THE FUNCTIONAL EQUATION :

$$f(x,y) + f(x + y, z) = f(y, z) + f(x, y + z)$$

ON TOPOLOGICAL GROUP

In this chapter we will discuss the functional equation :

(A) f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z) where $f: G \times G \longrightarrow \mathbb{R}^{(k)}$ is a symmetric continuous on an abelian topological group $G \times G$ into $\mathbb{R}^{(k)}$, a Euclidean k - space.

Our purpose is to give conditions which guarantee the existence of a continuous function g : G $\longrightarrow \mathbb{R}^{(k)}$ such that

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y in G.

As in chapter III we shall assume that

$$f(e, e) = 0$$
,

where e and Q are the identities of G and $R^{(k)}$ respectively.

Definition 4.1 Let n be a positive integer larger than 1.A group (G, +) is said to be an $n - \frac{\text{divisible group}}{\text{y}}$, if for all y in G there exists y in G such that ny = y.

Definition 4.2 Let G be an n - divisible topological group, x be an ordinal. If there exists a x - sequence x (x) in G such that

(1)
$$nx_{x+1} = x_x$$
 for all $\alpha < x$,

(2) the union of all subgroups S_{α} ($\alpha < 8$) which each S_{α} is defined by

$$S_{\infty} = \langle \{x_{\beta}/\beta \angle \infty \} \rangle$$
,

is dense in G, then we say that G is (%, n) divisible.

Lemma 4.3 Let H be a subgroup of an abelian topological group (G, +). Let $f: G \times G \to \mathbb{R}$ be symmetric and continuous and satisfy

(A)
$$f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z)$$

for all x, y, z, in G. Let $g : H \longrightarrow \mathbb{R}$ be such that

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y, in H.

For a given $\mathcal{E} > 0$ and a compact subset K of H such that there exists a neighborhood N of e such that N \mathcal{E} K, there exists a neighborhood N of e such that for all x, y, in H with $y - x \in N$ and x, y, in K, we have $|g(y) - g(x)| < \mathcal{E}$.

Proof. Let L = lim sup |g(x)| as $x \to e$ in H.

It follows from (B) that for any $x \in H$ we have

$$f(x, x) = g(x) + g(x) - g(2x)$$
.

This implies

$$2g(x) = g(2x) + f(x, x).$$

Therefore.

2
$$\limsup_{x\to e} |g(x)| \le \limsup_{x\to e} |g(2x)| + \limsup_{x\to e} |f(x,x)|$$

Hence $2L \stackrel{\checkmark}{=} L + \lim \sup_{\mathbf{x} \to \mathbf{e}} f(\mathbf{x}, \mathbf{x})$.

Since f is continuous and f(e,e) = 0, hence

$$\lim_{x\to e} \sup |f(x, x)| = \lim_{x\to e} |f(x, x)|,$$

= 0.

Therefore 2L & L.

From the definition of L, we see that [.] > 0, hence L = 0, i.e. $\limsup_{x\to e} |g(x)| = 0$. Therefore $\limsup_{x\to e} g(x) = 0$

Choose a neighborhood N₁ of e such that

$$(4.3.1) |g(z)| < \varepsilon/2,$$

for $z \in N_1$.

Since f is continuous and $K \times K$ is compact, hence f is uniformly continuous on $K \times K$. Choose a neighborhood N_2 of e such that

(4.3.2)
$$f(x, z) - f(x', z') < \varepsilon/2$$

whenever $(x, z) - (x', z') \in \mathbb{N}_2 \times \mathbb{N}_2$ and $(x, z), (x', z') \in \mathbb{K} \times \mathbb{K}$. Let $\mathbb{N} = \mathbb{N}_1 \cap \mathbb{N}_2 \cap \mathbb{N}^*$.

Let $x, y \in K$ be such that $y - x \in N$.

Since $y - x \in N \subseteq N_2$ and $y - x \in N \subseteq K$, hence we have $|f(x,y-x) - f(x,e)| < \varepsilon/2.$

Therefore

(4.3.3)
$$|f(x,y-x)| < \varepsilon/2$$

Since $x, y - x \subseteq H$ and (B) holds on H, hence we have f(x, y - x) = g(x) + g(y - x) - g(y).

Therefore

$$|g(x) - g(y)| \le |f(x, y - x)| + |g(y - x)|$$
.

Since $y - x \in N \subseteq N_1$, it follows from (4.3.1) that $|g(y - x)| < \varepsilon/2$.

Hence

$$|g(y) - g(x)| \le |f(x, y-x)| + |g(y - x)| < \varepsilon$$
.

Lemma 4.4 Let G be an abelian existseteskip extended to be continuous on <math>existseteskip extended to be an abelian existseteskip extended to be continuous on <math>existseteskip extended to be continuous on existseteskip extended to be extended to be continuous on existseteskip extended to existseteskip extended to

(B) f(x, y) = g(x) + g(y) - g(x + y)for all x, y, in \overline{H} .

Proof. Let x be in \overline{H} . Since G has property (Γ N), hence there exists a Γ - net $\{y_{\alpha}\}(\alpha < \Gamma)$ in H converging to x. We shall show that $\{g(y_{\alpha})\}(\alpha < \Gamma)$ is cauchy.

Let $\varepsilon>0$ be given. Since $G=\bigcup_{n=0}^\infty K_n$ where each K_n is a compact neighborhood of the identity ε of G, hence $x\in K_n$ for some n. Since $\{y_{\infty}\}_{(\infty<\Gamma)}$ converges to x, hence there exists an ordinal $\beta<\Gamma$ such that $y_{\beta}\in K_n$ for all $\beta>\beta_c$.

From lemma 4.3, there exists a neighborhood N of e such that

$$|g(x) - g(y)| < \varepsilon$$

for all x, y, in K_n and $x - y \in N$.

By theorem 2.5.3 the convergent net $\{y_{\alpha}\}_{(\alpha<\Gamma)}$ is cauchy. Hence there exists β' such that $y_{\beta_1} - y_{\beta_2} \in N$ for all $\beta_1, \beta_2 \geqslant \beta'$. It follows that

$$|g(y_{\infty}) - g(y_{\beta})| < \varepsilon$$

for all $\alpha, \beta \geqslant \max(\beta_0, \beta)$.

Therefore $\{g(y_{\alpha})\}_{(\alpha < \Gamma)}$ is cauchy. Since $\mathbb R$ is complete, hence $\{g(y_{\alpha})\}_{(\alpha < \Gamma)}$ is convergent. Therefore $\lim_{\alpha < \Gamma} (g(y_{\alpha}), \alpha < \Gamma)$ exists.

