CHAPTER 1II

LITERATURE REVIEW

2.1 Introduction to Molecular Mass Transport

Molecular diffusion or molecular transport is the transport or
movement of individual molecules through a truly stagnant fluid by means
of random, individual movements of the molecules. If the fluid is in la-
-minar flow, molecular diffusion can occur in all directions in the fluid.
The molecules can be imagined as traveling in a blind manner only in straight
lines and changing direction by bouncing off other molecules after col-
lisions. Since the molecules travel in a random path, molecular diffusion
is often called a random-walk process.(s)

Figure 2.1 shows the molecular diffusion process schematically
for A molecules diffusing through B molecules. The dotted lines show the
random path that an A molecule might take in diffusing from point (1) to
(2). If at the start there are more A molecules near point (1) than at
point (2), then it is obvious that more A molecules will diffuse from (1)
to (2) than from (2) to (1). This means we have a concentration that is
higher at (1). The net diffusion will be from the region of high to that
of low concentration.

As another example of molecular diffusion, suppose a drop of blue

ink dye is placed in a beaker containing water that is truly stagnant and

not mixed by convection or stirring. A high concentration difference of



Figure 2.1 Diagram of molecular diffusion or random-walk

diffusion process.

blue dye will exist between the drop of dye added and the adjacent water.
The dye molecules will diffuse slowly by molecular diffusion to all parts
of the water. Eventually the fluid will be almost completely mixed, but
this process will take many days. If the contents are rapidly stirred
with a stirring rod that is, turbulent or bulk motion of the fluid is
introduced theg the solution will be completely mixed in a few seconds.
Hence, one can see that mass transport by turbulent motion as well as
molecular diffusion is very rapid compared to molecular diffusion alone.
It should be evident that the rate of molecular diffusion in

liquids will be many times slower than gases. Referring again to Fig. 2.1,



if B is a liquid, the molecules will be very close together compared to B
as a gas. Hence, the molecule of A will collide with molecules of liquid
B more often and diffuse more slowly. Also, mean free paths of gaseous
molecules are much greater than liquid molecules. In general, the dif-
fusivity in a gas will be of the order of magnitude of 105 times larger

than in a liquid.

2.2 Molecular Transport Equations for Liquids

When the concentration of the solupg is uniform at every point
in the absence of bulk motion of the liquid, no further .spontaneous change
occurs and that as long as it is not yet uniform, the system spontaneously
moves toward uniformity, the solute moving from a place of high concentra-
tion to a place of low. The rate at which a solute moves at any point in
any directfon must threrefore depend on the concentration gradient at that
point and in that direction.

If, in a binary solution of A and B, the molar mass velocity in
a given direction, or flux, of solute A is defined as JA’ moles of A per
unit time per unit area (area measured normal to the direction of motion),
then the diffusivity of A, DA is defined as the ratio of the flux to the

concentration gradient BcAfaz

acA
JA = - DA-a—;— (2.1)

which is Fick's first law. The diffusivity is not ordinarily a constant
for a given system but depends upon concentration and temperature.
The true "driving force" of the diffusion is probably not concen-

tration, as Eq.(2.1) would imply, but rather chemical potential or activity,
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which is emphasized that in a multiphase system the spontaneous movement
stops not when concentrations but rather when activities are equal through-
out. But concentrations are ordinarily used in defining diffusivity.

The flux J of Eq.(2.1) is defined as the molar mass velocity with
respect to the average molar velocity in the solution. Consider a volume
of a binary solution containing substances A and B, of unit cross section,
undergoing molecular diffusion. For simplicity, let the solution be ideal,
so that the volume of the solution remains constant while diffusion occurs,
and without net bulk movement. Then, if component A is diffusing from left
to right at a volume rate or (since the cross section is unity) at a
velocity Vyo the velocity of diffusion of B in the opposite direction Vg

must be Vg ® Vs since the solution volume remains constant, or

The volumes to the left and right of a stationary point then
remain constant. The rate at which moles of A pass the stationary point
is then NA =NaCa and for B, NB = VpCps where Cp» Cp are the respective
molar concentrations. The net rate of passage of moles past the stationary
point is then NA + NB. The molar average of the velocities is
Ve T gV

