CHAPTER I

CONGRUENCE-FREE CONGRUENCES

General properties of congruence-free congruences on any semigroups are presented in this chapter. Moreover, some remarks on congruence-free Rees congruences are given.

Let S be a semigroup and ρ be a congruence on S. Suppose δ is a congruence on S which contains ρ . Let $\overline{\delta}$ be the relation on the semigroup S/ ρ defined by

$$\overline{\delta} = \{(a\rho, b\rho) \mid (a, b) \in \delta\}.$$

Then $\bar{\delta}$ is a congruence on the semigroup S/ ρ .

Conversely, assume that $\bar{\sigma}$ is a congruence on the semigroup S/ρ . Then the relation σ on S given by

$$\sigma = \{(a, b) \mid (ap, bp) \in \overline{\sigma}\}$$

is clearly a congruence on S which contains $\boldsymbol{\rho}_{\boldsymbol{\cdot}}$

Let δ_1 and δ_2 be congruences on S which contain ρ such that $\overline{\delta}_1 = \overline{\delta}_2$ where $\overline{\delta}_1$ and $\overline{\delta}_2$ are defined from δ_1 and δ_2 , respectively, as above. To show $\delta_1 = \delta_2$, let $(a, b) \in \delta_1$. Then $(a\rho, b\rho) \in \overline{\delta}_1$. But $\overline{\delta}_1 = \overline{\delta}_2$, so $(a\rho, b\rho) \in \overline{\delta}_2$. Hence $(a, b) \in \delta_2$. Therefore $\delta_1 \subseteq \delta_2$. Similarly $\delta_2 \subseteq \delta_1$. Hence $\delta_1 = \delta_2$.

From the above proof, we obtain the following: Let ρ be a congruence on a semigroup S. For each congruence δ on S which contains ρ , let $\overline{\delta}$ denote the congruence on the semigroup S/ ρ defined as follow: $(a\rho, b\rho) \in \overline{\delta}$ if and only if $(a, b) \in \delta$ $(a, b \in S)$. Then the association

 δ with $\overline{\delta}$ sets up an inclusion preserving one-to-one correspondence of the set of all congruences on S which contain ρ onto the set of all congruences on the semigroup S/ ρ .

Hence, nice behaviors of congruence-free congruences on a semigroup are obtained directly as follows:

- 1.1 <u>Proposition</u>. Let ρ be a congruence on a semigroup S. Then ρ is a congruence-free congruence on S if and only if either ρ is the universal congruence or ρ is a maximal nonuniversal congruence on S.
- 1.2 <u>Proposition</u>. Let ρ be a congruence on a semigroup S. Then ρ is congruence-free if and only if every chain $\mathfrak E$ of congruence-free congruences on S such that $\rho \in \mathfrak E$ contains at most two elements.

By Proposition 1.1, we then have

1.3 Corollary. Let ρ be a nonuniversal congruence on a semigroup S. Then ρ is congruence-free if and only if ρ is a maximal nonuniversal congruence on S.

We shall have many occasions to refer back to this result in our study of congruence-free symmetric inverse semigroups.

From proposition 1.1, the definitions of maximal nonuniversal congruences and of nonuniversal congruence-free congruences on a semi-group are the same. But "(nonuniversal) congruence-free congruences" are preferred to use because many known results of congruence-free semigroups are referred in this research.

Let S be a semigroup, let ω and i denote the universal congruence and the identity congruence on S, respectively. Let $\mathcal E$ be the collection of congruence-free congruences on S and the identity congruence on S. Partially order $\mathcal E$ by inclusion. If ρ_1 and ρ_2 are two distinct nonuniversal congruence-free congruences on S, then on $\mathcal E$, we have the following Hasse diagram:

Then every nonuniversal congruence-free congruence on a semigroup S is a minimal congruence-free congruence on S. Hence every semigroup has a minimal congruence-free congruence. However, a semigroup need not have a minimum congruence-free congruence. From the above diagram, it is shown that any semigroup having two distinct nonuniversal congruence-free congruences does not have the minimum congruence-free congruence.

