CHAPTER III

SYMMETRIC INVERSE SEMIGROUPS

In this chapter, Trotter's work of characterizing congruence-
free inverse semigroups with zero is used to determine all congruence-
free congruences on the symmetric inverse semigroups on any finite set
and any denumerable set. It is proved that the symmetric inverse semi-
group on any nonempty countable set has exactly one nonuniversal con-

gruence~-free congruence and its explicit form is also given.

Let S be a semigroup. A congruence p on S is said to be

idempotent-separating if each p-class of S contains at most one idem-

potent.
It has been proved by Howie in [3] that the maximum idempotent-

separating congruence [ on an inverse semigroup S always exists and

p = {(a, b)€ s x5 | aea - = beb-! for all e & E(S) },
or equivalently,
p = {(a,b) e s xs | a lea = b leb for all e& E(s)},

and moreover, uQ)’(o.

A semigroup S is said to be fundamental if the identity con-
gruence is the only congruence contained in the Green's relation)'(g
of S.

Let S be a semigroup. Any}ﬁ -class of S contains at most one
idempotent [1, Lemma 2.15]. Then any congruence on S contained in

)‘Qis an idempotent-separating congruence. Thus, an inverse semigroup
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S is fundamental if and only if the maximum idempotent-separating

congruence U of S is the identity congruence.

Let T be a subset of a semigroup S. The centralizer of
T in S, C (T), is the set {x € s | xt = tx for all t€ Tk,

Let S be an inverse semigroup. Then
CS(E(S)) = {xeS | xe = ex for all e € E(S)}. Because any two idem-
potents of S commute with each other, E(S) & CS(E(S)). It has been
proved by Howie in [3] that an inverse semigroup S is fundamental if
and only if CS(E(S)) = E(S). Hence, an inverse semigroup S is funda-
mental if and only if for any nonidempotent a of S, there exists an

idempotent e of S such that ae # ea.

A semilattice E with zero 0 is said to be disjunctive if
for any e, £f € E . such that e { f, there exists g € E ° such that

g >0, g<f and eg=0.

The following fact is a very important motivation of our
studying congruence-free congruences on symmetric inverse semigroups :

Congruence-free inverse semigroups with zero O have been cha-
racterized by P. G. Trotter in [4] as follows : An inverse semigroup
S with zero is congruence-free if and only if (1) S is O-simple,

(2) s is fundamental and (3) E(S) is disjunctive.

Let X be a set. Then I, the symmetric inverse semigroup on X, is

X

an inverse semigroup with zero. Hence, if p is a congruence on Ix’
then p is congruence-free if and only if Ix/p is a congruence-free

inverse semigroup with zero.
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For any set X, the symmetric inverse semigroup, Ix, is con-
gruence-free if and only if |X| < 1. Iet X be a set such that IX
is congruence-free. Then Ix is a O-simple semigroup Or IX is a zero

semigroup of order less than 3. If I is a zero semigroup, then

X
X =¢, so le = 0. Next, assume I, is O-simple. Let
A={o€& I, | |aa] < 1}. 1t is clear that A is an ideal of the semi-
group I Therefore A is either {0} or I_,. Hence |X| % 1. The con-

X* X
verse is trivial.
Let X be a set and o, B be elements of the symmetric inverse
semigroup on the set X. Then MBS Aa and VBa & Vo. Thus,
|Aa8| £ |Aa| and |V8a| < |VOL|. Because o and Bo are one-to-one maps,

|aa| = |Va| ana |ABa| = |VBa|. Hence |ABa| = |vga| < |Va| = |Aa
It then follows that if v is a cardinal such that v > 0, then the set
{s'&'r, | |aa| < v} and {o & I, | [aa| < v} are ideals of I,.

The following proposition shows that the symmetric inverse

semigroup on a nonempty set has a maximum proper ideal :

3.1 Proposition. Let X be a nonempty set. Then the set

{o € T | |aa| < |%|} is the maximum proper ideal of I.

