CHAPTER IV

ON THE STRUCTURE OF J - RINGS

The materials of this chapter are drawn from references [1], [4] and [7].

In this chapter, we prove that every J - ring is a direct sum of rings with prime characteristic. We also investigate further properties of these summands in order to morefully study the structure of J - rings.

Definition 4.1. A ring R is called a p^k -ring if there exist a prime p and integer $k \ge 1$ such that px = 0 and $x^p = x$ for every x in R.

Theorem 4.2. If m_1 , m_2 , ... m_r are positive integer $\gg 2$ then there exists a prime p such that $m_i - 1 \mid p-1 \mid \forall i = 1, \dots r$. proof Let $a = (m_1 - 1)(m_2 - 1) \dots (m_r - 1)$ and b = 1, therefore by Dirichlet's theorem, there exists a prime of the form $p = (m_1 - 1)(m_2 - 1) \dots (m_r - 1)$ $m_1 + 1$ for some integer $m_1 - 1 \mid p-1 \mid \forall i = 1, \dots, r$.

Theorem 4.3. If n is an arbitrary integer > 1 and if q is a prime then there exist integers. $k \gg 1$ and $t \gg 0$ such that , $q^t(q^k-1) \quad \bullet \quad 0 \quad \text{mod}(n-1) \quad \bullet$

proof. If n = 2, the theorem is true .

Suppose $n \nearrow 2$, write $n - 1 = mq^t$ ____(1)

where $q \neq m$. We can do this, since n-1 > 1 and every integer greater than 1 can be written as a product of primes.

Suppose $n-1 = p_1^{x_1} p_2^{x_2} \cdots p_{m-1}^{x_{m-1}} \cdot q^t$, by letting

 $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{m-1}^{\alpha_{m-1}} = m$ we get the result.

By the Fermat - Euler Theorem , $q^k \equiv 1 \mod(m)$

where $k = \emptyset(m)$, i.e. $m \nmid q^k - 1$

From (1), $m = \frac{n-1}{t}$.

Thus $\frac{n-1}{q^t}$ | $q^k - 1$ which implies that n-1 | $q^t(q^k - 1)$

Therefore $q^{t}(q^{k}-1) \equiv 0 \mod(n-1)$

Theorem 4.4. If x is an element of a ring R such that $x^n = x$ then for all integers m > 0, $x^{m(n-1)+1} = x$ and if h and k are positive integers such that $h = k \mod(n-1)$ then $x^h = x^k$.

proof. We shall use induction on m. If m = 1, we get.

$$x^{n-1+1} = x^n = x$$

Assume the statement is true for m = k. For m = k+1, we get

$$x^{(k+1)(n-1)+1} = x^{k(n-1)+1} \cdot x^{n-1}$$

$$= x \cdot x^{n-1} = x^n = x \cdot x^{n-1}$$

Thus for all $m \geqslant 0$, $x^{m(n-1)+1} = x$

We assume that h >k ,

if
$$k = 1$$
, $h \equiv 1 \mod(n-1)$

i.e.
$$h = m(n-1)+1$$
 with $m \geqslant 0$

so that $x^h = x = x^k$.

If k > 1, then $h - 1 \equiv k - 1 \mod(n-1)$

so
$$h - 1 = m(n-1) + k-1$$
 with $m > 0$.

Hence we have

$$x^{h} = x^{h-1} \cdot x = x^{m(n-1)+k-1} \cdot x$$

$$= x^{k-1} \cdot x^{m(n-1)+1} = x^{k-1} \cdot x$$

$$= x^{k} \cdot x^{m(n-1)+1} = x^{k-1} \cdot x$$

Theorem 4.5. A ring R is a J - ring if and only if there exists a prime p such that $x^p = x$ for every x in R.

proof. The sufficiency is obvious.

Necessity, suppose that $x^n = x$ for every x in R. Since $n \gg 2$, by theorem 4.2 there exists a prime p such that. $n-1 \mid p-1$ i.e. $p \equiv 1 \mod (n-1)$

By applying theorem 4.4, we have

$$x^p = x$$
 for every x in R.