Vy = = (2.3)

where c¢ = total concentration. Since the concentrations are not equal,

it follows that Vi is not zero, and if one wished to observe no net molar

flux, one would have to move at a velocity Vy The number of moles of

solution to the left and right of the moving observer would then remain
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constant. The flux NA with respect to the stationary point must therefore

be larger than flux JA by the amount of A in the volume rate Yy

or NA = VG 4 JA (2.4)

c oc
A A
or NA (NA -+ NB)f: - DA g;— (2.5)

L}

Thus a stationary observer would see no net volume flow but would observe
both a net molar and a net mass flow. In nonideal liquids there would be

a net volume flow also. Fluxes referred to these flow have also been used

to define diffusivity, and this leads to confusion. But if one is consistent
in setting up the relationships, the end result with respect to a stationary
position is the same, although different D's will be required.

Refer again to the solution above, where
G A A (2.6)

writing the counterpart of Eq.(2.5) for component B and adding to Eq. (2.5)

the result is

dc dc
-p, —2 = p B (2.7)
9z 9z

From this it follows that JA = -JB, and substituting Eq.(2.5) in
Eq.(2.7) it further follows that D, = Dy (at the prevailing concen-
tration and temperature).

For a volume of the fluid of unit cross section and dz long,
the rate at which A enters the face at z = z is N 2 and the rate at

A
which it leaves at z + dz is NAz + (SNAIBz)dz. Consequently, the rate
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of loss of A in the volume is the difference, or

N 9(c,dz)
il M S (2.8)
9z ot

if vy = 0 and D, = constant, then Eq.(2.1) and Eq.(2.4) with

Eq.(2.8) yield Fick's second law

ac

>

ot 0z (2.9)

All the above have been considered only for unidirectional diffusion.
All the expressions may be written for the three dimensions x, y, z.

Thus, Eq.(2.9) becomes for constant DA’

BcA s
T y-— - — - (2.10)

The dimensions of D are (length)zitime

2.3 Experimental Determinations of Diffusivity

The experimental determination of accurate diffusivities is
extremely difficult. Many methods have been proposed for studying the
phenomenon, It is not proposed to mention all the methods available but
to concentrate on those which seem to offer the best answer to the prac-
tical problem of obtaining reliable diffusivity data rapidly, cheaply,
and easily, which few wasted determinations.

The methods of measuring diffusivity fall into three distinct

categories, based on the way diffusion occurs .
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a) Free Diffusion

A sharp diffusion boundary is formed within a vertical dif-
fusion cell. Mutual diffusion occurs, concentrations, on either side of
the boundary, change with time and as long as the concentrationsat the

endsof the cell remains constant, the diffusion is said to be "free'.

b) Restricted Diffusion

"Free diffusion'" continues until the end concentrations

change and then 'restricted diffusion" occurs.

c) Steady State Diffusion

In methods of this type, the concentrations at either end
of a column of solution are kept constant with time and, therefore,
the concentration at all points within the column will remain constant.
The three versions of diffusion and their development will be

discussed in some details.

2.3.1 Conductivity Method

This method was restricted diffusion type, developed by
Harned and Nuttall(6). The diffusion channel of their cell is rectangular
in cross section (A in Fig.2.2) and its height o about 5 cm. is accurately
measured. It is closed permanently at the top, and at the bottom fits
against a sliding plate containing two small reservoirs B and C which
have the same cross section as the channel A, so that by suitably sliding

the plate either of them may be made to form a downward continuation of
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the channel. In an inverted position, the channel A is filled with con-
ductivity water and the plate is placed in the position with the reservoir
B in line with A. On sliding the plate to the position shown, the excess
water is carried off in B, leaving A completely filled. Reservoir C is
filled with a salt solution of suitable concentration. The cell is then
turned right way up and set up in an air tight thermostated box with the
most stringent precautions agaiﬁst mechanical vibration. After allowing

a day for attainment of thermal equilibrium, the sliding plate is moved

by a remote control so that the solution in reservoir C is in line with

A, and salt diffuses into A. When a suitable amount has entered, the

plate is moved back to the position shown and the main run begins. The

>
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Figure 2.2 Harned's conductimetric diffusion cell
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(Diagrammatic only)
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concentration changes are followed by measuring the conductivity at two
positions in the cell by means of pairs of very small electrodes set in
opposite walls at heights a/6 and 50/6 above the sliding plate.