Proof : As the obove proof, {a & Iy | |aa| < |x|} is an ideal
of IX' Let A be a proper ideal of Ix. To show that
AC {a €1, | |aa| < ||}, suppose not. Then there exists B &€ A such
that B% {o &1, | |aa| < |x|}. Hence |aB| = |x|, and thus there
exists Yy €& Ix with Ay = X, Vy = ARB. Hence YB & A which implies that

y8(®) 'e A. But &Y8 = X and (v8) (Y8) '€ E(I), so (vB) (yB) " is
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and belongs to A. Therefore A = I_ which contra-

the identity of I X

X
dicts the assumption. Then AS {a & I | |aa| < |x]3.

Therefore, {u €I | |Aa| < |X|} is the maximum proper ideal

X
of I .. #
X

By Proposition 3.1, the next two corollaries are directly

obtained.

3.2 Corollary. Let X be a finite set of cardinality n > O. Then

the set {o & Iy | | Aol <n -1} is the maximum proper ideal of I..

3.3 Corollary. If X is a denumerable set, then the set

{0 € I, | Ao is finite} is the maximum proper ideal of Iy-

Let X be a set. Then the permutation group (the symmetric

group) on the set X, Gyr is the set {a & Iy Ao = Vo = X} and it is

a group of units of IX’ the symmetric inverse semigroup on the set X.

Let X be a finite nonempty set. Then the set IX\ Gx =

{o € Iy | |aa| < |%|} and Gy is a filter of I .. To show G, is a

I
]

filter of Ix’ let o, B €& Ix such that oBf & Gx’ Then AocB X Vag.

]
=<
I

But generally, we have that AoB &€ Ao and VaB € VB, so Aa VB.
Since X is finite, Vo = X = AB, thus o, B & Gx. Therefore G, is a

filter of IX' Hence Ix\ Gx is a completely prime ideal of I

3.4 Corollary. For any finite nonempty set X, Ix\ Gx is the maximum

proper ideal of I, and it is also completely prime.

X

We give a remark that for any infinite set X, Ix\ Gx is not
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an ideal of IX' A proof is given as follows : Let X be an infinite
set. Let x be a fixed element in X. Since X is infinite,
|x| = |®x\{x}|, so there exists a one-to-one map o from X onto X \ {x}.
X =1xi-, :
Then o & Ix but o éti, that is, o & IX\ GX' But ao is an idempo
: - -1 . : z
tent of Ix with Acoa % = Ao = X. Thus aa is the identity map on X,
=1 -1
. N\
so 00 "€ G,. Therefore a & I\ G, but aa é‘% I\ G,. Hence I \G,

is not an ideal of Ix.

Let X be a set. For each nonnegative integer n, let

A= {a e I, | |Aal <=0l

The following proposition characterizes all ideals of the

symmetric inverse semigroup on any finite set X.

3.5 Proposition. Let X be a finite set and A be a nonempty subset of

I Then A is an ideal of IX if and only if A = An for some nonnega-

X

tive integer n.

Proof : First, assume that A is an ideal of IX' Let m be the
maximum element of the set {|Aa| | o € A}. Then there is an a & A
such that |Aa0| =m. Since A = {c €1, | |aa] <m}, ag A . Next,

we are to show that Amg A, Let B €& Am' Then IABI < m.

Case |AB| = m. Then |AB] =m-= |A0LO|, and so there exists vy € I

X

such that Ay = AB, Vy = Aoco. Let A = a;l Y-l B. Because Ayao =

-1 & iy =
(Vy N Auo)y = (Aao)y L AR, (Yao) (aoly l) .is the identity map on

AB. Hence yaOA = (yoco) (a(_)ly_l)B = B. Since aoé A, we have that

B & A.
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case |AB| < m. Let |AB| = k. Assume that |X| =n. Then k <m < n,
hence |x \ABI >m - k. Let al, Anr eeer am_k be m - k distinct elements

in X\ AB. Let y be the identity map on the set AB U {al, ays e am_k}.

Then vy & Ix and |Ay| m, so Yy € Am. By the first case, Y &€ A. But
YB = B, thus B & A.

A .
m

Therefore, A

The converse follows from the previous mention. #

Let X be a finite set of n elements. Then A, A

0 17 et An are

all the ideals of Ix and they are totally ordered by inclusion as

. = e = -3
follows : {0} Aog ALG .- S A Iy

Let p be a congruence on a semigroup S. Then for any ideal A
of S, the set {ap | a € A} is then an ideal of the semigroup Ix/p,

and for convenience, we will denote {ap | a & A} by a.