To show that $\lim (g(y_{\alpha}), \alpha < \Gamma)$ is independent of the choice of y_{α} , let $\{y_{\alpha}\}_{(\alpha < \Gamma)}$ and $\{y_{\alpha}'\}_{(\alpha < \Gamma)}$ be Γ - nets which converge to x. We must show that.

$$\lim (g(y_{\infty}), \alpha < 7) = \lim (g(y_{\alpha}'), \alpha < 7)$$

Define

$$z_{\omega_{\xi}+n2} = y_{\omega_{\xi}+n},$$

$$z_{\omega_{\xi}+n2+1} = y_{\omega_{\xi}+n}',$$

where $\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\alpha$}}}}}$ and n are ordinals and n $\mbox{$\mbox{$\mbox{$\mbox{ω}}$}}$.

By lemma 2.5.4, $\{z_{\alpha}\}_{(\alpha < \Gamma)}$ is cauchy.

Therefore $\{g(z_{\alpha})\}_{(\alpha \in P)}$ is cauchy.

Since R is complete, hence $\{g(z_{\alpha})\}_{(\alpha < \Gamma)}$ is convergent. Therefore $\lim (g(z_{\alpha}), \alpha < \Gamma)$ exists.

Since $\{\hat{g}(y_{\infty})\}_{(\alpha < \Gamma)}$ and $\{g(y_{\infty}')\}_{(\alpha < \Gamma)}$ are subnets of $\{g(z_{\infty})\}_{(\alpha < \Gamma)}$, hence, by theorem 2.5.1 we have

$$\lim (g(y_{\alpha}), \alpha < \Gamma) = \lim (g(y'_{\alpha}), \alpha < \Gamma)$$
.

We define g(x) as the limit of g(y $_{\infty}$). Hence by theorem 2.7.1 we have g is continuous relative to \overline{H} .

Set
$$F(x, y) = f(x, y) - g(x) - g(y) + g(x + y)$$

for all x, y, in \overline{H} . F is continuous on $\overline{H} \times \overline{H}$, and by the assumption F is zero on $H \times H$, hence F is identically zero. This proves that

$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all $x, y, in \overline{H}$.

Lemma 4.5 let G be an abelian n - divisible torsion free *

- compact Hausdorff topological group which has the property ((PN) for some limit ordinal Γ . Let $f: G \times G \to \mathbb{R}$ be symmetric and continuous and salisfy

(A)
$$f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z)$$

for all x, y, z, in G. Let S be a subgroup of G such that there exists a function $g: S \longrightarrow \mathbb{R}$ satisfying

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y, in S. Let t be in G such that nt \in S. Then there exists a continuous extension \overline{g} of g such that f and \overline{g} satisfy (B) on $\overline{S[t]}$, the closure of S[t].

Proof. Let \hat{g} be defined as in case II of lemma 3.5. Then \hat{g} is an extension of g such that f and \hat{g} satisfy (B) on S[t].

By lemma 4.4, g can be extended to \overline{g} which is continuous on S[t] and \overline{g} and f satisfy (B) on S[t].

Lemma 4.6 Let G be an n - divisible torsion free topological group. Then there exists an ordinal \forall such that G is (\forall , n) divisible.

Proof. In the case that $G = \{e\}$, the ordinal $\emptyset = 1$. $S_O = \langle \phi \rangle = \{e\}$ Hence G is $(1, \emptyset)$ divisible.

Assume that $G \neq \{e\}$. First we shall show that there exists an ordinal \emptyset and a family of subgroups $\{S_{\alpha}\}_{(\alpha < \emptyset)}$ such that if $\alpha < \beta < \emptyset$, then $S_{\alpha} \subset S_{\beta}$ and $\overline{\bigcup}_{S_{\alpha}} = G$. Let c

be a choice function for G. Define $S_0 = \{e\}$ and $y_0 = c(G-S_0)$.

Suppose that S_{α} and y_{α} have been defined for all $\alpha<\beta$ and $G=\bigcup_{\alpha<\beta} S_{\alpha}$ \neq \emptyset . We shall define S_{β} and y_{β} as follows

Case 1 $\beta = \delta + 1$ for some ordinal δ .

Define $S_{\beta} = \langle S_{S} \cup \{ y_{S} \} \rangle$

Since $y_{\xi} \in S_{\xi}$, hence there exists y in G such that $ny = y_{\xi}$.

Define $y_{\S} = y^*$.

Case 2 β is a limit ordinal.

Define $s_{\beta} = \bigcup_{\alpha < \beta} s_{\alpha}$, and $y_{\beta} = c(G-s_{\beta})$.

We claim that there exists an ordinal number X such that $G = \bigcup_{\alpha \in X} S_{\alpha} = \emptyset$. Suppose the contrary, i.e. for all X,

Take $\chi' = \overline{PG}$, where PG is the power set of G. Hence

If % is finite then by the definition of $\{S_{\alpha}\}_{(\alpha < \delta')}$ we have $\{e, y_0, \dots, y_{\delta-2}\} \subseteq S_{\delta-1} = \overline{\bigcup S_{\alpha}}$ Hence $\{x_{\alpha}\}_{(\alpha < \delta')} = \overline{\bigcup S_{\alpha}}_{(\alpha < \delta')}$

If % is infinite cardinal, then by lemma A-35, % is a limit ordinal. By the definition of $\{S_{\bowtie}\}_{(\varnothing<\%')}$ we have

$$\{y_{\alpha}\}\subseteq S_{\alpha+1}$$
 and

Since & is a limit ordinal, hence

By the choice of y_{α} and since G is torsion free, it can be

shown that
$$y_{\lambda}(\lambda(x'))$$
 are distenct. Hence $x' = \overline{\bigcup_{x \in X'} \{y_{\lambda}\}}$.

Therefore. $x' \in \overline{\bigcup_{x \in X'} \{y_{\lambda}\}}$.

This together with (4.6.1) imply $\chi' \subseteq G$.

Hence $\bigcirc G \leq G$ which is a contradiction.

Then there exists an ordinal X and a family $\{S_{\alpha}\}(\alpha < X)$ of subgroups of G such that $\overline{\bigcup S_{\alpha}} = G$.

Let
$$x_{\beta} = \begin{cases} x^* & \text{if } \beta = \delta + 1 \text{ and } nx = x_{\delta} \\ c(G-S_{\beta}) & \text{if } \beta \text{ is a limit ordinal.} \end{cases}$$

Observe that $x_{\beta} = y_{\beta}$. By the above construction and since G is torsion free, we see that $\{x_{\alpha}\}_{(\alpha < \gamma)}$ is a γ - sequence and $\{x_{\alpha}\}_{(\alpha < \gamma)}$ generates the γ - sequence of subgroups $\{s_{\alpha}\}_{(\alpha < \gamma)}$. Therefore G is $(\gamma - \gamma)$ divisible.