The boundary conditions are, since both ends of the cell are
closed,

ac

-— 0 at x=0 and x =qa
ox

and the appropriate Fourier-series solution of Eq.(2.9) for the concen-
tration c at a height x 1is

s 2 2 2

c = co + 2 Bnexp(—n T Dt/a ) cos 2X (2.11)
a
n=1

where cgp and the Bn's are constants. Hence the difference in concentration

between the planes x = a/6 and x = 50/6 is

2 2 2 1
cc/ﬁ - Cse/6 " nianexp(-n TDt/a )(;os'gﬂ - cos é%%J (2.12)

Snm nt Snm nm
For even values of n, SEEwE R cosz—-and for odd n, CogT=- = coag-

so that all the terms for even n vanish since the factor in square

brackets is zero; and for odd n the square bracket becomes 2-::¢:o£r-6r!r-L which

equals /3 for n = 1, Ofor n=3, -/3 forn=>5 and 7, ete. Eq.(2.12)

therefore becomes,

] 2 1
/6 " ®sa/6 = Biexp(-1Dt/a®) + B exp(-25v2Dt/a?) 4+ seeeese

(2.13)

000400
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where Bl = Blfg, etc. Since the leading term of thls expression exceeds
the second term by the factor exp(24ﬂ2Dt/a2) the series converges very
rapidly even for small values of Dt!az, and after a few days only the
first term need be considered at all. This rapid convergence is a result

of the ingenious choice of the heights a/6 and 50/6 for the electrode
pairs, which makes the term for n = 3 vanish at all times. The coefficient

!

B1 need not be determined, for by logarithmic differentiation one obtains,

d =D
dtln[caffn- °5a!6] == < (2.14)

so that by plotting ln(cm/6 # CSG/G) against the time t a straight line
of slope -m2D/a’® results.

In the early stages of the experiment the assumption of constant
D may not be justified, but as the diffusion proceeds the concentration
differences become smaller, and D is more nearly constant throughout the
solution. The remarkably constant values of D given by Eq.(2.14) gfter
the first day are evidence for the validity of the theoretical treatment.
The constant value attained can therefore be treated as the differential
diffﬁsion coefficient at the average concentration of the salution, which
is found by allowing the cell solution to mix under the action of thermal
conyection after completing the run, and measuring its concentration con-
ductimetrically.

This method has been used to determine the diffusivity of a con-
siderable number of electrolytes over the range 0.1 to 10 millimoles/
litre., The method gives data which are simple to analyse arithmetically

with an estimated accuracy of + 0.1 %. However, due to the very slight



17

density difference involved, which is the only stabilizing effect against
mixing due to vibrétion and convection, considerable precautions must be
taken to eliminate such disturbances. The problem here is greatly
magnified since each experiment occupies six days. The diffusivities
obtained are extremely valuable to the theoretical chemist, but only in
exceptional circumstances will the designer be interested in data at such
low concentration. At higher concentrations the value of this method
rapidly diminishes because conductivity as a means of determining concen-
trations becomes less sensitive. Other methods, more rapid and simhle, are

available.

2.3.2 Diphragm Cell Method

Few steady state liquid phase diffusion experiments are
described in the literature. More common is the Gordon diaphragm cell as
cited by Nienow(7). He realized that it was only capable of giving integral
diffusivity values and that it was necessary to have an accurately known
and consistent solution for the standardization of the cell (KC1).
Although the method had been used previously, no commonly agreed standard
had been suggested, and it was difficult to obtain absolute values. This
is because the method gives diffusivity values dependent on the size of
pores employed in the diaphragm. Another problem encountered was the
maintenance of uniform concentrations throughout the cell. These were to
be maintained by placing the more concentrated solution above the dilute
and allowing convective mixing, once diffusion had occured. This mixing
was found to be inadequate and also gave rise to high diffusivity values

due to streaming of the heavier solution through the pores. The new method
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is to place the dilute solution above the concentrated solution and use
magnetic stirrers of such a demsity that they just touch the diaphragm(s)
Care must be taken to recalibrate the cell at interval because of wear-
ing away of the sintered glass diaphragm, causing variation in the rates
of diffusion(g‘). The speed of stirring is found to have no effect on
the rate of diffusion provided it is kept above a minimum of about 50
rpm. Also, it was found to carry out such measurement by placing the cell