3.6 Proposition. Let X be a nonempty set and p be a congruence on IX'
Then the semigroup Ix/p is O-simple if and only if

op = {a €1, | |aaf < &4 s

Proof : Assume that Ix/p is O-simple. Then p is not a univer-

sal congruence on IX and Op is a proper ideal of Ix. By Proposition

3.1, op & {a € Iy | |aa| < |%|}. Now, we will show for equality.

Case X is finite. Then |X| = n for some positive integer n and there-

fore {a & Iy | |aa] < x|} =a Since X is finite and Op is an ideal

n-1"

of Ix, Op = Am for some nonnegative integer m (by Proposition 3.5).

Then m < n - 1. We are to showm =n - 1. Because
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A" {a e I, | | Aol <m+ 1} is an ideal of I,, A . is an ideal of
IX/p and {0p} = A G A ,,- Since I./p is O-simple, Boi™ Ix/p. Hence

1pR for some B € Am . Then IABI sm + 1. -+ TE IABI < m, then

+1
B & Am = Op, so 1lp0 which implies p is the universal congruence on Ix,
a contradiction. Therefore IASI =m+ 1. Suppose m + 1 < n. Then

there exists a & X such that a % AB. Let b € AB and Y be the identity

map on the set (AB U {a}) \{b}. Then IAyl =m+ 1 and

|ayB| = |88 \{b}| = m and therefore yBpO. Because lpB, YpYB. Hence
Y & Op.= Am, it is a contradiction because |Ay| =m + 1. Therefore
m+ 1 =n. Hence Op = A7 {a € Iy | |Aa| < |X|}.

Case X is infinite. Let'n'¥ foa €I, | |aa| < |%]|}. since A is an

ideal of I, A is an ideal of Ix/p, and hence A = {0p} or A = Ix/p.
Suppose A = Ix/p. Then 1lpo for some a & A. Since a & A, |Aa| < le
mduwmmmIX\M|=|ﬂ.‘mtsbeﬂmiamﬂwmmonX\m.

Then |[AB| = |X|, so B % Op. sSince lpa, (B, Ba) = (B,0) € p. This
leads to a contradiction. Hence A= {0p} which imélieé that A = Op.

Therefore Op = {a € I_ | |Aa| < |X| }.-

X "
Conversely, assume that Op = {a & Iy | |aa] < |X|}. Then
‘ 2
lp # Op and therefore (I,/p)” # {Op}. Let B be an ideal of I,/p such

le and

that B # {Op}. Then there exists B € I, such that | a8

X and

VR' = AB. Thus B'Bp € B and AB'B = X. Since (B'8) (B'8) T is the

Bp &€ B. Let B' be a one-to-one, onto map such that AB'

identity of IX’ the identity of Ix/p belongs to B. Hence B = Ix/p.

Therefore Ix/p is O-simple. #
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The following corollaries are the immediate consequences of

Proposition 3.6

3.7 Corollary. Let X be a finite nonempty set and p be a congruence

on Ix. Then the semigroup IX/p is O-simple if and only if Op = IX\GX'

3.8 Corollary. Let X be a denumerable set and p be a congruence on

Ix. Then the semigroup Ix/p is O-simple if and only if

Op = {0 € I, | Ao is finite}.

Let X be a finite nonempty set. Because IKNGX is an ideal of

I, and Gx is a subgroup of I_,, we clearly have that

X X

= X X i i
8 [(IX\ GX) (I,\ Gx)]lJ (GX Gy) is a nonuniversal congruence on
Ix. The following theorem shows that the congruence § 1is the only

nonuniversal congruence-free congruence on Iy

3.9 Theorem. Let X be a finite nonempty set. Then
§ = [(IX\ Gx) X (Ix\.Gx)] U(GX X GX) is the only nonuniversal

congruence-free congruence on Ix.

Proof : As the above mention, 8 is a nonuniversal congruence
on S. Since |Ix/6 | = 2, § is congruence-free.

