A SHANALANDE

INTRODUCTION

For a semigroup S, we denote by E(S) the set of all idempotents of S, that is,

$$E(S) = \{a \in S \mid a^2 = a\}.$$

A semigroup S is a <u>semilattice</u> if for all a, b \in S, a² = a and ab = ba.

A semigroup S is a <u>left zero semigroup</u> if ab = a for all a, b & S. A right zero semigroup is defined dually.

A semigroup S with zero 0 is called a $\underline{\text{zero}}$ $\underline{\text{semigroup}}$ if ab = 0 for all a, b \in S.

Let S be a semigroup, and let 1 be a symbol not representing any element of S. The notation S \bigcup {1} denotes the semigroup obtained by extending the binary operation on S to 1 by defining 1.1 = 1 and 1.a = a.1 = a for every a \in S. The notation S¹ denotes the following semigroup:

$$s^{1} = \begin{cases} s & \text{if } s \text{ has an identity,} \\ s \cup \{1\} & \text{otherwise.} \end{cases}$$

Also, the notation s^0 is defined similarly.

Let S be a semigroup. An element a of S is $\underline{regular}$ if a = axa for some $x \in S$, and S is called a $\underline{regular}$ semigroup if every element of S is $\underline{regular}$.

In any semigroup S, if a, $x \in S$ such that a = axa, then ax and xa are idempotents of S. Hence, if S is a regular semigroup, then $E(S) \neq \phi$.

Let a be an element of a semigroup S. An element x of S is an <u>inverse</u> of a if a = axa and x = xax. A semigroup S is an <u>inverse</u> semigroup if every element of S has a unique inverse, and the inverse of the element a in S is denoted by a^{-1} . A semigroup S is an inverse semigroup if and only if S is regular and any two idempotents of S commute with each other [1, Theorem 1.17]. Hence, if S is an inverse semigroup, then E(S) is a semilattice. For any elements a, b of an inverse semigroup S and $e \in E(S)$, we have that

$$(a^{-1})^{-1} = a$$
, $(ab)^{-1} = b^{-1}a^{-1}$ and $e^{-1} = e$

[1, Lemma 1.18].

Let X be a set. By a <u>one-to-one partial transformation</u> of the set X we mean a one-to-one mapping α of a subset of X onto a subset of X. Let I_X be the set of all one-to-one partial transformations of X. For $\alpha \in I_X$, let $\Delta \alpha$ and $\nabla \alpha$ denote the domain of α and the range of α , respectively. Note that the mapping whose domain is the empty set, is a member of I_X , which is called the <u>empty transformation</u> and will be denoted by 0. The product $\alpha \beta$ of two elements α and β of I_X is defined as follows: If $\nabla \alpha \cap \Delta \beta = \phi$, we define $\alpha \beta = 0$. For $\nabla \alpha \cap \Delta \beta \neq \phi$, let $\alpha \beta$: $(\nabla \alpha \cap \Delta \beta) \alpha^{-1} \rightarrow (\nabla \alpha \cap \Delta \beta) \beta$ be the composite map; it is clear that $\nabla (\alpha \beta) = (\nabla \alpha \cap \Delta \beta) \beta$. Under this operation, I_X becomes an inverse semigroup [1] and we call it the <u>symmetric inverse semigroup</u> on the set X. It is clearly seen that the empty transformation is the zero of I_X and the identity mapping on X is the identity of I_X . Moreover,

 $E(I_X) = \{\alpha \in I_X \mid \alpha \text{ is the identity map on } \Delta\alpha\},$

and for each $\alpha \in I_X$, the inverse map of α , α^{-1} , is the inverse element of α in I_X and $\Delta(\alpha^{-1}) = \nabla(\alpha)$, $\nabla(\alpha^{-1}) = \Delta(\alpha)$ [1].

Let S be an inverse semigroup. The relation \leq defined on S by a < b if and only if $aa^{-1} = ab^{-1}$

is a partial order on S (2, Lemma 7.2), and this partial order is called the <u>natural partial order</u> on the inverse semigroup S. Then the restriction of the natural partial order \leq on the inverse semigroup S to E(S) is as follows:

 $e \le f$ if and only if e = ef (= fe).

An equivalence relation ρ on a semigroup S is a congruence on S if for all a, b, c ϵ S, a ρ b implies acpbc, capcb, equivalently, for all a, b, c, d ϵ S, a ρ b and c ρ d imply acpbd. If i = {(a, b) | a ϵ S} and ω = S × S, then i and ω are congruences on S and we call them the identity congruence on S and the universal congruence on S, respectively.

If ρ is a congruence on a semigroup S, then the set

$$S/\rho = \{a\rho \mid a \in S\}$$

with the operation defined by $(a\rho)(b\rho) = (ab)\rho$ is a semigroup, and S/ρ under this operation is called the <u>quotient semigroup relative to</u> the congruence ρ .