Lemma 4.6. If a ring R has positive characteristic $n = n_1 n_2$ where n_1 and n_2 are greater than 1 and $(n_1, n_2) = 1$ then $R \cong R_1 \oplus R_2$ where R_i is a ring of characteristic n_i . $\frac{proof}{1}$. Since $(n_1, n_2) = 1$, there exist integers k, 1 such that $1 = n_1 k + n_2 1$

and hence for every x in R .

Let $R_2 = \{n_1 kx \mid x \in R \}$ and $R_1 = \{n_2 lx \mid x \in R\}$.

It follows that R_2 is a ring and its characteristic does not exceed

 n_2 , since $n_2(n_1kx) = nkx = 0$. In like manner, R_1 is a ring whose characteristic does not exceed n_1 .

From (2), we see that .

$$n_1 kx = (n_1 k)^2 x + nklx$$

and since nx = 0, this implies that

$$(n_1k)^2x = n_1kx$$
 for every x in R.

Similarly, we can show that.

$$(n_2 1)^2 x = n_2 1x .$$
Define $\emptyset : R \rightarrow R_2 \oplus R_1$ by
$$\emptyset(x) = (n_1 kx, n_2 1x) .$$

We shall now show that \emptyset is an isomorphism of R with the direct sum R₂ and R₁. If x and y are arbitrary elements of R, then $\emptyset(x+y) = \begin{bmatrix} n_1k(x+y) & n_2l(x+y) \end{bmatrix}$

$$= (n_1 kx + n_1 ky, n_2 lx + n_2 ly)$$

$$= (n_1 kx, n_2 lx) + (n_1 ky, n_2 ly)$$

$$= \emptyset(x) + \emptyset(y)$$

and
$$\emptyset(xy) = \left[n_1 k(xy), n_2 l(xy)\right]$$

$$\emptyset(xy) = [(n_1k)^2(xy), (n_2l)^2(xy)]$$

$$= (n_1kx, n_2lx) \cdot (n_1ky, n_2ly)$$

$$= \emptyset(x) \cdot \emptyset(y)$$

Furthermore, if $\emptyset(x) = (0,0)$ we see that $n_1kx = n_2lx = 0$ and then (2) show that x = 0.

Thus \emptyset is an onto homomorphism having zero kernel and is therefore actually an isomorphism.

To complete the proof of the theorem, we only need to show that the characteristic of R_i is n_i (i=1,2). If R_i has characteristic m_i (i=1,2), we see that $m_i \leq n_i$ (i=1,2).

If (x_2, x_1) is any element of $R_2 \oplus R_1$, it follows that

$$m_1 m_2 (x_2, x_1) = (m_1 m_2 x_2, m_1 m_2 x_1) = (0,0)$$
.

Therefore, the characteristic of $R_2 \oplus R_1$ can not be greater than $m_1^m 2$.

Since n is the characteristic of R, it is also the characteristic of the isomorphic ring $R_2 \oplus R_1$ and thus $n \not = m_1 m_2$. But $m_i \not = n_i$ (i = 1,2) implies that $m_1 m_2 \not = n_1 n_2 = n$, and hence we must have $n = n_1 n_2 = m_1 m_2$. Again making use of the fact that $m_i \not = n_i$ (i = 1,2) we see that $m_i = n_i$ (i = 1,2), and the proof is therefore complete .

Lemma 4.7. If R has characteristic $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ where the p_i are distinct primes and each $k_i \geqslant 1$ ($i = 1, \ldots, m$) then $R \cong R_1 \oplus R_2 \oplus \cdots \oplus R_m$ where R_i has characteristic $p_i^{k_i}$ ($i = 1, \ldots, m$).

 \underline{proof} . Using induction on m , for m = 2, the theorem is true by lemma 4.6. Assume the theorem is true for m = n-1. For m = n .

Let
$$n_1 = p_1^{k_1} p_2^{k_2} \dots p_{n-1}^{k_{n-1}}$$
 and $n_2 = p_n^{k_n}$,

then $(n_1, n_2) = 1$. It follows from lemma 4.6 that

$$R \cong T_1 \oplus R_n$$

where T_1 has characteristic p_1 p_2 p_2 p_2 p_2 p_2 p_3 and p_4 has characteristic p_n

Since the theorem is true for m = n-1, this implies that

$$R_1 \cong R_1 \oplus R_2 \oplus \cdots \oplus R_{n-1}$$

where R_{i} has characteristic p_{i}^{k} (i = 1, 2, ..., n-1).