Let p be a nonuniversal congruence-free congruence on IX'
Then Ix/p is a O-simple inverse semigroup. Hence by Corollary 3.7,
Op = Ix\‘Gx’ this implies p & § . Therefore by Corollary 1.3, p = § .

This shows that § 1is the only nonuniversal congruence-free congruence

on IX. Hence the theorem is now completely proved. #
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Let X be a set. For o, B & IX' let the notation D(a, B) denote

]

the set {x &€ Ao VAR I X0 xB}. Then the following clearly follow :

Aa, D(a, B) = D(B, a) € Ao N AB and

For o, B, Y € I, D(a, o)
D(a, B) N D(B, v) € D(a, ¥).

Let X be an infinite set and let 6x be the relation on Iy de-
fined as follows : For o, B € IX'

a8 B if and only if |aa\D(a, 8)| < |x| and |AB\D(a, B)| < |x].

Note that for o, B € I, if ad,B, then |aoa N\ ag| < |x| and
|ag \aa| < |x]|.

It will be shown that for any infinite set X, Gx, is a con-

gruence on I The following lemma is required.

43

3.10 Lemma. Let X be an infinite set. Then the following hold :
(1) If o, B, Y€ I,, then (D(a, B A V)Y = D(ya, YB).
(2) If a, B, Y €T, then (D{a, B)a N AY)a '€ D@y, BY).
(3) For o, B, YE& IX, if aGXB and Bny, then

|aaND(B, V)| < |%].

Proof : (1) Let x € (D(a, B) M VY)Y . Then
xy € D(a, B) N Vy, so xy& Ao N AB N Vy and (xy)o = (xy)B. Therefore
x & Aya N AYB and xya = xyB. Thus x € D(ya, YB).

Conversely, let x & D(ya, YB). Then x € Aya (1 Ay and
xye = xyB. But Aya N AyB = (Vy 0 sy E N vy N Ay T =
((ha M A8) N ¥y)y >. Thus xy & Aa M A8 N Vy. since xy & Aa (A8 and
(xy)a = (xy)B, xy & D(a, B). Hence xy belongs to D(a, B) M Vy and

thus x € (D(a, B) M VY)Y .
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Hence, (D(a, B) M YY)y L = D(ya, YB).

(2) Let x € (D(a, B)o riAy)a_l. Then xo € D(o, B)a N Ay, so
x € D(a, B) (since o is one-to-one) and xa € Ay. Thus x € Aa N AB,
xo = xB and x0 € Ay. Since xB = xo & Ay, x € ABy M Aoy and xBy = xoy.
Hence x € D(ay, By).

(3) Assume that a6.8 and B8 y. Then [AuNag| <
|Aa\D(a, B)| < |X| and |AB\D(B, y)| < |X|. since X is infinite
| (AB\D(B, ¥)) U (8o \AB)| < |X|. Because Aa\D(8, ) ©

(ABND(B, v)) U (Aa \AB). Therefore |Aa\D(B, v)| < |X|. #

3.11 Proposition. For any infinite set X, GX is a congruence on Ix.
Proof : The relation 6x is clearly reflexive and symmetric

on IX' To show Gx is transitive, let a, B, v €I

and B y. Then |Aa\D(a, B)| < |x| ana |ABN\D(a, B)| < |X]|,

X such that aéXB

|AB\\D(B, Y)| < IXI and |Ay\D(B, Y)| < |x|. we are to show adxy,
that is to show |Aa\D(a, y)| < |X| and |Ay\D(a, y)| < |X|. since
D(a, B) ND(B, v) € D(a, y), Aa\D(a, Y)ES Aa\(D(a, B) N D(B, Y)).
But Ao\ (D(a, B) M D(B, ¥)) = (Aa\D(a, B)) U (Aa\D(B, Y)), so
AaN\D(a, y) € (AaN\D(a, B)) U (Aa\D(B, y)) which implies

|aa\D(a, v)| < |[aa\D(a, 8)| + |[2a\D(8, v)|. By Lemma 3.10 (3),
we have that lAa\‘D(B, | < |X|. Then |Aa\\D(a, Y)l < |X|. By the
symmetry of Gx, we can similarly prove that IAY\\D(a, Y)| <'[Xl.
Hence aéxy. Therefore GX is an equivalence relation on Ix.
Next, to show Gx is compatible, let o, B, Y & IX such that