(10). The diaphragm was a

in the horizontal plane to prevent streaming
glass disc, pore size 3-5 microns, 5.0 cm. in diameter and 0.5 cm. thick.
The method is simple to analyse since steady state conditions
exist within the cell. This is usually ensured by allowing a period of pre-
liminary diffusion while the steady state is reached within the pores of
diaphragm. Then the upper, less concentrated, solution is changed for a
fresh solution of exactly known composition. The diffusion is then allowed
to continue for from ome to six days and the final cell concentrations are
determined. The cell will then give an integral coefficient for the mean,
high, concentration to the mean, low, concentration solution. It is essen-

tial to haye large quantities of liquid above and below the diaphragms so

that the concentration changes are small. The calculation of the integral

diffusivity was shown by Gordon(ll) to be
T i
3 4
where cl, c, are the initial and final high concentrations, Cys c4 are

the initial and final low concentrations, B is the cell constant and t is

the time of the experiment.
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This method is suitable for laboratory determinations since it
has a number of advantages. Due to the narrow pores of the diaphragm and
the relatively large density differences, the convection currents are
easily damped out and truly molecular diffusion is obtained. This also
means that the precautions required to eliminate bulk movement due to
temperature changes,vibrations and other external effects. Analysis can
be performed at leisure at the end of the run and the computations then
required are simple. The major drawback to the method is the length of
time required for any one determination and the fact that only integral
values are determined directly from the cell. The difficulty in convert-
ing these into differential values varies with the system but it is most
easily carried out for electrolytes where the diffusivity at finite
dilution can be calculated from the Nernst equation and a simple graphi-

cal method e:mployed(8 ).

2.3.3 Free Diffusion Method

Of the free diffusion methods employed the majority use
the change in refractive index with time in the region of the interface
as a means of following diffusion. The two interferometric methods will

be discussed.

1. 6uoy Interference Phenomqgg(lz)

Guoy fringes are formed by the passing of the converging horizontal
beam of light through a diffusion cell in the region of the boundary.
There is a symmetrical concentration gradient about this boundary which
also corresponds to a symmetrical refractive index gradient. Thus, the

beam of light is refracted different amounts at different heightsand also,



20

the light leaving the cell is continuously changing in phase due to the
different optical path lengths traversed. Therefore, the light from
different heights of the cell crosses interferes, giving rise to a series
of horizontal fringes focused at the point of convergence of the beam.
The actual number of fringes within the pattern is constant since it is
proportional to the refractive index difference between the top and bottoﬁ
of the cell but the actual position of the maxima and minima (the light
and dark zones) varies with time. Initially, since the refractive index
gradient is extremely large, at the interface, the deviation is large
and, at the focus plane, the horizontal fringes are widely separated at
the lower end and extend their maximum distance vertically. However, as
the diffusion proceeds the spacing of the fringes rapidly reduces and

it becomes increasingly difficult to determine the exact number present.
This is never easy since all the light from the ends of the cell, where
no refractiye index gradient exists, is always being focused at the
center of the image plane as an undisplaced image. The light intensity
therefore yaries enormously from one end of the cell to the other and

it is impossible to take a single photograph which will show all the

fringes, Longsworth(ls)

in fact recognized this and tried to reduce the
central intensity by a system of masks and filters but great care had to
be taken to ayoid introducing further interference effectcla). The other
possibility is to estimate the number of fringes formed and, on the

- basis of this and distance measurements taken on the photograph, to
calculate the diffusivity fromanumber of different fringes. This is
extremely tedious.

@as)

Thomas and Furzer have used the more refined treatment of

Gosting and Morris(lﬁ) in order to employ the Guoy method. They overcame
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the two problems by means of computer. First, they used it to derive a
very complete and accurate table of value of the complex functioncls).
Secondly by assuming the number of fringes formed and taking fringe dis-
placement measurements from photographs, the computer calculated the

diffusivity for each fringe. Different numbers of fringes were chosen

until the calculated diffusivities were consistent.