Theorem 4.7 Let G be an abelian n - divisible torsion free $\overset{*}{\leftarrow}$ - compact Hausdorff topological group which has the property($\lceil 7 \rceil$) for some limit ordinal $\lceil 7 \rceil$. Let $f: G \times G \longrightarrow \mathbb{R}$ be symmetric and continuous and satisfy

(A)
$$f(x,y) + f(x+y,z) = f(y,z) + f(x,y+z)$$

for all x,y,z, in G. Then there exists a continuous function $g:G \longrightarrow \mathbb{R}$ such that

(B)
$$f(x,y) = g(x)+g(y) - g(x+y)$$

for all x,y, in G.

Proof From lemma 4.6, there exists an ordinal x such that G is (x,n) divisible. For each x < x, we shall define x < x on x < x

- (1) If $\alpha' < \alpha$, then $g_{\alpha'} \subseteq g_{\alpha c}$,
- (2) f and each g_{α} satisfy (B) on S_{α} .

This will be done by transfinite induction.

Define
$$g_o$$
 on $s_o = \{e\}$ by putting $g_o(e) = e'$.

Clearly f and g_o satisfy (B) on S_o .

Let $\beta < \delta$ be any ordinal number such that g_{α} have been defined so that f and g_{α} satisfy (B) on S_{α} for all $\alpha < \beta$.

Case 1. $\beta = \delta + 1$ for some ordinal δ .

Since g_s has been defined on S_s , hence by lemma 4.5, there exists are extension g_s of g_s on $S_s(x_s)$ such that f and g_s satisfy (B) on $S_s(x_s)$.

Put
$$g_{\beta} = \overline{g}_{s}$$
.

Then g_{β} is defined on $S_{\beta} = S_{\delta}[x_{\delta}]$ and f and g_{β} satisfy (B) on S_{β} . It can be shown that (1) holds.

Case 2. β is a limit ordinal.

In this case, we put

Clearly (1) holds. From (1), it follows that g_{β} is well-defined on $S_{\beta} = \frac{US_{\infty}}{\alpha < \beta}$ and f, g_{β} satisfy (B) on S_{β} .

Hence, for each $\beta < \gamma$, if g_{α} has been defined on S_{α} , and f and g_{α} satisfy (B) on S_{α} for all $\alpha < \beta$, then g_{β} can be defined on S_{β} so that f and g_{β} satisfy (B) on S_{β} . Therefore g_{α} can be defined on S_{α} so that f and g_{α} satisfy (B) on S_{α} for all $\alpha < \gamma$.

Define $\hat{g} = \bigcup_{\alpha \in \mathcal{A}} g_{\alpha}$

It follows from (1) that, g is well-defined on $S = \bigcup_{A \in S} S_A$. (2) implies that f and g satisfy (B) on S where $\overline{S} = G$. By lemma 4.3 and lemma 4.4, g can be extended to be continuous on G such that f and g satisfy (B) on G.

Corollary 4.8 Let V be a 6 - compact Hausdorff topological vector space which has the groperty (7 N) for some limit ordinal 7. let 6 be a basis of V. Let 6: 6 V × V $\rightarrow 8$ be symmetric and continuous and satisfy

(A)
$$f(x, y) + f(x + y, z) = f(y, z) + g(x, y+z)$$

for all x, y, z, in V. Then there exists a continuous function $g \ : \ V \longrightarrow \mathbb{R} \quad \text{such that}$

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y, z, in V.

Proof. Let V be a topological vector space. It follows that (V, +) is a torsion free 2 - divisible abelian topological group. Hence, the conclusion of the corollary holds.

Theorem 4.9 Let G be a group. Let $f: G \times G \longrightarrow \mathbb{R}^{(k)}$ and $f_i: G \times G \longrightarrow \mathbb{R}$, $i=1,\ldots,k$ be such that

$$f(x, y) = (f_1(x, y), ..., f_k(x, y)),$$

for all x, y, in G. Then f satisfies

(A)
$$f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z)$$

for all x, y, z, in G, if and only if, for each i = 1, 2, ..., k, f satisfies

$$f_{i}(x, y) + f_{i}(x + y, z) = f_{i}(y, z) + f_{i}(x, y+z)$$

for all x, y, z, in G.

Proof. Assume that f satisfies (A).

For each i = 1, 2, ..., k, let $p_i : \mathbb{R}^{\binom{(k)}{}} \mathbb{R}$ be defined by $p_i(t_1, ..., t_k) = t_i$ where $t_1, ..., t_k \in \mathbb{R}$. It is clear that each p_i is linear and $f_i = p_i \circ f$.

Hence we have

$$f_{i}(x,y) + f_{i}(x+y,z) = (p_{i}f)(x,y) + (p_{i}f)(x+y,z),$$

= $p_{i}(f(x,y)) + p_{i}(f(x+y,z)),$

$$= p_{\underline{i}}(f(y,z) + f(x, y + z) - f(x + y, z)) + p_{\underline{i}}(f(x + y, z)),$$

$$= p_{\underline{i}}(f(y, z)) + p_{\underline{i}}(f(x, y + z)) - p_{\underline{i}}(f(x + y, z)) + p_{\underline{i}}(f(x + y, z)),$$

$$= f_{\underline{i}}(y, z) + f_{\underline{i}}(x, y + z) - f_{\underline{i}}(x + y, z) + f_{\underline{i}}(x + y, z),$$

$$= f_{\underline{i}}(y, z) + f_{\underline{i}}(x, y + z).$$
Conversely, assume that $f_{\underline{i}}$, $1 \le i \le k$ satisfy (\bigwedge^{i}) . Then
$$f(x, y) + f(x + y, z) = (f_{\underline{i}}(x, y), \dots, f_{\underline{k}}(x, y)) + (f_{\underline{i}}(x + y, z), \dots, f_{\underline{k}}(x + y, z)),$$

$$= (f_{\underline{i}}(x, y) + f_{\underline{i}}(x + y, z), \dots, f_{\underline{k}}(x, y) + f_{\underline{i}}(x + y, z)),$$

$$= (f_{\underline{i}}(y, z) + f_{\underline{i}}(x, y + z), \dots, f_{\underline{k}}(y, z) + f_{\underline{i}}(x, y + z), \dots, f_{\underline{k}}(x, y + z)),$$

$$= (f_{\underline{i}}(y, z), \dots, f_{\underline{k}}(y, z)) + (f_{\underline{i}}(x, y + z), \dots, f_{\underline{k}}(x, y + z), \dots, f_{\underline{k}}(x, y + z)),$$

$$= f(y, z) + f(x, y + z).$$

This completes the proof of theorem 4.9.

