SOME FUNCTIONAL EQUATIONS OF THE CAUCHY TYPE

$$
f(x \circ y)=f(x) * f(y) ; f(x \circ f(y))=f(x) * f(f(y)) .
$$

The materials of this chapter are based on the references [1] and [5], and all functions are assumed to map the reals R into itself. Cauchy functional equations are given by

$$
\begin{align*}
& f(x+y)=f(x)+f(y) \tag{2.1}\\
& f(x+y)=f(x) \cdot f(y) \tag{2.2}\\
& f(x \cdot y)=f(x) \cdot f(y) \tag{2.3}\\
& f(x \cdot y)=f(x)+f(y) \tag{2.4}
\end{align*}
$$

Continuous Solutions of $\mathrm{Eq}(2.1)$. Suppose f is a solution of $\mathrm{Eq}(2.1)$. Then putting $x=0=y$, Eq (2.1) becomes

$$
f(0)=f(0)+f(0)
$$

so that
(2.5) $f(0)=010$.

Lemma 2.1. $f(n)=n f(1)$, for all $n \in \mathbb{L}$.

Proof. We prove first when $n \geqslant 0$ by induction on n. Since Eq (2.5) implies that the lemma holds for $n=0$ and the conclusion is clearly for $n=1$, assume the lemma holds for lesser values of n. Then

$$
\begin{aligned}
f(n) & =f(n-1+1)=f(n-1)+f(1) \\
& =(n-1) f(1)+f(1)=n f(1)
\end{aligned}
$$

by induction hypothesis. Thus the lemma holds for $n \geqslant 0$.

If n is a positive integer, then

$$
0=f(0)=f(n-n)=f(n)+f(-n)
$$

Therefore by the first part of the proof,

$$
f(-n)=-f(n)=-n f(1) .
$$

Hence the lemma holds for any integer $n /$

Lemma 2.2. $f(r)=r f(1)$, for any rational number r.

Proof. For $q \in \mathbb{Z}(>0)$,

$$
\begin{aligned}
& f(1)=f\left(q \cdot \frac{1}{q}\right)=\frac{f\left(\frac{1}{q}+\ldots+\frac{1}{q}\right)}{q \text { times }} \\
&=f\left(\frac{1}{q}\right)+\ldots+f\left(\frac{1}{q}\right) \\
& q \text { times }
\end{aligned}
$$

so that
(2.6)

$$
f\left(\frac{1}{q}\right)=\frac{1 f(1)}{q} \quad(q \in \mathbb{Z}(30))
$$

Let r be any positive rational number, $r=\frac{p}{q}$ for $p, q \in \mathbb{Z}(>0)$ and $q \neq 0$.

$$
\begin{aligned}
f(r) & =f\left(\frac{p}{q}\right)=f\left(p \cdot \frac{1}{q}\right) \\
& =f(\underbrace{\frac{1}{q}+\cdots+\frac{1}{q}}_{p \text { times }}) \\
& =p f\left(\frac{1}{q}\right) \\
& =p \cdot \frac{1}{q} f(1)
\end{aligned}
$$

by Eq (2.6). Hence $f(r)=r f(1)$ for $r \geqslant 0$. Since $f(0)=0$,
$f(-r)=-f(r)$. Thus $f(r)=r f(1)$ for any rational number $r /$

Now we will prove the first main results :

Theorem 2.3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function satisfying
(2.1) $f(x+y)=f(x)+f(y)$
and if f is continuous at $x=0$, then (f is continuous overywhere and) $f(x)=$ ax for some a in \mathbb{R}.

Proof. Suppose f is continuous at $x=0$. Given any $\mathcal{E}>0$, there exists $\delta>0$ such that

$$
|x|<\oint \text { implies }|f(x)-f(0)|=|f(x)|<E \text {. }
$$

Then, if for any x and y in $\mathbb{R},|x-y|<\delta$ then $|f(x-y)|<\varepsilon$.
But $|f(x-y)|=|f(x)-f(y)|$,
hence

$$
|f(x)-f(y)|<\varepsilon .
$$

Therefore f is everywhere continuous.
Let $x \in \mathbb{R}$. Since the rationals are dense in \mathbb{R}, we can find a sequence $\left\{r_{n}\right\}$ of rationals converges to x. Since f is continuous,

$$
\lim _{n \rightarrow \infty} f\left(r_{n}\right)=f\left(\lim _{n \rightarrow \infty} r_{n}\right)=f(x) .
$$