7
2, Rayleigh Interference Phenomena(

Two parallel, vertical, light beams, from the same source
are formed and made to pass through two separate liquid cells and later
recombine to give vertical interference bands. One of these is the
reference cell, containing one of the diffusing components while, in the
second eell, a sharp interface has been formed and diffusion is occurring
Depending on the difference in refractive index between the two cells,
the interference bands will be displaced to a greater or lesser extent
and therefore any photograph of the bands gave a graph of difference in
refractive index against height at any instant. Since, however, the
refractive index difference is proportional to the concentration difference
and diffusion is occurring in this vertical plane, it is also a direct
graph of concentration change against distance from their interface. From
each photograph a value of the diffusivity can be calculated at the time
of measurement. The main advantage of Rayleigh fringes over the Guﬁy
Ifringes is that they give a photograph which is much easier to analyse.
This is because the spacing between one fringe and the next remains
approximately constant throughout the whole photograph and also, by using
monochromatic light, the intensity remains sufficiently constant for them

all to be recorded on the same photograph. Finally, the thickness of each
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fringe is small and therefore distances on the photograph, the biggest
source of error in all this work, are more accurately measured.

The method of analysis is very simple for the concentration range
chosen, the diffusivity can be assumed constant and the refractive index,
a linear function of concentration difference. The calculation of dif-

a7
fusivity was shown by Eq.(2.16)

jz bZAZ
D - .. (2.16)
tci 4T

where A = wavelength, jm = refractive index, C_ = constant, b = optical

t
distance = ¥ %», where 1 = distance through each meadium (air, glass,
solution), n = its refractive index, t = time.

The big advantage of free diffusion method is that accurate values
of diffusivity can be obtained (for electrolytes). The overall photo-
graphic treatment and mathematical analysis can be performed in three
hours for simple cases. The value is differential one, provided the con-
centration range chosen is sufficiently small. This method is extremely

accurate and its only disadvantage is its unsuitability at very low con-

centrations of solution (ie. very small refractive index differences).

2.3.4 Capillary Method

In the Anderson(JS) capillary tube method for the study of
self-diffusion, a uniform capillary tube of known length is filled with
an 1isotopically 'tagged' solution, and immersed in a much larger vessel
containing an isotopically normal solution of the same concentration,
which may be gently stirred. At the mouth of the capillary, the concen-

tration, c, of the tagged form !s thus held at zero throughout the ex-
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periment . After a measured time the total amount of tagged material in
the capillary is measured and compared with the initial amount. The Eq.
(2.9) may be solved assuming constant diffusivity. The boundary condition
for a tube closed at x = 0 and open at x = a are

At t =0, ¢ = c, for D¢x<a, c¢=0 for x> a

ac

At t >0, ¢=0 at x =a and —
9x

so that we obtained

n=co
¢ n 4 2 2 2 mT{2n+l)x (2.17)
E; nfm(-*l) m—)- exp ‘:‘n (2n+1) "Dt/ (4a ):I co&‘ATL

the average concentration in the tube at time t is

1 a
cav = E’f cdx (2.18)
(o]
whence
i e 2 2
av = I — 2expl:—'” (20+1) “Dt/4a (2.19)
c n=0 T (2n+1)

A graph of the right hand side of Eq.(2.19) against thaz can be prepared,
interpolation on it at the expérimentally determined value cav/co gives
pt/a® and hence D, It will be noted that provided the tube is uniform, its
cross section is not required, but only its length a. In computing the
function of Eq.(2.19) for the graph, very few terms need in practice be
taken as the series converges very rapidly for reasonably large times. The
ratio of the first term (n = 0) to the second (n = 1) is Qexp(ZﬂZthaz).

This ratio is greater than 1000 as soon as Dt/a2 exceeds 0.24, and higher



24

terms fall off even more rapidly. In a tube 5 cm. in length, and with a
diffusion coefficient of 10-5 cm?sec-l, the first term of Eq.(2.19) ig
therefore amply sufficient after a week, though for the shorter times
which are more practically convenient a few more terms must be taken. To
illustrate the rate of change, it may be remarked that when Dt/a2 =
0.24, the average concentration in the tube has fallen to 45 per cent
of its initial value.