Hence $R \cong R_1 \oplus R_2 \oplus \cdots \oplus R_n$ where R_i has characteristic $p_i^{k_i}$ (i = 1, ..., m)

Theorem 4.8. If R is a J - ring, there exist rings R_1 , R_2 , ..., R_m such that $R = R_1 \oplus \cdots \oplus R_m$, R_i ($i = 1, \ldots, m$) has prime characteristic.

<u>proof.</u> First we need only to show that the characteristic of
R is a product of distinct primes.

Since
$$(ax)^n = ax$$
 we get $(a^n - a) x = 0$

for every x in R and every integer a, there exists a least positive integer m such that mx = 0. Clearly m a^n a for every integer a.

We claim now that m is a product of distinct primes. To see this, it will be sufficient to show that if $m = p_1 m_1$ where p_1 is a prime factor of m, then $(p_1, m_1) = 1$.

Suppose that $m_1 = p_1 m_2$ for some integer m_2 . Then, for every x in R

$$m_1 x = (m_1 x)^n = m_1^n x = p_1^n m_2^n x$$

$$= p_1^{n-2} m_2^{n-1} m x = 0$$

which contradicts the choice of m. Thus $m = p_1 p_2 \cdots p_m$ where p_i are distinct primes. By using lemma 4.7 the proof is complete .

Theorem 4.9. A ring R is a J - ring if and only if R is a direct sum of finitely many p^k - rings.

proof. To prove the sufficiency, by theorem 4.8, we get.

$$R \cong R_1 \oplus \cdots \oplus R_m$$
;

where $R_i = \{x \mid x \in R \text{ such that } p_i x = 0\}$ (i=1, ..., m),

Clearly, R; is a subring of R with characteristic p; .

How we want to prove that R_i is a p_i - ring. In fact, by theorem 4.3 there exist integers $t(i) \gg 0$ and $k(i) \gg 1$ such that $n-1 \nmid p_i \pmod{p_i}$

so
$$p^{t(i)+k(i)} \equiv p_i^{t(i)} \mod(n-1)$$
.

By theorem 4.4, we have

$$x^{p_{i}^{t(i)+k(i)}} = x^{p_{i}^{t(i)}}$$

$$(i=1,...,m) .$$

Hence, for every x in R; we have

$$(x - x^{p_{i}^{k(i)}})^{p_{i}^{t(i)}} = x^{p_{i}^{t(i)}} - {p_{i}^{t(i)} \choose 1}^{p_{i}^{t(i)}} x^{p_{i}^{t(i)}-1} x^{p_{i}^{k(i)}} + \cdots$$

$$= x^{p_{i}^{t(i)}} - x^{p_{i}^{t(i)+k(i)}}$$

= 0

By theorem 3.4, R has no nilpolent element other than O... Therefore, we obtain that:

i.e.
$$x = x^{p_i^{k(i)}}$$

Thus R_i is a $p_i^{k(i)}$ - ring.

To prove necesscity, assume that R is a direct sum of finitely many $p_i^{k(i)}$ - rings say R \cong R₁ \oplus \oplus R_m . Since $p_i^{k(i)} \ge 2$ (i = 1,...,m) by theorem 4.2, there exists a prime p such that

$$p_{i}^{k(i)} - 1 \mid p - 1$$
 $i = 1, ..., m$.

Therefore, by theorem 4.4 we have

$$y^p = y$$
 for every y in R_i.

For any x in R,

$$x = (x_{1}, x_{2}, ..., x_{m}) x_{i} \in R_{i}$$

$$x^{p} = (x_{1}, x_{2}, ..., x_{m})(x_{1}, ..., x_{m})(x_{1}, ..., x_{m})$$

$$= (x_{1}^{p}, x_{2}^{p},, x_{m}^{p})$$

$$= (x_{1}, x_{2}, ..., x_{m})$$

$$= x$$

By theorem 4.5, R is a J - ring.