Theorem 4.10 Let (G, +) be as in theorem 4.7. Let $f : G \times G \to \mathbb{R}^{(k)}$ be symmetric and continuous and satisfy

(A)
$$f(x, y) + f(x+y, z) = f(y, z) + f(x, y+ z)$$

for all x, y, z, in G. Then there exists a continuous function $g: G \longrightarrow \mathbb{R}^{(k)}$, such that

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y, in G.

Proof. Let f_i , i = 1, ..., k be such that

$$f(x, y) = (f_1(x, y), ..., f_k(x,y))$$

for all x,y, in G. By theorem 4.9, we have

(A)
$$f_{i}(x,y) + f_{i}(x+y, z) = f_{i}(y, z) + f_{i}(x, y+z)$$

for all x,y, z, in G. It can be shown that f is symmetric and continuous.

Theorem 4.7 asserts that for each i , there exists a continuous function $g:G \longrightarrow \mathbb{R}$ such that

(B)
$$f_{i}(x, y) = g_{i}(x) + g_{i}(y) - g_{i}(x + y)$$

for all x, y, in G.

Let $g : G \longrightarrow \mathbb{R}^{(k)}$ be given by

$$g(x) = (g_1(x), ..., g_k(x)),$$

for x in G. Therefore g is continuous and we have

$$f(x,y) = (f_1(x,y), \dots f_k(x,y)),$$

$$= (g_1(x) + g_1(y) - g_1(x + y), \dots, g_k(x))$$

$$+ g_k(y) - g_k(x + y),$$

$$= (g_1(x), \dots, g_k(x)) + (g_1(y), \dots, g_k(y))$$

$$- (g_1(x + y), \dots, g_k(x + y)),$$

$$= g(x) + g(y) - g(x + y).$$

This completes the proof of theorem 4.10

Theorem 4.11 Let G be a group. Let $f: G \times G \longrightarrow (\mathbb{R}, +)$ and let $h: (\mathbb{R}, +) \longrightarrow (\mathbb{R}^+, \cdot)$ be an isomorphism. Let $\varphi = h \circ f$. Then f satisfies

(4.11.1)
$$f(x,y) + f(x + y, z) = f(y, z) + f(x,y + z)$$
 for all x, y, z, in G, if and only if φ satisfies
$$(4.11.2) \qquad \varphi(x, y) \cdot \varphi(x + y, z) = \varphi(y, z) \cdot \varphi(x, y + z)$$
 for all x,y, z, in G.

Proof. Assume that f satisfies (4.11.1)

Since h is a homomorphism, hence we have

$$\varphi(x, y) \cdot \varphi(x + y, z) = (h_0 f)(x, y) \cdot (h_0 f)(x + y, z),$$

$$= h(f(x, y)) \cdot h(f(x + y, z)),$$

$$= h(f(x, y) + f(x + y, z)),$$

$$= h(f(y, z) + f(x, y + z)),$$

$$= h(f(y, z)) \cdot h(f(x, y + z)),$$

$$= \varphi(y, z) \cdot \varphi(x, y + z).$$

Conversely, assume that φ satisfies (4.11.2), i.e.

$$\varphi(x, y)$$
. $\varphi(x + y, z) = \varphi(y, z)$. $\varphi(x, y + z)$.

Hence

$$(h_0f)(x, y) \cdot (h_0f)(x + y, z) = (h_0f)(y,z) \cdot (h_0f)(x, y+z).$$

$$h(f(x, y)) \cdot h(f(x + y, z)) = h(f(y, z)) \cdot h(f(x, y + z)).$$

Since h is an isomorphism, hence

$$h(f(x, y) + f(x + y, z)) = h(f(y, z) + f(x, y + z)),$$

$$f(x,y) + f(x + y, z) = f(y, z) + f(x, y + z).$$

This completes the proof of theorem 4.11 .

Theorem 4.12 Let (G, +) be as in theorem 4.7. Let $\varphi: G \times G \to (R^+, .)$ be symmetric and continuous and satisfy (4.12.1) $\varphi(x, y) \cdot \varphi(x + y, z) = \varphi(y, z) \cdot \varphi(x, y + z)$ for all x, y, z, in G. Then there exists a continuous function

$$\mathscr{C}: G \to (R^+, \cdot)$$
 such that

$$\Psi(x, y) = \mathcal{E}(x) \cdot \mathcal{E}(y) / \mathcal{E}(x + y)$$
.

Proof. Let
$$h: (\mathbb{R}, +) \longrightarrow (\mathbb{R}^+, \cdot)$$
 be defined by
$$h(x) = e^x \qquad \text{for all } x \text{ in } \mathbb{R}.$$

Then h is an isomorphism and is continuous.

Set
$$f(x, y) = \ln (\varphi(x, y))$$
.

Hence f is continuous and symmetric and $\varphi = h_s f$.

By theorem 4.11, f satisfies

$$f(x,y) + f(x + y, z) = f(y, z) + f(x, y + z)$$

for all x, y, z, in G.

By theorem 4.7, there exists a continuous function $g: G \longrightarrow \mathbb{R}$ such that

$$f(x, y) = g(x) + g(y) - g(x + y).$$

Set
$$\mathscr{C}(x) = e^{g(x)}$$
.

Then & is continuous.

But
$$\varphi(\mathbf{x}, \mathbf{y}) = e^{f(\mathbf{x}, \mathbf{y})}$$
, hence
$$\varphi(\mathbf{x}, \mathbf{y}) = e^{g(\mathbf{x}) + g(\mathbf{y})} - g(\mathbf{x} + \mathbf{y})$$
,
$$= e^{g(\mathbf{x})} \cdot e^{g(\mathbf{y})} \cdot e^{-g(\mathbf{x} + \mathbf{y})}$$
,
$$= \varphi(\mathbf{x}) \cdot \varphi(\mathbf{y}) / \varphi(\mathbf{x} + \mathbf{y})$$
.

This completes the proof of theorem 4.12.

Lemma 4.13 Let $h : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

(4.13.1) h(x + y) = h(x) + h(y),

for all x, y, in \mathbb{R} . Then h (r) = rh(1) for all rational number r.

Proof. Since h is a homomorphism, hence h(0) = 0.

Therefore h(0.a) = h(0) = 0 = 0.h(a), for all $a \in \mathbb{R}$.

Assume that m is a non - negative integer such that

h(ma) = mh(a).

Then, h((m + 1) a) = h(ma + a),

= h(ma) + h(a),

= mh(a) + h(a),

= (m + 1) h(a).

Hence h(na) = nh(a) for all non - negative integer n.