This method had been extensively used for determining self- and
tracer-diffusion coefficients of electrolytes, but agreement between
different workers has often been poor, discrepancies of 10 per cent or
more having been reported. In a ecritical study of the method, Mills(lg)
has concluded that serious errors can arise from the mode of stirring
of the large container in-to which the diffusion proceeds. Turbulent
flow near the capillary mouth appears to lead a 'scooping-out' of solution
from the tube. On theé other hand, if the solution is not stirred at all,
a 'cloud' of the diffusing species may tend to accumulate at the mouth
of the tube so that the boundary condition ¢ = 0 for x > a is not fulfilled.
Mills has shown that correct results (ie. results in agreement with simi-
lar measurements using diaphragm cells) can be obtained by arranging for
slow controlled streamline flow past the capillary mouth, Another dif-
ficulty concerns the complete removal of all the active material from the
tube at the end of the run, for radio-active counting; he overcomes this
by not remoying it. Instead » he surrounds the tube by a scintillation-
counter crystal, making it possible to measure the decrease in activity
continuously throughout the run. These improvements lead -“to a precision

of a few tenths of one per cent in the measurement of tracer-diffusion
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coefficients.

2.3.5 Improved Capillary Method

The diffusion of ions in electrolyte from a capillary into
an external electrolyte is governed by Eq.(2.20) in which diffusivity is
assumed to be constant and the following dimensionless parameters are

introduced

o
n
n[o
-
u
qu

where ¢ = concentration of diffusant, N initial concentration of dif-
fusant inside the capillary, L = length of the capillary, D = diffusivity,
and t = time.

Lo}
oT

Vo (2.20)

For the region within the capillary, a uniform concentration at any cross
section prevails so that a one-dimensional version of Eq.(2.20) may be
used where the distance x, measured from the closed end of the capillary,

is normalized to n = x/L, given as

2
ad 3 ¢
¥ = (2521

an
In order to treat the transport of species from the capillary purely in
terms of diffusion, it has been customary to provide a fixed boundary
condition at the mouth of the capillary, n = 1. Stirring of the bulk fluid
outside the capillary has been used by many researchers in an attempt to

produce the condition ¢ = 0 at n = 1., Stirring of the bulk solution, however,
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introduces errors which tend to give values of the diffusivity which are
too high. Such errors are due primarily to hydrodynamic effects, because
the drag of the liquid past the interface produces a pressure gradient
which physically forces liquid from the outside into the capillary, dis-
placing some of the high concentration material out of the capillary.
There is, in effect, a net convective removal of diffusing substance for
a short distance,A%, from the capillary neck, given an overestimate of
the amount of material actually leaving the capillary by diffusion.

czo)studied thisso called " Af effect " using rotating capil-

Nanis et al.
laries and were able to correlate the effect as a function of Reynolds
number based on the capillary diameter. Davis(Zl) has extended this work

to higher Reynolds numbers in a liquid metal system.

The above assumption of zero concentration at the mouth of the
capillary is equivalent to the fastest possible rate of removal of dif-
fusing species from the capillary. As an opposite extreme where no stirring
is allowed to influence the accumulation of diffusing species convection
may assumed to be totally negligible both within the capillary content
and in the external bulk liquid. The residual ayerage concentration within
a capillary will then not besubjected to the errors caused by hydrodynamic
effects. The difficulty of obtaining an analytic solution for the case of
three-dimensional diffusion with no stirring has prevented the application
of this approach. In the absence of convective flow,the solution of Eq.
(2.20) is required which links the regions internal and external to the
capillary by accounting for the continuity of concentration and flux at
n = 1l. Gergely et al.(22) have analyzed the diffusion from a capillary

without stirring in which the diffusion from the capillary mouth was
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approximated as a centrally located point source in an impermezble plane
bounding a hemispherical region, and obtained correction factors for the
diffusivity based upon diffusion times and capillary radius. In this
solution, the flux from the capillary mouth was assumed to be independent
of concentration. Furthermore,only an approximate solution near the capil-

(23)

lary mouth could be obtained. Nanis et al. obtained a numerical solution

for full three-dimensional diffusion from the capillary mouth, thus pro-
viding the concentration-time relation necessary for obtaining diffusivity
values with a non-stirred capillary method. In experimental studies with-
out stirring, however, it is essential to avoid errors from sources which
provide unwanted stirring, such as natural comvection #rising from density
or temperature gradients in the bulk solution.