aé,B. Then |Aa\D(a, B)| < |x| ana [AB\D(o, B)| < [X|.We will show
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that |Aya\D(ya, yB)| < |x| and |AYB\D(ya, vB)| < |X]|,
|aey ~D(ay, BY)| < |X| and |ABysD(ay, BY)| < |X|. Because y is a
one-to-one map and (D(a, B8) N Vy)Y_l = D(yo, YB) (Lemma 3.10 (1)),
| (faxD(a, 8) N ¥y| = | ((AaxD(a, B8) O Ty 1| =
| (b OV Vy) \ (D(a, B) A Ty))y | = |(da 0wy N (D(a, B) A YT
= |Aya\D(ya, yB)|. since |Aa\D(a, B)| < |X|, |Aya\D(ya, ¥B)| =
| (da\D(a, 8)) N Vy| <|x|, similarly, |AyB\D(ya, YB)| < |X|. Hence
Yas Y8,

Next, we are to show |Aoy\D(ay, By)| < |X| and
|agy\D(ay, By)| < |X|. Because |Aa~D(a, B)| < |X| and

| Aay ND(ay, BY)| < [Aay \ (D(a, B)a A Ay (Lemma 3.10 (2))

| va A ay)eTEN (D(e, B)a A Mot

| ((Va A y) \ (D(a, B)a A Ay))a T

| (Vva 0 Ay) N\ (D(a, B)a N AY) |

I A

|[va\D(a, B)a|

| (Va\D(a, Boa T

|da\D(a, B)],
it follows that |Aow\D(ow, By)l < |x| . It can be proved similarly
that |ABy\D(ay, By)| < |X|. Thus owdey.

Therefore, GX is a congruence on IX’ as desired. #

By the definition of Sx, we have that acSXO if and only if
|aa| < |%|. Then 08y = {o e Iy | |aa| < |X|}. Hence, by Proposition

3.6, the following proposition is obtained :
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3.12 Proposition. For any infinite set X, the semigroup IX/GX is

O-simple.

Iet X be an infinite set. Since IX is an inverse semigroup

and GX is a congruence on I from Introduction page 4 , IX/<Sx is

X!
an inverse semigroup and E(I,/8,) = {aGX | o e E(Ix)}.

Let o, B & E(Ix). Then o and B are identity maps on Ao and
AB, respectively, so for x € Aa N AB, xa = x = xB. Hence D(a, B) =

Ma O AB. Therefore ad, = B8 if and only if |AaN (Aa N )] =

|aa\AB| < |X| anad |ABN (Aa Y AB) | = |ABN\ Aa| < |X].

Let X be an infinite set and a, B € E(IX). If aéx £ BGX,
then qu = aGXBGX = aBGX and so |AaN AaB| < |X|. Because a and aB
are idempotents of Iy, X0 = x0B for all x € Aa N AaB = AoB. Thus,
if [Aa\;AaB| < [xl, then (o, aB) & Gx, SO an = anBGX which implies
an < B6X.

Hence aéx < de if and only if |Aa\ AaB| < IXI.

Assume that an < BGX. Then adx # BGX, so we have that

| A \ 2B |X| or |ABN Aal |x|. But AaB € 4B, so

. Therefore IAB\.Aa| = |X|. This shows

|ao s 88| < Ao \noB| < |X

I A

that for o, B € E(IL,), if ad, < BS,, then [ABN4a| = [x].

3.13 Proposition. For any infinite set X, E(Ix/dx) is disjunctive.

Proof : Let o, B € E(IX) such that adx < BGX. Then

|AB\ ral| = |X|. Let vy be the identity map on the set AB N\ Ac. Then

Y € E(Ix) and Ay € AB. since |Ay| = |AB\aa] = x|, ¥ %-OGX and
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hence OGX < y8_,. Next, we will show that YGX X BS_, that is to show

X X
|ay \ ayB| < |X|. Because Ay\AyB = Ay\(Ay N AB)= Ay\ Ay = ¢,
|Ay NAYB| = 0 < IXI Therefore Yéx - BGX.
Finally, we show that anyé = 08_,. Because Aoy = Ao N Ay =

X X
Ao OV {AB\ Ad) = ¢, IAayI =0 < |X| and thus ayGXO, this means

anyéx = OGX.
Therefore, E(IX/GX) is disjunctive. #

One of the main results of this research is to show that for

any denumerable set X, §_ is the only nonuniversal congruence-free

X

congruence on the symmetric inverse semigroup on the set X.