For any negative integer m, - m is a positive integer.

Hence we have

$$0 = h(0) = h(ma + (-m')a)$$

= h(ma) + h((-m') a).

= h(ma) + (-m) h(a),

Thus h(ma) = mh(a).

$$h(na) = nh(a$$

Therefore h(na) = nh(a) for all integer n.

Let r be any rational number say $r = \frac{p}{r}$ where p, q are in teger and q > 0.

$$h(1) = h(q \cdot \frac{1}{q})$$

$$= q h(\frac{1}{q})$$

Hence

$$h(\frac{1}{q}) = \frac{1}{q} h(1) .$$

Now , we have

$$h(r) = h(\frac{p}{q});$$

$$= p \cdot h(\frac{1}{q}),$$

$$= p \cdot \frac{1}{q} h(1),$$

$$= r h(1).$$

Lemma 4.14 Let V be a topological vector space with $\mathcal B$ as a basis. Let $h: V \rightarrow \mathbb{R}$ be a continuous function satisfying.

$$(4.14.1)$$
 $h(x + y) = h(x) + h(y),$

$$(4.14.2) h(v) = 0 for all v \in B.$$

h(x) = 0 for all x in V. Then

Proof. For each
$$v \in \mathcal{B}$$
, let $\mathbb{T}v : \mathbb{R} \to V$ be defined by
$$\mathbb{T}_{V}(x) = xv$$
,

for x ER.

It is clear that each Tr is linear and continuous.

Set
$$h_{\mathbf{v}} = h_{\mathbf{v}} \pi_{\mathbf{v}}$$
.

Hence $h_{v}: \mathbb{R} \to \mathbb{R}$ is continuous.

Observe that

$$h_{\mathbf{v}}(\mathbf{x} + \mathbf{y}) = ho \mathcal{T}_{\mathbf{v}}(\mathbf{x} + \mathbf{y}),$$

$$= h(\mathcal{T}_{\mathbf{v}}(\mathbf{x} + \mathbf{y})),$$

$$= h(\mathcal{T}_{\mathbf{v}}(\mathbf{x}) + \mathcal{T}_{\mathbf{v}}(\mathbf{y})),$$

$$= h_{o} \mathcal{T}_{\mathbf{v}}(\mathbf{x}) + ho \mathcal{T}_{\mathbf{v}}(\mathbf{y}),$$

$$= h_{\mathbf{v}}(\mathbf{x}) + h_{\mathbf{v}}(\mathbf{y}).$$

By lemma 4.13, we have

$$(4.14.3)$$
 $h_{v}(r) = rh_{v}(1)$

for all rational number r.

Let $p_v: V \longrightarrow \mathbb{R}$ be defined by $p_v(x) = x_v$, where x_v is the unique real number given by the representation

$$x = \sum_{\mathbf{v} \in \mathcal{F}} x_{\mathbf{v}} \mathbf{v} ,$$

where F is a finite subset of B.

From
$$h_{v} = ho \mathcal{T}_{v}, \text{ we have } h_{v} p_{v} = (h \circ \mathcal{T}_{v}) \circ p_{v}.$$

$$h_{v} \circ p_{v}(rv) = ho \mathcal{T}_{v} \circ p_{v}(rv),$$

$$= h(\mathcal{T}_{v}(r)),$$

= h(rv).

This together with (4.14.3) imply

= $\operatorname{rh}_{\circ} \widetilde{\mathfrak{I}}_{\mathbf{v}}(1)$,

= r h(v) .

Thus

(4.14.4) h(rv) = r h(v),

for all rational number r and all $v \in \mathcal{B}$.

Let $x \in V$. Then $x = \sum_{v \in \mathcal{F}} x_v v$ where $x_v \in \mathbb{R}$ and \mathcal{F} is a finite subset of \mathcal{B} . Since the set of rational numbers is dense in \mathbb{R} , for each v, we can find a sequence $\{r_v\}$ converges to x_v as $n \to \infty$. Hence $\{\sum_{v \in \mathcal{F}} v_n v\}$ converges to $\sum_{v \in \mathcal{F}} x_v v$. Since h is continuous, hence

$$\lim_{n\to\infty} h \left(\sum_{v\in\mathcal{F}} r_{vn} v \right) = h \left(\sum_{v\in\mathcal{F}} x_{v} v \right).$$

But
$$\lim_{n\to\infty} h(\sum_{v\in\mathcal{F}} r_{vn}v) = \lim_{n\to\infty} (\sum_{v\in\mathcal{F}} r_{vn}h(v))$$

$$= \sum_{v \in \mathcal{J}_{e}} \lim_{n \to \infty} r_{vn} h(v),$$

$$= \sum_{v \in \mathcal{J}_{k}} x_{v} h(v).$$

Therefore
$$h(x) = \sum_{v \in \mathcal{F}} x_v h(v)$$
,

= 0.

Since x is arbitrary, hence we have

$$h(x) = 0$$
 for all x in V.

Theorem 4.15 Let V be a $\binom{*}{}$ - compact Hausdorff topological vector space which has the property ($\lceil N \rceil$) for some limit ordinal $\lceil \cdot \rceil$. Let $\binom{*}{}$ be a basis of V. Let $f: V \times V \longrightarrow \binom{(k)}{}$ be symmetric and continuous and satisfy

(A)
$$f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z)$$

for all x, y, z in V. Then there exists a unique continuous function g: $V \to \mathbb{R}^{(k)}$ such that g(v) = 0 for all $v \in \mathbb{R}$ and

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y, z, in V.

<u>Proof.</u> By virtue of theorem 4.9, it suffices to prove this theorem in the case k = 1. Hence we shall assume that $f : V \times V \longrightarrow \mathbb{R}$.

We shall show that V is (X, Z) divisible for some ordinal X.

If $V = \{\underline{O}\}$, then set $S_O = \{\underline{O}\} = \{\underline{O}\}$. Therefore V is (1, 2) divisible. Assume that $V \neq \{\underline{O}\}$.

Let $\{v_{\omega}\}_{(\omega < \eta)}$ be a well - ordering of the basis \mathcal{B} , where η is an ordinal number. We shall show that V is $(\omega \eta, 2)$ divisible.

Define

$$S_0 = \{0\}$$
 and $x_0 = v_0$

Let $\beta \not \subset \omega \eta$ be any ordinal number such that S_{α} , x_{α} have been defined for all $\alpha \not \subset \beta$. We shall define S_{β} and x_{β} as follows :

Case 1 $\beta = \xi + 1$ for some ordinal ξ .

Define
$$S_{\beta} = \langle S_{\delta} \cup \{x_{\delta}\} \rangle$$
.