But by Lemma 2.2,

$$
\lim _{n \rightarrow \infty} f\left(r_{n}\right)=\lim _{n \rightarrow \infty} r_{n} f(1)=x f(1)
$$

Therefore,

$$
\begin{array}{ll}
f(x)=x f(1) & (x \in \mathbb{R}) . \\
f(x)=a x & (x \in \mathbb{R}) .
\end{array}
$$

for some $a=f(1)$ in \mathbb{R}. Moreover, this function satisfies Eq (2.1). Thus the theorem is proved /

Continuous Solutions of Eq (2.2)

To solve this equation, we will construct a new function, based on f, which satisfies Eq (2.1) whose continuous solutions are readily available.

Theorem 2.4. If $f: \mathbb{R} \rightarrow \mathbb{R}(>0)$ is a continuous function satisfies Eq (2.2), then $f(x)=\lambda^{x}$ for some λ in \mathbb{R}.

Proof. Consider the diagram :

where $g=$ hof. Since h and f are continuous, g is also continuous and

$$
g(x)=\ln (f(x))
$$

Then

$$
\begin{aligned}
g(x+y) & =\ln (f(x+y))=\ln (f(x) \cdot f(y)) \\
& =\ln (f(x))+\ln (f(y)) \\
& =g(x)+g(y) .
\end{aligned}
$$

By applying Theorem 2.3,

$$
g(x)=a x \quad(x \in \mathbb{R})
$$

for some a in \mathbb{R}. Therefore
$\ln (f(x))=a x$.
Hence $\quad f(x)=e^{a x}=\lambda^{x}$ where $\lambda=e^{a}$ in \mathbb{R}.
Moreover, this function satisfies Eq (2.2). Hence the theorem is now proved /

Continuous Solutions of Eg (2.3).

We will solve Eq (2.3) by the same method as we have used in solving Eq (2.2).

Theorem 2.5. If $f: \mathbb{R} \longrightarrow \mathbb{R}(>0)$ is a continuous function satesfies $E q$ (2.3), then $f(x)=x^{3}$ for some a in \mathbb{R}.

Proof. Consider the diagram :

where $g=h_{2}$ of oh h_{1}. Since h_{1}, f and h_{2} are continuous, g is contnous and

$$
g(x)=\ln \left(f\left(e^{x}\right)\right)
$$

Then

$$
\begin{aligned}
g(x+y) & =\ln \left(f\left(e^{x+y}\right)\right)=\ln \left(f\left(e^{x} \cdot e^{y}\right)\right) \\
& =\ln \left(f\left(e^{x}\right) \cdot f\left(e^{y}\right)\right)=\ln \left(f\left(e^{x}\right)\right)+\ln \left(f\left(e^{y}\right)\right) \\
& =g(x)+g(y)
\end{aligned}
$$

Therefore, by applying Theorem $2 \cdot 3$, for some a in \mathbb{R}

$$
g(x) \quad=a x \quad(x \in \mathbb{R})
$$

Thus $\ln \left(f\left(e^{x}\right)\right)=a x$.
That is $f\left(e^{x}\right)=e^{a x}$.
Let $\mathbf{x}=\ln t$. Then
$f(t)=f\left(e^{\ln t}\right)=e^{a \ln t}=e^{\ln t^{a}}=t^{a}$
so that

$$
f(x)=x^{a} \quad(x \in \mathbb{R})
$$

Conversely, this function Clearly satisfies Eq (2.3) /

Continuous Solutions of Eg (2.4).

Theorem 2.6. If $f: \mathbb{R}(>0) \rightarrow \mathbb{R}$ is a continuous function satesfies Eq (2.4), then $f(x)=a \ln x$ for some a in \mathbb{R}.