3.14 Lemma. Let X be an infinite set and a & Ix. Then oqu is an
idempotent of the semigroup Ix/Gx if and only if

|[{x € pa | xa # x}| < |X].

Proof : Let o & I,. Assume that an is an idempotent of the
semigroup Ix/Gx. Since E(IX/GX) = {BGX | B € E(IX)}, an = YGX for
some y & E(Ix). Then D(a, y) = {x & Ao ) Ay | X0 = Xy} =
{x € Ao NAY | xa = x} and |AaND(a, y)| < |X|. But Aa\D(a, y) =
boaN{x &€ ba Ny | xa = x} D doaN{x € ba | xo = x} = {x € Ao | xa # x}.
Hence |{x & fo | xa # x}| < |X].

To prove the converse, assume that |{x € Aa | xa # x}| < |x].
Let A be the identity map on the set {x € Ao | xa = x}. Then
A€ E(Ix) and so Adxe E(IX/GX) . Claim that anA. By the definition
of A, Aa\D(a, A) = Ao \{x € Ao M1AX | xa = x} = Ao\ {x & Ao | xa = x}

= {x & Aa | xa # x} and AA\D(a, A) = AA\{x €& Aa ) AX | %o = x} =

-
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AN A\ = ¢. Thus |Aa\D(a, M| = |[{x € da | xa # x}| < [x| and

|AAND(a, )| =0 < |X| Therefore, oqu)\. #

3.15 Lemma. Let X be an infinite set and p be a congruence on IX
such that the semigroup Ix/p is O-simple and E(Ix/p) is disjunctive.
Let o € Iy. If there exists a subset A of Ao such that |Aoc \AI < |x|
and ao = a for all a& A, then ap = Bp € E(Ix/p) where B is the

identity map on the set A.

Proof : Let a € Ix. Let A be a subset of Aa such that
lAa\ AI < IXI and ao = a for all a € A. Let B be the identity map
on A. Then Bp & E(Ix/p) and ABE& Aa. Since Ix/p is O-simple, by
Proposition 3.6, Op = {A & Ly ol < X[

If |Aa| < |X|, then |AB| < [Aa| < |X| and hence a, B € Op
which implies apB.

Assume that |Aa| = |X|. since |aaxag| < |x|, |28 = |x].
Let Yy be the identity map on Aa. Then yp & E(Ix/p) . Because By = B,
Bp = Byp = Bpyp and hence Bp < yp. Suppose that Bp < yp. Since
E(Ix/p) is disjunctive, there exists A & E(Ix) such that Op < Ap < yp
and BpAp = Op. Thus BAp = Op which implies |AB)\| = |AB N A)\| < |x|
Because IAOL\ABI < IXI and Ay = Ao, IAy\ABI < |x| and hence
|(Ay\AB)n AA] < |X| Since Op < Ap <yp, Op < Ap = Ayp, and so
|ax Noay| = |axy| = |x|. But ax N Ay € (AB N M) U (Ay \AB) and

. This contradicts that we have

|ay \28| < |x|, then |AB N AA| = |X
obtained. .Therefore Bp = yp, thus Bapya. But Ba = B and ya = a.

Hence Bpoa. #
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3.16 Theorem. For any denumerable set X, 8, is the only nonuniversal

X
congruence-free congruence on the symmetric inverse semigroup on the

set X.

Proof : We prove that GX is a congruence-free congruence on
Ix first. From [4], it is equivalent to show that Ix/csx is O-simple
and fundamental and E(IX/SX) is disjunctive. By Proposition 3.12,
Ix/tSX is O-simple and by Proposition 3.13, E(I,/$,) is disjunctive.
To show that IX/Gx is fundamental, it is equivalent to show that
E(Ix/ﬁx) is the centralizer of E(IX/GX) in IX/Gx or equivalently, for
o & Iy such that a6x§ E(Ix/dx) , there exists B & E(IX) such that
(@B, Ba) & &, .