Since $x_{\xi} \in S_{\xi}$, hence there exists x^* in V such that $2x^* = x_{\xi}$. Define $x_{\beta} = x^*$.

Case 2. \$ is a limit ordinal.

By theorem 27(i), $\beta = \omega_1^2$ for some ordinal $\frac{3}{2}$.

Define

$$x_{\beta} = v_{\beta}$$
.

We claim that $\overline{\bigcup S}_{\beta < \omega \gamma \beta} = V$.

Clearly $\overline{US}_{\beta} \subseteq V$. We will show that $V \subseteq \overline{US}_{\beta}$.

Let x be in V. Since $\{v_{\chi}/_{\chi} < \eta\}$ forms a basis of V, hence x can be written in the form $\sum_{i=1}^{k} a_i v_{\chi}$ where $v_{\chi}, \ldots, v_{\chi} \in \mathcal{B}$,

and a $\in \mathbb{R}$. We may assume that $\alpha_1 < \alpha_2 < \ldots < \alpha_k$. Since

 $v_{\alpha k} = x_{\omega \alpha_k}$, hence x must be in $\overline{S}_{\omega}(\alpha_{k+1})$. But

$$\overline{S}_{\omega(\alpha_{k}+1)} \subseteq \overline{US_{\omega}}$$
, therfore $x \in \overline{US_{\omega}}$

For all $\beta < \omega \eta$, define g as in the proof of theorem 4.7 with the special choice of x_{β} as given above. Moreover, we define $g_{\phi}(o) = 0$ and in the case that $\beta = \omega_{\beta}^2$ for some ordinal $\frac{\pi}{\beta}$, define $g_{\beta+1}(v_{\beta}) = 0$.

Hence, it follows from corollary 4.8 that g and f satisfy (B) on V and we also have g(v) = 0 for all $v \in \emptyset$.

To prove uniqueness of g, assume that f, g_1 and f, g_2 satisfy (B). Hence

$$g_1(x) + g_1(y) - g_1(x + y) = g_2(x) + g_2(y) - g_2(x + y)$$

This implies

Set

$$g_1(x) - g_2(x) + g_1(y) - g_2(y) = g_1(x + y) - g_2(x + y)$$

$$h = g_1 - g_2$$

Therefore
$$h(x) + h(y) = h(x + y)$$
.

Since g₁ and g₂ are continuous, hence h is continuous.

Observe that

$$h(\mathbf{v}) = g_1(\mathbf{v}) - g_2(\mathbf{v}) = 0$$
 for all $\mathbf{v} \in \mathcal{B}$.

Hence, by lemma 4.14, we have h(x) = 0 for all x in V. Therefore $g_1(x) = g_2(x)$ for all x in V. Therefore $g_1(x) = g_2(x)$ for all x in V.

Corollary 4.16 Let $\mathbb{R}^{(k)}$ be a real Euclidean space of finite dimension k, with $\{e_1, \dots, e_k\}$ as a basis. Suppose that $f: \mathbb{R}^{(k)} \times \mathbb{R}^{(k)} \to \mathbb{R}$ is symmetric and continuous and satisfies f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z) for all x, y, z, in $\mathbb{R}^{(k)}$, then there exists a unique continuous $f(x, y) = \mathbb{R}^{(k)} \to \mathbb{R}$ such that $f(x, y) = \mathbb{R}^{(k)} \to \mathbb{R}^{(k)}$ and

(B)
$$f(x, y) = g(x) + g(y) - g(x + y)$$

for all x, y, z, in $R^{(k)}$.

Proof. It can be shown that $(\mathbb{R}^{(k)}, +)$ is 6-compact Hausdorff topological vector space. To show that $\mathbb{R}^{(k)}$ has the property $(\omega^k \mathbb{N})$, let $b = (b_1, \dots, b_k)$ be any accumulation point of any set $\mathbb{A} \subseteq \mathbb{R}^{(k)}$. Hence there exists a sequence $\{a^{(n)}\}$ in \mathbb{A} which converges to b. For each n, we have

$$a^{(n)} = (a_1^{(n)}, ..., a_k^{(n)})$$

where $\lim a_{i}^{(n)} = b_{i}$, i = 1, 2, ..., k.

We define a ω^k - net as follows :

For
$$\beta = \omega^{k-1} p_1 + \omega^{k-2} p_2 + \cdots + \omega p_{k-1} + p_k$$
, define
$$x_{\beta} = (a_1^{(p_1+1)}, a_2^{(p_1+p_2+1)}, \dots, a_k^{(p_1+\cdots p_k+1)}).$$

APPENDIX

Axiom of Choice and Transfinite Numbers.

This appendix is devoted to a brief account on the axiom of choice, ordinal numbers, cardinal numbers,

Before speaking of axiom of choice, a definition is needed. Definition A-1 A choice function on a set of non - empty sets of is a function $\theta: \mathcal{A} \to \cup \mathcal{A}$ such that for all $A \in \mathcal{A}$, $\theta(A) \in A$. Axiom of choice.

Every set of non - empty sets has a choice function. We now introduce some definitions which will be useful later. Definition A-2 let X and Y be sets. Then X and Y are said to be equipotent (denoted by $X \approx Y$) if and only if there exists a one - to - one correspondence between X and Y.

Definition A-3 A set is <u>infinite</u> if it is equipotent to a proper subset of itself. Otherwise a set is finite.

Definition A-4 A well - ordering on a set X is a relation r on X satisfying

- i) Reflexive law : $(a, a) \in r$ for all $a \in x$
- ii) Antisymmetric law: $(a, b) \in r$ and $(b, a) \in r$ imply a = b for all $a, b \in X$.
- iii) Transitive law: $(a, b) \in r$ and $(b,c) \in r$ imply $(a, c) \in r$ for all $a, b, c \in X$.

- iv) Every non empty subset S of X contains an element m such that $(m, x) \in P$ for every $x \in X$.
 - (X, r) is said to be a well ordered set.

If there is no confusion we sometimes use X to denote both the well - ordered set and the underlying set on which the well - ordering defined.

It is customary to denote a well - ordering r by \angle and write $x \angle y$ to denote the fact that $(x, y) \in r$. We further agree that $y \ge x$ has the same meaning as $x \angle y$, and that $x \not = y$ mean that $(x, y) \not \in r$.

We agree that $x \angle y$ is an abbreviation for " $x \angle y$ and $x \ne y$ "
Well - ordering theorem.

If X is any set then there exists a relation r such that r is a well - ordering of X.

Remark A - 5 Any two elements x and y in a well - ordered set (X, \leq) is either $x \leq y$ or $y \leq x$.