Proof. Consider the diagram:

CHULALONGKORN UNIVERSITY
where $g=f \circ h$. Since f and h are continuous, g is continuous and

$$
g(x)=f\left(e^{x}\right)
$$

Therefore,

$$
\begin{aligned}
g(x+y) & =f\left(e^{x}+y\right) \\
& =f\left(e^{x} \cdot e^{y}\right)=f\left(e^{x}\right)+f\left(e^{y}\right) \\
& =g(x)+g(y)
\end{aligned}
$$

Apply Theorem $2 \cdot 3$, we have for some a in \mathbb{R}.

$$
g(x)=a x \quad(x \in \mathbb{R})
$$

Thus $\quad f\left(e^{x}\right)=a x \quad(x \in \mathbb{R})$
so that $f(t) \quad=a \ln t \quad(t \in \mathbb{R})$.
Moreover, this function satisfies Eq (2.4).
Hence the theorem is proved /

Functional Equations of Cauchy Type.

In this section, we shall consider some variations of Cauchy's functional equations :

$$
\begin{equation*}
f(x+f(y))=f(x)+f(f(y)) \tag{2.7}
\end{equation*}
$$

$f(x+f(y))=f(x) \cdot f(f(y))$
(2.9)
$f(x \cdot f(y)) \Rightarrow f(x) \cdot f(f(y))$
(2.10)
$f(x \cdot f(y))=f(x)+f(f(y))$.

Eq (2.7). Let f be a continuous solution of Eq (2.7) b We then immediately get
(2.11) $f(x+z)=f(x)+f(z)$ ($x \in \mathbb{R}, z \in f(\mathbb{R}))$.

If $f(c$, then
CHULALONGKORN UNIVERSITY

$$
c=c+c
$$

which implies that $c=0$ so that we get a proposition :

Proposition 2.7. If f is identically constant, then $f=0$.

Now further assume that f is non-constant and let $a=f\left(x_{0}\right) \neq 0$.
Then

$$
f(f(y))=f(0+f(y))=f(0)+f(f(y)) .
$$

Thus $f(0)=0$.

Lemma 2.8. $f(n a)=n f(a) \quad(n \in \mathbb{Z})$.

Proof. We will show that $f(n a)=n f(a)$ for all $n \in \mathbb{Z}(\geqslant 0)$. The case $n=0$ is true because $f(0)=0$. For $n=1$,

$$
f(1 . a)=1 . f(a) .
$$

Assume the lemma holds for lesser values of n. Then from induction hypothesis,

$$
\begin{aligned}
f(n \cdot a)=f(n a-a+a) & =f(n a-a)+f(a) \\
& =(n-1) f(a)+f(a) \\
& =n f(a) .
\end{aligned}
$$

Hence by induction, the lemma holds for all non-regative integers. If n is a non-negative integer, then

$$
0=f(0)=f(n a-n a)=f(n a)+f(-n a)
$$

by another inductive argument so that

$$
f(-n a)=-f(n a) .
$$

Therefore the lemma holds for all integers $n /$

Lemma 2.9. $f(r a)=r f(a)$ for any rational number r.
Proof. Since 0 , a $\in \mathbb{f}$) and f is continuous, it follows from the Intermediate Value Theorem that $\frac{a}{q} \in_{f}(\mathbb{R})$ for all $q \in \mathbb{Z}(>0)$. Let $r=\frac{p}{q}$ where $p, q \in \mathbb{Z}(>0)$.

$$
\begin{aligned}
f(a)=f\left(\frac{q}{q} \cdot a\right) & =f\left(\frac{a}{q}+\cdots+\frac{a}{q}\right) \\
& =q \cdot f\left(\frac{a}{q}\right)
\end{aligned}
$$

by Eq (2.11) so that
(2.12) $\underset{q}{f\left(\frac{a}{q}\right)}=\frac{1}{q} f(a)$.

Now $f(r a)=f\left(\frac{p}{q} \cdot a\right)=f(\underbrace{\frac{a}{q}+\ldots+\frac{a}{q}}_{\text {p times }})$

$$
=p f\left(\frac{a}{q}\right)=p \cdot \frac{1}{q} f(a)
$$

by Eq (2.11) and Eq (2.12)d Hence for any nonnegative rational
number r,

$$
f(r a)=r f(a)
$$

But $0=f(0)=f(r a-r a)=f(r a)+f(-r a)$, hence $f(-r a)=-f(r a)$.
Therefore the lemma holds for all rational number /

Now we will prove :