Let o & I, such that aéx§ E(Ix/éx) . Then by Lemma 3.14, the
set {x € Aa | xo # x} is denumerable. Let A = {x € Aa | %o # x}.
Then A is an infinite set. Let x, be an element of A. Then Xy # X, 0.

1

..l 2 )
Let A, = A\ {xl, X,0, X0 } if xle Vo but if xléi Vo, let

1

A, = A\{xl, xla}. since A is infinite, A, # ¢. Let x, be an ele-

ment of A Then X, # X : x2# X, 0 and X0 # Xq. Next, let

1

< -1, . ’
A AN {xz, Xy0 X0 } if X, € Va and if x2§ Va, let

2

e g B3 nmnn
A, = A, {xz, xza}. Because A, is infinite, A, # ¢. Let x, be an

element of A2. Then Xy # X5 # Xyr Xg # x50 and X # x40 # Xye Assume

that Xyr Xor eees xn are choosen from A as above. Then An-l is infi-

nite.let A =A N{x, xo, % a-l} if x & Va and
n n-1 n n n n

A =2 \{x,xa}ifx%Va. Since A
n -1 n n n

" is an infinite set, An # b,

n-1

Let xn+lé An. By induction process, we have the set {xl, Xyr Xge "o
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which is a denumerable subset of Ao, X, # xj if i # j, and for each
iz xi # x .0 for all j. Therefore the sets {xl, x2, x3, ...} and

J
{x o, ...} are disjoint. Let B be the identity map on the

0, X,0, X

1 2 3
set {31,x2, X34 ...}. Then B & E(Ix), so ssx:e E(IX/GX). Since

AB = VB = {xl, x2, x3, ...} € Ao, ABa = (VB N Aa)B_l = VBN Ax = VB =
{xl, Xyr Xgy seods Por each L@ 81 2.3, .o ki xiaQ AB, so

xiéﬁ AeB. Thus AaB () ABx = ¢, so D(aB, Ba) = ¢. Therefore

|aBax D(Ba, aB)| = |aBa| = |X| so Ba§, # aBS,. Hence BS ad, # ab,B8,.
Thus E(IX/GX) is the centralizer of E(IX/GX) in IX/6X. This proves
that GX is a congruence-free congruence on IX.
Finally, we prove that Gx is the only nonuniversal congruence-

free congruence on I Let p be a nonuniversal congruence on Iy such

X"
that p is congruence-free. Then Ix/p is O-simple and E(Ix/p) is dis-

; - - -1, ,-1
junctive. Let a, B & Ix such that aéxB. Then B laGXB lB and o GXB g
From aéxB and a_IGXB_l, we get ua_IGXBB—l. Hence

1 gg)| < |x| ana |2887*\ Dlaa ~*, 8871 | < |x|. By

IAaa-l\ D (0o
o -1 -1 -1 -1

definition of D(ac ~, BB ~) we have that, xaa ~ = x = xBB for all

x € D(aa-l, BB-l). Let A be the identity map on the set D(au—l, 88_1).
Thus by Lemma 3.15, aa—lpk and BB_lpA and thus aa-lpBB—l. Because

-1 -1 -1 -1, -1 - - -
87286,87%a, 88728 D878, 87 )| < |x| ana |a8T'a\D (8778, 87w |

-1 -1 -1, -1
< Ix|. Then x8 B = x = xB "a for all x € D(B "B, B o). Let y be

the identity map on the set D(B—lB,_B—la). Then by Lemma 3.15,

-1 - -1 - = -
B “Bpy and YpB la, thus B "BpB 1a. Hence ap (a0 la)p = (oo lp)ap =

(88 *0)ap = 8o (87'ap) =Bo (B7'Bo) = (887 B)p = Bp, so (u, B) € b.



This proves that 6x§; P.

Therefore by Corollary 1.3, p = Gx.

Hence, the theorem is completely proved. #
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