Definition A - 6 Let (A, \angle) and (B, \angle) be well - ordered sets. A function $f: A \to B$ is called <u>order - isomorphism</u> if it is a one - to - one correspondence from A to B and satisfies the following condition:

For every two elements $x \in A$ and $y \in A$, $x \le y$ (in A) if and only if $f(x) \le f(y)$ (in B).

Definition A - 7 If (A, \leq) and (B, \leq) are well - ordered sets and there exists an order - isomorphism from A to B, we say that A is order - isomorphic with B.

Definition A - 8 Let A be a well - ordered set and suppose $a \in A$.

The initial segment of A determined by a is the set I_a , defined as follows:

$$I_{a} = \{x \in A / x \angle a\}$$
.

We shall define ordinal numbers as special types of well - ordered set .

Definition A = 9 Let A be a set on which a well - ordering \leq can be defined such that for all $x \in A$, $x = I_X$. Then A is called an ordinal number.

Definition A = 10 . Let α and β be ordinal numbers. We say that $\alpha \leq \beta$ if and only if $\alpha \leq \beta$.

Remark Λ - (1) It can be shown that if $\mathcal L$ and β are ordinal numbers, then either $\beta = \alpha$ or $\beta \neq \alpha$, or $\alpha \neq \beta$, (using the property that any well - ordered set can not be order - isomorphic with one of its segments.)

Definition A - 12. Let α and β be ordinal numbers such that $\alpha < \beta$. We will call β an immediate successor of α if there is no ordinal number η such that $\alpha < \eta < \beta$.

We may define \ll to be an immediate predecessor of β if and only if β is an immediate successor of \ll .

Definition A - 13 Let β be a non-zero ordinal number; if β has no immediate predecessor - that is, if β is not equal to $\alpha \cup \{\alpha\}$ for any ordinal α - then β is called a <u>limit ordinal</u>. Otherwise β is called a nonlimit ordinal.

Definition A - 14 An ordinal number μ is said to be transfinite ordinal if μ is infinite. Otherwise μ is called a finite ordinal.

Remarks A - 15 i) \emptyset is an ordinal. The only relation on \emptyset is \emptyset itself. Clearly it is a well - ordering on \emptyset and there is no a $\in \emptyset$ such that a $\neq I_3$.

ii) If α is an ordinal and $\beta \in \alpha$ then β is also an ordinal.

iii) If \propto is an ordinal then $\propto \cup \{\infty\}$ is an ordinal. From this remark we know that :

Ø is an ordinal.

 $\emptyset \cup \{\phi\}$ is an ordinal.

 $\{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}\}$ is an ordinal.

It is customary to denote \emptyset by 0, $\{\emptyset\}$ by 1, $\{\emptyset, \{\emptyset\}\}$ by 2 and so on. We shall define ω to be a set of all finite ordinals. It can be shown that ω is a limit ordinal.

Definition A - 16 If α is an ordinal then $\alpha^{\dagger} = \alpha \cup \{\alpha\}$.

Remark A - 17 We now have,

$$\omega \cup \{\omega\} = \omega^{\dagger} = \{0,1,2,...,\omega\},\$$
 $\omega^{\dagger} \cup \{\omega\} = \omega^{\dagger\dagger} = \{0,1,...,\omega,\omega^{\dagger}\}.$

and so on

It can be shown that for any well - ordered set (X, \angle) , there exists a unique ordinal number that is order-isomorphic to (X, \angle) .

Definition A - 18 Let (X, \angle) be a well - ordered set. The ordinal of (X, \angle) denoted by ΘA , is the unique ordinal number that is order- isomorphic to (X, \angle) .

Remark A - 19 Let (A, \angle) and (B, \angle) be disjoint well - ordered sets. Let C = A U B and \angle be defined on C as follows:

for $x, y \in C$, $x \leq y$ if and only if

- i) $x \in A$ and $y \in A$ and $x \notin y$ in A or,
- ii) $x \in B$ and $y \in B$ and $x \leq y$ in B or,
- iii) $x \in A$ and $y \in B_{\bullet}$

Then (C, \leq) is a well - ordered set.

Definition A - 20 Let α and β be ordinal numbers, and let A and B be disjoint well - ordered sets such that $\alpha = \Theta A$ and $\beta = \Theta B$ We will define the sum $\alpha + \beta$ to be the ordinal number of the well - ordered set (A U B, α) as defined in remark A - 19. i.e, $\alpha + \beta = \Theta(A \cup B)$.

Remark A = 21. Using the above definition of sum of ordinal numbers, it can be seen that $\alpha + 1 = \alpha \cup \{\alpha\}$.

i w arder

Remark A = 22. Let(A, \angle) and (B, \angle) be well - ordered sets. Let C = A × B and define \angle on C as follows:

for $(a, b), (a_1, b_1) \in C$, $(a, b) \neq (a_1, b_1)$ if and only if

- i) $a \le a_1$ and $b = b_1$ or
- ii) b 4 b₁ .

Then (C, \leq) is a well - ordered set.

Definition A - 23. Let α and β be ordinal numbers. Let A and B be well - ordered sets such that α = ΘA and β = ΘB . We will define the product $\alpha \beta$ to be the ordinal number of the well - ordered set $(A \times B, 4)$ as defined in remark A - 22.

The elementary properties of ordinal addition, multiplication and comparison, given in the following theorems can be seen in [6].

Theorem A - 24. Let α , β and δ be ordinal numbers. Then

- i) $\alpha + (\beta + \delta) = (\alpha + \beta) + \delta$,
- ii) α(β+ γ) = αβ + αγ,
- .iii) if $\beta > 0$ then $\alpha < \alpha + \beta$.

Theorem A = 25. Let α and β be ordinals such that $\alpha < \beta$. Then there exists a unique ordinal $\beta > 0$ such that $\alpha + \beta = \beta$.

Theorem Λ - 26. For any ordinals α , β , γ , the following rules hold:

iv)
$$8 > 0$$
, $8\alpha = 8\beta \implies \alpha = \beta$.

Theorem A-27 i) α is a limit ordinal if and only if there exists a unique ordinal $\frac{\pi}{2} > 0$ such that $\alpha = \frac{\pi}{2}$.

ii) If \mathcal{L} is a nonlimit ordinal, there exists a unique ordinal $\frac{1}{2}$ and a unique finite ordinal $\frac{1}{2}$ 0 such that

$$\alpha = \omega_{\frac{n}{2}} + n.$$

Corollary A-28 Let α , α' be limit ordinals and n, $n' \in \omega$. If $\alpha + n = \alpha' + n'$ then n = n' and $\alpha = \alpha'$.