Theorem 2.10. If $f: B \longrightarrow \mathbb{R}$ is a continuous function satisfying

$$
\begin{equation*}
f(x+f(y))=f(x)+f(f(y)) \tag{2.7}
\end{equation*}
$$

then $f(x)=k x$ for some k in \mathbb{R}

Proof. We may assume that $f \neq 0$.
For any x in \mathbb{R}, there exists a sequence r_{1}, r_{2}, \ldots of rational number such that r_{n}. a converging to x, where $a=f\left(x_{0}\right) \neq 0$. Since f is continuous,

$$
\lim _{n \rightarrow \infty} f\left(r_{n^{a}}=f\left(\lim _{n \rightarrow \infty} r_{n} a\right)=f(x)\right.
$$

But from Lemma 2.9,

$$
\lim _{n \rightarrow \infty} f\left(r_{n} \cdot a\right)=\lim _{n \rightarrow \infty}\left(r_{n} \cdot f(a)\right)=\frac{x}{a} \cdot f(a)
$$

Hence $\quad f(x)=\frac{x}{a} f(a)$

$$
=\mathrm{kx}
$$

where $k=\frac{f(a)}{a}$ is in \mathbb{R}. Moreover, this function clearly satisfies Eq (2.7).

Hence the theorem is completely proved /

Eq (2.8), Suppose that f is a continuous solution of Eq (2.8).
First, suppose that $f(f(y))=0$ for all y, then $f(x+f(y))=0$ for all x, y in \mathbb{R}. If further $f \neq 0$, there exists y_{0} in such that $f\left(y_{0}\right) \neq 0$. Therefore

$$
\begin{aligned}
f\left(x+f\left(y_{0}\right)\right) & =f(x) \cdot f\left(f\left(y_{0}\right)\right) \\
& =0
\end{aligned}
$$

which contradicts to the assumption that $f=0$ Hence
Proposition 2.11. If $f(f(y))=0$ for all y, then f is identically
0.

Suppose now that there exists y_{0} such that $f\left(f\left(y_{0}\right)\right) \neq 0$. Then from Eq (2.8),

$$
f\left(f\left(y_{0}\right)\right)=f\left(0+f\left(y_{0}\right)\right)=f(0) \cdot f\left(f\left(y_{0}\right)\right)
$$

Therefore $f(0)=1$.

Proposition 2.12. If there exists y_{0} such that $f\left(f\left(y_{0}\right)\right) \neq 0$. Then $f(0)=1$.

Henceforth we shall assume that $f(0)=1$, and $f(1) \neq 0$. Note that $f(1)=0$ implies $f(x+1)=f(x) \cdot f(1)=0$ for all x which is impossible.

Lemma 2.13. For $n \in \mathbb{E}, f(x+n)=f(x) f(1)^{n}$ so that $f(1)^{n}=(f(1))^{n}$.

Proof. By induction on n, the lemma is obviously true for $n=0$.
(Here we need $f(1) \neq 0)$. Now Eq (2.8) gives $f(x+1)=f(x+f(0))$ $=f(x)$. $f(1)$ so that the lemma holds for $n=1$.

Assume the lemma holds for lesser values of n. Therefore

$$
\begin{aligned}
f(x+n) & =f(x+n-1+1)=f(x+n-1) \cdot f(1) \\
& =f(x) f(1)^{n-1} f(1)=f(x) \cdot f(1)^{n}
\end{aligned}
$$

by induction hypothesis.
Hence the lemma holds for any nonnegative integer.
Since $f(0)=1$ and for any positive integer n

$$
\begin{aligned}
f(x)=f(x-n+n)= & f(x-n) f(1)^{n}, \\
& f(x-n)
\end{aligned}
$$

Thus $f(x+n)=f(x) f(1)^{n}$ for all n..
Take now $x=0$. Then $f(n)=f(0) f(1)^{n}=f(1)^{n}(n \in \mathbb{Z}) /$

Lemma 2.14. $f(r)=f(1)^{r}$, for any rational number r.
Proof. Since $0,1 \in f(\mathbb{R}), \frac{1}{q} \in f(\mathbb{R})$ for all $q \in \mathbb{Z}(>0)$ by the Intermediate Value Theorem.