Example. Let $S = \{0, a, b\}$. Define an operation * on S by

$$x*y = \begin{cases} x & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

Then S is a semigroup. Let $\rho_1 = \{(a, a), (0, 0), (0, b), (b, 0), (b, b)\}$ and $\rho_2 = \{(b, b), (0, 0), (0, a), (a, 0), (a, a)\}$. It is clearly seen that i, ρ_1 , ρ_2 and ω are all the congruences on S, and ρ_1 , ρ_2 , ω are all

the congruence-free congruences on S. Since $\rho_1 \not = \rho_2$ and $\rho_2 \not = \rho_1$, the minimum congruence-free congruence on S does not exist.

From the previous diagram, a characterization of a semigroup which has a minimum congruence-free congruence is given as follows:

1.4 <u>Proposition</u>. A semigroup S has a minimum congruence-free congruence if and only if S has at most one nonuniversal congruence-free congruence.

Let ρ be a nonuniversal congruence on a semigroup S. If ρ has exactly two classes, then ρ is congruence-free. However, the converse is not true, and we can see its counter examples in Chapter II.

An arbitrary intersection of congruences on a semigroup S is a congruence on S. The intersection of two distinct nonuniversal congruence-free congruences on a semigroup S is the identity congruence on S. Therefore, the intersection of congruence-free congruences on a semigroup S need not be congruence-free. It can be easily seen from the example of page 9-10.

Let S be a semigroup. For an ideal A of S, let ρ_A denote the Rees congruence on S induced by the ideal A, that is, $(x, y) \in \rho_A$ if and only if either x, $y \in A$ or x = y. For each ideal A of S, the quotient semigroup S/ρ_A is a semigroup with zero, and for any $a \in A$, $a\rho_A = A$ which is the zero of the semigroup S/ρ_A .

Any congruence-free semigroup S without zero is clearly a simple semigroup.

Let S be a semigroup with zero 0. Suppose S is congruence-free. Then $\{0\}$ and S are the only ideals of S. If S is a zero semigroup, then every subset of S containing 0 is an ideal of S, so $|S| \le 2$. Assume that S is not a zero semigroup. Then $S^2 \ne \{0\}$, so S is a 0-simple semigroup.

Therefore, if a semigroup S with zero is congruence-free, then either S is 0-simple or a zero semigroup of order less than 3.

However, a simple semigroup and a 0-simple semigroup are not necessarily congruence-free. Let S be a left zero semigroup with |s| > 2. Then S is simple. Let a \in S and $\rho = \{(a, a)\} \cup \{(x, y) \in S \times S \mid x \neq a, y \neq a\}$. Then ρ is a nonuniversal congruence on S. Since |s| > 2, $\rho \neq i$. Hence S is not congruence-free. Next, let s^0 denote the semigroup obtained by joining the zero 0 to S. Then s^0 is clearly 0-simple. Let $\delta = \{(0, 0)\} \cup (S \times S)$. Then δ is a congruence on the semigroup s^0 , $\delta \neq \omega$ and $\delta \neq i$ on s^0 . Therefore s^0 is not congruence-free.

Let S be a semigroup and A be an ideal of S. For each ideal B of S such that $A\subseteq B$, let $\overline{B}=\{b\rho_{\overline{A}}\mid b\in B\}$. The map $B\mapsto \overline{B}$ gives an inclusion preserving one-to-one correspondence of the set of all ideals of S which contain A onto the set of all ideals of the Rees semigroup $S/\rho_{\overline{A}}$.

1.5 <u>Proposition</u>. Let A be an ideal of a semigroup S. If the Rees congruence ρ_A on S is congruence-free, then either A = S or A is a maximal ideal of S.

The converse of Proposition 1.5 is not true. A counter example is given as follows:

Example. Let G be a nontrivial group and let $S = G^0$. Then S is a group with zero. Let $A = \{0\}$. Clearly, A is a maximal ideal of S. Let $\rho = \{(0, 0)\} \cup (G \times G)$. Then ρ is a congruence on S, $\rho \neq i$ and $\rho \neq \omega$. Therefore S is not congruence-free. Since S/ρ_A is isomorphic to S, ρ_A is not a congruence-free Rees congruence on S. #