A nonempty subset A of a semigroup S is an <u>ideal</u> of S if $SA\subseteq A$ and $AS\subseteq A$.

Let A be an ideal of a semigroup S. The relation ρ_A defined on S by $(x, y) \in \rho_A$ if and only if either x, $y \in A$ or x = y is a congruence on the semigroup S, and ρ_A is called the

Rees congruence on S induced by A. The semigroup S/ρ_A is called the Rees quotient semigroup relative to A. The semigroup S/ρ_A is a semigroup with zero and for $x \in S$, $x\rho_A$ is the zero of S/ρ_A if and only if $x \in A$.

Let ρ be a congruence on an inverse semigroup S. Then S/ρ is also an inverse semigroup, and for any $a \in S$,

$$(a\rho)^{-1} = a^{-1}\rho,$$

and hence for a, b & S

apb if and only if $a^{-1} pb^{-1}$.

Moreover, for any ap \in E(S/p), there exists e \in E(S) such that ap = ep. Hence

$$E(S/\rho) = \{e\rho \mid e \in E(S)\}.$$

Let S be a semigroup. The relations \mathcal{L} , \mathcal{R} , \mathcal{H} on S are defined as follow:

$$a \overset{\bullet}{\otimes} b \iff s^{1}a = s^{1}b,$$

$$a \overset{\bullet}{\otimes} b \iff as^{1} = bs^{1},$$

$$H_{0} = \overset{\bullet}{\otimes} \Omega \overset{\bullet}{\otimes} \Omega.$$

and

Note that \mathcal{L} , \mathcal{R} and \mathcal{H} are equivalence relations on S and $\mathcal{H}\subseteq\mathcal{L}$, \mathcal{H} . These relations are called <u>Green's relations</u> on S. For a \mathcal{L} denotes the \mathcal{L} -class of S containing a; and \mathcal{R} and \mathcal{H} are defined similarly.

A subset G of a semigroup S is a <u>subgroup</u> of S if under the operation of S, G is a group.

Let S be a semigroup and e be an idempotent of S. Then H_{e} is the maximum subgroup of S having e as its identity.

Let S be a semigroup with identity 1. An element a of S is called a <u>unit</u> of S if there exists b \mathcal{E} S such that ab = ba = 1. The set of units of S forms the maximum subgroup of S having 1 as its identity and we call it the <u>group of units</u> or the <u>unit group of S</u>. Hence, H_1 is the group of units of S and $H_1 = \{a \in S \mid aa' = a'a = 1 \text{ for some a' } \mathcal{E} \mid S\}$.

An ideal A of a semigroup S is said to be <u>completely prime</u> if for all a, b \in S, ab \in A implies a \in A or b \in A.

An ideal M of a semigroup S is called a <u>maximal ideal</u> of S if there is no ideal lies properly between M and S and M \neq S.

A subsemigroup T of a semigroup S is called a <u>filter</u> of S if for all a, b \in S, ab \in T implies a, b \in T.

Let T be a nonempty subset of a semigroup S. Then T is a filter of S if and only if S \setminus T is either an empty set or S \setminus T is a completely prime ideal of S.

A semigroup S is called <u>simple</u> if S is the only ideal of S.

A semigroup S with zero 0 is called a <u>0-simple semigroup</u> if $s^2 \neq \{0\}$, and $\{0\}$ and S are the only ideals of S.

Let S be a semigroup with zero 0. If S has an identity which is different from the zero of S, then S is 0-simple if and only if {0} and S are the only ideals of S.

A semigroup S is called a <u>congruence-free semigroup</u> if the identity congruence and the universal congruence are the only congruences on S.

Let ρ be a congruence on a semigroup S. Then ρ is said to be a congruence-free congruence if S/ρ is a congruence-free semigroup.

For any set X, let the notation $\left|X\right|$ denote the cardinality of the set X.

General properties of congruence-free congruences on semigroups are introduced in the first chapter. Including in this chapter, some remarks on congruence-free Rees congruences are also given.

The characterizations of all congruence-free congruences on the semigroup of integers under multiplication, the semigroup of non-negative integers under addition and the semigroup of nonnegative real numbers which are less than or equal to 1 under multiplication are studied in the second chapter.

Trotter has characterized congruence-free inverse semigroups with and without zero. In the last chapter, we use Trotter's work of characterizing congruence-free inverse semigroup with zero to determine all congruence-free congruences on any symmetric inverse semigroup on countable set. It is proved that the symmetric inverse semigroup on a countably nonempty set has exactly one nonuniversal congruence-free congruence, and the explicit form of such congruence is also given.