Theorem A = 25, Let « and p be ordinals such that LLPo Then

there exists a unique ordinal ¥ » O such that oL + ¥ = B .

Theorem A - 26. For any ordinals «, 3, ¥ , the folowing rules

hold :

i) oCLP = ¥+ L X+ P :
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iii) L¥ < PY¥ — £ L B

Theorem A-27 i) e« is a limit ordinal if and only if there exists

a unique ordinal ?)O such that « = COFS )

ii) If «£ is a nonlimit ordinal, there exists a

unique ordinal ~‘§ and a unique firite ordinal n 7& O such that

L = W3 +1n .

/ !
Corollary 4-28 Let & 4, &«  /be limit ordinals and n, n € W .

! ! ] /
If £ +n = & + n then n = n and A = £ o

‘ !
Proof. If n=0, then &+ n = « is a limit ordinal, hence

/ /
n= 0 = n, and it follows that o = « ., Next, suppose that

' , i
n¢ O, n# O. Since o and o are limit ordinals, by theorem

/
A - 27(i) there exist the unique 4 and £ such that o = CO§
J

/ /
and o = u)‘g » From our hypothesis we have

o, + n = A+ n ’
! i
CL)% + n = 6)? + n °
! /
Again by theorem 4 - 27(ii) we have f = § and n = n .

t |
From % =‘§ it follows that wg = a)-% »

Theorem 4 - 29 Let n € @ and « be a transfinite ordinale

Then n + & = L
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In proving this theorem, use the property that any two ordinal
numbers are equal if and only if they are order-isomorphic( the

details will be omitted),

/ !
Theorem A-30 Let %4, n and n be any ordinals such that n, n/ew
b stee s 325

! / ] !
i) 1% w} + n2 >w§,+n2 then oyi)+n > w%,.pn,

[ / ! /

1) If wi o+ m2 >w-:{+n2+1 thenwiﬁn)wégﬁn’.

/ ) z
Proof, i) TLet ’{, ‘§ y n, n be ordinals such that n, n € @, First

_ i &
we assume that none of % ..3’ ¢ By 0 is zero., Assume that @g+ 02 =o¢+ 02,

It follows from corollary A-28 that,

! /
W = W and n2 = -'n 2 .
it
/

' /
Since n2 and n 2 are finite, hence n = n ,

I /
Therefore' wﬁ}/'-{- n = (‘JJS' + N o

/ I
Assume that w‘i + n2 > w4 +n2 .
’ ¢

From theorem A-25, there exists a unique ordinal ¥ > O such that

I P
(w§1+n2)+2< =w‘§+n2.

Case 1 "y L W

From theorem A-24(i), we have

/ / !
(w‘§+n2)+‘¢< =a)—§+(n,2+X).

1 !
Since in and w4 are limit ordinals and n 2 + ¥ and n2 are finite,

§

by corollary A=28, we have

i
w%:&)—‘{ and ne2+% = n2,
J
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By theorem A-24(iii), we have
/ 1 :
N8l N2 & %,

Therefore, n/2 £ n2,

: /
By theorem A-26(iii), we have n < n ,

By theorem A-26(i), we have
/ '
wg + I w—'i + n,

n I
I Vi .
Case 2 ¥ = w-‘g‘ + n for some ordinal '? A0 and n ¢ w .

! / il V'l
w§+n2 = (w§+n2)+w'i+n.

By theorem A-24(i), we have
/ 1 f i

! / il U
(w>§+n2) +(,Jg+n . wss+(n2+ (w§+n)) s
/ / il I
=S w*§+(n2+w‘§)+n.
By theorem A-29, we have
N i
!
n 2 + Ou‘i = a)’i

By theorem A-24k (ii), we have

i il ! I
g et oo A
/ Lo OB i
Hence wWf+n 2 =<}J(§+'§S)+n 3

J
By corollary A-28, we have
f ol "
ooli =a)(‘€+"§) and n2 = n .,

By theorem A-26(iv), we have



' /
Therefore by theorem A-24(iii), ’; 4 ‘§ .
. . ;
Hence, by theorem A-26(ii), we have WY £ a>§ A
o
/
Suppose that there is a finite ordinal m such that

i /

Q)j + n > a)z
Hence : : = W* | ! ! P
o.>§+m = 7 or'w§+m >w-3~.
Case 2,1 Suppose w§l+ ml = a)g 5

! /
By the corollary A-28, w; = w3 andm =0,

/
By theorem A-26(iv), ‘g = ‘§ which is a contradiction,

i !
Case 2,2 Suppose wg + m > ws) \

By theorem A-25, there exists a urique ordinal 7)()such that
I / )
W2 + m = w s 4=
§ (==

- /
If V'L is finite then by corollary A-28 we have w = wfg which ig
a contradiction. If 1'( is transfihite, then by theorem A-27(i).

A=2h(ii), corollary A-28 and theorem A-24(iii) respeetively
/
we have *2( § this is also a contrpdiction,

f / /
Hence wg +nmn < u)’i for allm < w .

Therefore

I 1
u)‘§+m < W€ +m

§

for all m/, m € w , In particular, we have

! /
periicnlac, g eme £ O% + Ne
s« ) 3 ! /
Proofs of the cases in which any of?,} s Ny N are zero can

be done in a similar fashion.
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/ / / /
We have proved (i). Since a)3,+ o T e a)§,+ n 2, hence (ii)

follows immediately from (i).
Cardinals,
Definition A-31, Let X be a set, The cardinal of X, denoted by:f,

is the smallest ordinal S for which S &~ X .

pefinitiog A=32 Let « and P be cardinals. VY/e say that « <« ﬁ

if «cp, and L4 B Af L LB but o # P e

The following are facts about cardinals, We state these

facts for later refferences., Their proofs can be found in [8] .

Theorem A=33 Let A and B be sets such that o« and '3 be the
cardinals of A and B respectively, If A is equipotent to a

subset of By, but A and B are not cquipotent then « <& P .

Theorem A-3k4 X ¢ ® X) for every set X.

TLemma A=35 Fach infinite cardinal number is a limit number.

Proof, Let o be an infinite cardinal number, Since « is

a cardinal, oL is also an ordinal.
Suppose fhat &L is not a limit ordinal,
Hence there exists an ordinal P such that
P+ 1 = ol
We will show that B is equipotent with P+-1.

Since P + 1 dis infinite, ? is also infinite,
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Define TR Ly F} by
i
f(ﬁ) = 0
f(n) = n + 1 for n ¢ w-
(%) = X where x € F-b.}

Then F) Az F* |

But B < p+1 and P A oL, then o« is not a cardinal, contrary to

to our hypothesis, where o is a limit ordinal,
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