$$
\text { For } \left.q \in \mathbb{Z}(>0), \begin{array}{rl}
f(1) & =f\left(\frac{1}{q} \cdot q\right) \\
& =f\left(\frac{1}{q}+\ldots+\frac{1}{q}\right) \\
q \text { times }
\end{array}\right)
$$

by applying $E q(2.8)$ repeatedly q times and since $\frac{l}{q} \in f(\mathbb{R})$, then

$$
\begin{equation*}
f\left(\frac{1}{q}\right)=f(1)^{1 / q} . \tag{2.13}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Let } r=\frac{p}{q} \text { where } p, q \in \mathbb{L}(>0) \\
& \begin{aligned}
f(r)=\frac{f\left(\frac{p}{q}\right)}{q} & =f\left(\frac{1}{q}+\cdots+\frac{1}{q}\right) \\
& =f\left(\frac{1}{q}\right)^{p}=\frac{1}{q}=(1)^{\frac{1}{q} \cdot p}=f(1)^{r}
\end{aligned}
\end{aligned}
$$

by $E q(2.8)$ and $E q(2.13)$. But for any positive rational r,

$$
1=f(-r+r)=f(-r) \cdot f(r)
$$

hence

$$
=f(r)^{-1}
$$

Therefore the lemma holds for all rational numbers /

Now we will prove a main result :

Theorem 2.15. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying
(2.8) $f(x+f(y))=f(x) \cdot f(f(y))$
then $f \equiv 0$ or $f(x)=\lambda^{x}$ for some non-zero λ in \mathbb{R}.

Proof. Suppose $f \neq 0$. Then $f(0)=1$ by Proposition 2.11 and 2.12. For any x in \mathbb{R}, there exists a sequence r_{1}, r_{2}, \ldots of rational numbers converging to x. Since f is continuous

$$
\lim _{n \rightarrow \infty} f\left(r_{n}\right)=f\left(\lim _{n \rightarrow \infty} r_{n}\right)=f(x) .
$$

But by Lemma 2.14,

$$
\lim _{n \rightarrow \infty} f\left(r_{n}\right)=\lim _{n \rightarrow \infty} f(1)^{r} n=f(1)^{x}
$$

Hence $\quad f(x)=f(i)^{x}=\lambda^{x}$ for some non-zero λ in \mathbb{R}.
Moreover, this function satisfies Eq (2.8).
Hence the theorem is proved /

Eq (2.9). Let f be a solution of Eq (2.9).
Note first that if $f \equiv c$, then from $E q(2.9)$ we have

$$
c=c \cdot c
$$

Therefore $c=0$ or 1 .

Proposition 2.16. If f is a constant function, then $f \geqslant 0$ or 1 .

Now assume that f is non-constant.
Theorem 2.17. If $f: \mathbb{R}(>0) \longrightarrow \mathbb{R}(>0)$ is a continuous function satisfying
(2.9)

$$
f(x f(y))=f(x) f(f(y))
$$

Then $f(x)=x^{c}$ for some c in \mathbb{R}.

Proof. Consider the diagram :

where $g=h_{1} \circ f \circ h_{2}$. Since h_{1}, f and h_{2} are continuous, g is continuous and

$$
g(x)=\ln \left(f\left(e^{x}\right)\right)
$$

Then $g(x+g(y))=\ln \left(f\left(e^{x+\ln } f\left(e^{y}\right)\right)\right)$

$$
\begin{aligned}
& =\ln \left(f\left(e^{x} \cdot f\left(e^{y}\right)\right)\right) \\
& =\ln \left(f\left(e^{x}\right) \cdot f\left(f\left(e^{y}\right)\right)\right) \\
& =\ln \left(f\left(e^{x}\right)\right)+\ln \left(f\left(f\left(e^{y}\right)\right)\right) \\
& =\ln \left(f\left(e^{x}\right)\right)+\ln \left(f\left(e^{\ln f\left(e^{y}\right)}\right)\right) \\
& =g(x)+g(g(y)) .
\end{aligned}
$$