Proof. If n = 0, then $\alpha + n = \alpha'$ is a limit ordinal, hence n = 0 = n', and it follows that $\alpha = \alpha'$. Next, suppose that $\alpha \neq 0$, $\alpha' \neq 0$. Since α' and α' are limit ordinals, by theorem α' and α' such that α' and α' such that α' and α' are α' and α' such that α' are α' and α' are α' and α' such that α' are α' and α' are α' and α' such that α' are α' and α' are α' and α' are α' and α' such that α' are α' and α' are

$$\alpha + n = \alpha' + n',$$

$$\omega_{3} + n = \omega_{3} + n'.$$

Again by theorem A - 27(ii) we have $\xi = \xi$ and n = n. From $\xi = \xi$ it follows that $\omega \xi = \omega \xi$.

Theorem A - 29 Let n $\in \omega$ and α be a transfinite ordinal. Then n + α = α .

In proving this theorem, use the property that any two ordinal numbers are equal if and only if they are order-isomorphic (the details will be omitted).

Theorem A-30 Let ξ , ξ , n and n be any ordinals such that n, $n \in \omega$

i) If
$$\omega_3 + n2 \geqslant \omega_3 + n 2$$
 then $\omega_3 + n \geqslant \omega_3 + n$.

ii) If
$$\omega_1^2 + n2 > \omega_2^2 + n2 + 1$$
 then $\omega_1^2 + n > \omega_2^2 + n$.

Proof. i) Let $\frac{1}{3}$, $\frac{1}{3$

It follows from corollary A-28 that.

$$\omega_{\frac{\pi}{2}} = \omega_{\frac{\pi}{2}}$$
 and $n2 = n'2$.

Since n2 and n 2 are finite, hence n = n'.

Therefore,
$$\omega_3 + n = \omega_3 + n$$
.

Assume that $\omega_{\frac{3}{2}} + n^2 > \omega_{\frac{3}{2}} + n^2$.

From theorem A-25, there exists a unique ordinal & > 0 such that

$$(\omega_3^2 + n^2) + 8 = \omega_3^2 + n2$$
.

Case 1 $% < \omega$.

From theorem A-24(i), we have

$$(\omega_{\xi}^{2} + n^{2}) + \delta = \omega_{\xi}^{2} + (n^{2} + \delta).$$

Since ω_{ξ} and ω_{ξ} are limit ordinals and n² + ξ and n² are finite, by corollary A-28, we have

$$\omega = \omega$$
 and $n'2 + 8 = n2$.

By theorem A-24(iii). we have

Therefore, n'2 < n2.

By theorem A-26(iii), we have n' < n.

By theorem A-26(i), we have

Case 2 $\forall = \omega + n'$ for some ordinal $\forall \neq 0$ and $n \neq \omega$. $\omega + n^2 = (\omega + n^2) + \omega + n'$.

By theorem A-24(i), we have

$$(\omega_{\xi}' + n'2) + \omega_{\xi}'' + n'' = \omega_{\xi}' + (n'2 + (\omega_{\xi}' + n')),$$

= $\omega_{\xi}' + (n'2 + \omega_{\xi}'') + n''.$

By theorem A-29, we have

$$n'2 + \omega_{\S}'' = \omega_{\S}''$$

By theorem A-24 (ii), we have

$$\omega_{3}^{2} + \omega_{3}^{1} = \omega(_{3}^{2} + _{3}^{2}) .$$

$$\omega_{3}^{2} + n 2 = \omega(_{3}^{2} + _{3}^{2}) + n$$

By corollary A-28, we have

$$\omega_{\xi}^{2} = \omega(\xi + \xi)$$
 and $n^{2} = n$.

By theorem Λ -26(iv), we have

Therefore by theorem A-24(iii), 3 4 3 .

Hence, by theorem Λ -26(ii), we have $\omega_{\xi}' < \omega_{\xi}$.

Suppose that there is a finite ordinal m such that

Hence $\omega_{\xi}' + m' = \omega_{\xi}'$ or $\omega_{\xi}' + m' > \omega_{\xi}'$.

Case 2.1 Suppose $\omega_{\S}^2 + m = \omega_{\S}^2$.

By the corollary Λ -28, $\omega_3' = \omega_3'$ and m' = 0.

Case 2.2 Suppose ωξ + m' > ωξ .

By theorem Λ -25, there exists a unique ordinal η >6such that

$$\omega_{\xi} + m' = \omega_{\xi} + \eta$$

If η is finite then by corollary A-28 we have $\omega_3' = \omega_3'$ which is a contradiction. If η is transfihite, then by theorem A-27(i), A-24(ii), corollary A-28 and theorem A-24(iii) respectively we have $\frac{\pi}{3} < \frac{\pi}{3}$ this is also a contradiction.

Hence $\omega z + m < \omega z$ for all $m < \omega$.

Therefore

for all m', $m \in \omega$. In particular, we have

In particular, wig + no < wg + n.

Proofs of the cases in which any of \$, \$, n, n are zero can be done in a similar fashion.

We have proved (i). Since $\omega_{3} + n^{\prime} 2 + 1 > \omega_{3} + n^{\prime} 2$, hence (ii) follows immediately from (i).

Cardinals.

Definition A-31. Let X be a set. The <u>cardinal</u> of X, denoted by \overline{X} , is the smallest ordinal S for which S \approx X.

Definition A-32 Let α and β be cardinals. We say that $\alpha \leq \beta$ if $\alpha \leq \beta$, and $\alpha \leq \beta$ but $\alpha \neq \beta$.

The following are facts about cardinals. We state these facts for later refferences. Their proofs can be found in $\begin{bmatrix} 8 \end{bmatrix}$. Theorem A-33 Let A and B be sets such that α and β be the cardinals of A and B respectively. If A is equipotent to a subset of B, but A and B are not equipotent then $\alpha \neq \beta$.

Theorem A-34 $\overline{X} \neq \overline{P(X)}$ for every set X.

Lemma A-35 Each infinite cardinal number is a limit number.

Proof. Let α be an infinite cardinal number. Since α is a cardinal, α is also an ordinal.

Suppose that ${\boldsymbol \propto}$ is not a limit ordinal. Hence there exists an ordinal ${\boldsymbol \beta}$ such that

We will show that β is equipotent with $\beta+1$. Since $\beta+1$ is infinite, β is also infinite.

Define
$$f: \beta + 1 \longrightarrow \beta$$
 by

$$f(\beta) = 0$$

$$f(n) = n + 1$$
 for $n \in \omega$

$$f(x) = x$$
 where $x \in \beta - \omega$.

Then $\beta \approx \beta + 1$, i.e, $\beta \approx \alpha$.

But $\beta < \beta + 1$ and $\beta \approx \alpha$, then α is not a cardinal, contrary to to our hypothesis, where α is a limit ordinal.