By applying Theorem 2.10,

$$
g(x)=c x \quad(x \in \mathbb{R})
$$

for some c in \mathbb{R}. Thus

$$
\begin{aligned}
\ln \left(f\left(e^{x}\right)\right) & =c x \\
f\left(e^{x}\right) & =e^{c x} .
\end{aligned}
$$

$$
\text { Therefore } \quad f(x)=x^{c} \quad(x \in \mathbb{R}) \text {. }
$$

Moreover, this function satisfies Eq (2.9).
Hence the theorem is now completely proved /

Eq (2.10). Let f be a solution of Eq (2.10).
Let $x=1$ in $E q(2.10)$. Then

$$
f(1 \cdot f(y))=f(1)+f(f(y))
$$

for any y in \mathbb{R}; therefore

$$
f(1)=0
$$

Thus

$$
f(x f(I))=f(x)+f(f(I))
$$

$$
=f(x)+f(0)
$$

But $f(x f(1))=f(x .0)=f(0)$; hence

$$
f(0)=f(x)+f(0)
$$

which implies that $f(x)=0$ for all x.
Hence the function which satisfies Eq (2.10) is the zero function. Then we have proved:

Theorem 2.18. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function which satisfies Eq (2.10), then f is identically zero.

CHULALONGKORN UNIVERSITY

Jensen's Functional Equations.

In this section, we shall consider the functional equation of the form :

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}
$$

which is known as Jensen's equation (see [I]). This functional equations can be reduced to the Cauchy's functional equation :

$$
g(x+y)=g(x)+g(y)
$$

The particular functional equation we shall solve is given by :
(2.14)
$f\left(\frac{x+f(y)}{2}\right)=\frac{f(x)+f(y)}{2}$.

To find the continuous solutions of this equation, we will reduce
it to a semi-multiplicative symmetric equation :

$$
g(x+g(y))=g(x)+g(y)
$$

By assuming the validity of Theorem 6.6 in chapter VI, we will find the continuous solutions of Eq (2.14).

For convenience, let us state that theorem first.
Theorem 6.6. If $g:(\mathbb{R},+) \longrightarrow(\mathbb{R},+)$ is a continuous function satisfying
(2.15)

$$
g(x+g(y))=g(x)+g(y)
$$

then g identically 0 or $g(x)=x+c$ for some c in \mathbb{R}.

Lemma 2.19. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies Eq (2.14), and if there exists an x_{0} in \mathbb{R} with $f\left(x_{0}\right)=0$, then $f(0)=0$.

Proof. Set $x=f(y)$ in Eq (2.14). Then

$$
f(f(y))=f\left(\frac{f(x)+f(y)}{2}\right)=\frac{f(f(y))+f(y)}{2}
$$

so that

$$
(2.16) \quad f(f(y)) \quad=f(y)
$$

If $f\left(x_{o}\right)=0$, then it follows from Eq (2.16) that

$$
f\left(f\left(x_{0}\right)\right)=f(0)=f\left(x_{0}\right)=0
$$

Hence the lemma is proved /
Theorem 2.20. The continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying
(2.14)

$$
f\left(\frac{x+f(y)}{2}\right)=\frac{f(x)+f(y)}{2}
$$

are either constant or $f(x)=x$.

Proof. It follows from Eq (2.14) that

$$
\begin{aligned}
\frac{f(x)+f(y)}{2} & =f\left(\frac{x+f(y)}{2}\right) \\
& =f\left(\frac{x+f(y)-f(0)+f(0)}{2}\right) \\
& =\frac{f(x+f(y)-f(0))+f(0)}{2}
\end{aligned}
$$

so that
(2.17) $f(x+f(y)-a)=f(x)+f(y)-a$,
where $a=f(0)$. Let
(2.18)

$$
g(x)=f(x)-a .
$$

Then from Eq (2.17) and (2.18), we get

$$
g(x+g(y))=g(x)+g(y) .
$$

Now, it follows from the Theorem 6.6 that

$$
\mathrm{g} \quad=0
$$

or

$$
g(x)=x
$$

$$
(x \in \mathbb{R})
$$

and by virtue of Eq (2.18),
or $\quad f(x)=x+a \quad(x \in \mathbb{R})$.
In the latter case, we have $f(-a)=0$ so that, by Lemma 2.19, $f(0)=0=a$. Hence $f=a$ or $f(x)=x \quad(x \in \mathbb{R})$.

Moreover, these functions satisfy Eq (2.14).
The theorem is now proved /