The capillary method offers distinct experimental advantages,since
the apparatus size may be reduced, limited only by the detectability of
the analytical chemical technique used to assay the contents. In principle,
by selecting suitable capillary diameter and length, as well as experi-
mental time, the diffusivity may be determined to an accuracy controlled

only by the analytical method available.

2.4 No External Stirring Capillary Diffusion Model

2.4,1 Mathematical Formulation

The diffusion of electrolyte from a capillary to an external
bulk solution as shown in Fig.2.3 is governed by Eq.(2.22), in which dif-
fusiyity is assumed to be constant and the following dimensionless para-

meters are introduced
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where ¢ = concentration of diffusant, € ™ initial concentration of dif-
fusant inside the capillary, L = length of the capillary, D = diffusivity,

and t = time
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Figure 2.3 Diffusion of electrolyte from a capillary to
an external bulk solution
| In the region 0 € n < 1, the diffusion is assumed to be one-
dimensional, governed by
2
[-g%] 22 (2.22)
1 m ]
»>

The subscript 1 indicates the region where one-dimensional diffusion
prevails, The zero flux boundary condition at the closed end (n = 0) of
the capillary is

{-gi’] - Os;n=0, 1320 (2.23)
i 1

The initial condition is
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b,y = 13 0gNgl,; T = 0 (2.24)

In the region n > 1, for the absence of convection, the diffusion is three-

dimensional. The three-dimensional version of the diffusion equation is

} , [Efik} N {§i27 L] 2% (2.25)
aT 2 2J [a 2

L 3 Ml 198 g 179 s

The subscript 3 refers to the three-dimensional region. The boundary
condition is

Py = 037D, EFRG5eBr>, T20 (2.26)

The symmetry of diffusion perpendicular to the axis of capillary gives

3¢ | L AN A SN "
[35}3-0’{?6]3_0! 5-0,5-0,71’1,‘?3}0 (2-2?)

The initial conditiom is
%3 = 0; n>1,05E5° 0gBE® 1T=0 (2.28)

At the mouth of the capillary (n = 1), where one- and three-dimensional

regions join, equality of fluxes gives

0] _ (a0 20 2 (2.29)
B - ia] (%) - (3]
1 3 3 3

atn=1, =0, B=0and T =0
the boundary conditions givenhere implicily contain the assumption that
the capillary mouth is a point source for the three-dimensional region,

rather than an actual disk. The error arising from this assumption will
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be minimal unless the capillary diameter is a significant fraction ( several

per cent) of the length.

2.4.2 Finite Difference Formulation

A set of an explicit form of finite difference equations
may be used to represent Eq.(2.22) - Eq.(2.29) for both one-dimensional
and three-dimensional regions.

Let i = index for the step movement in x-direction (i = 1,255 M)5
j = index for the step movement in y-direction, k = index for step move-
ment in z-direction, n = time, AT = step increment in dimensionless time,
An = step increment in n-direction, AB = step increment in B-directionm,
Af = step increment in E-direction, M = 1/An: number of grid points in
the capillary, A, = AT/(Am)Z, A, = At/(88)2, and A, = &t/ (AE)%.

For the one-dimensional diffusion region 0 < n < 1, Eqg.(2.22)

becomes

Qi:l,l,nfl = [1 _ZAQ]Qi,l,l,n + AJ[Qi-l,l,l,n + ¢i+l,l,l,ﬁ] (2.30)

where 1/An > 1.

At the closed end of the capillary (i = 1), the zero flux boundary

condition, Eq.(2.23) leads to

%,1,1,n ®5,1,1,n (2551)
The initial condition, Eq.(2.24) becomes
b w1 (2.32)

i, 1,1,0

For the three-dimensional diffusion region, n > 1, 0 K £ < » 0K BL &
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Eq.(2.25) becomes

By § ot (L= 2y = g = 2hg)by o o o
PR vk Y % k00
A st Tk
B Xy oy g T ¥ Ly (233
For i > 1/An

Boundary condition, Eq.(2.26), Eq.(2.27) are

¢i,j,k,n = 0 as 1 +®, §+ k> (2.34)
d}i,O,k,n 7. ‘bi,z,k,n (2:35)
¢i’j’0'n ¢i,j,2,n (2.36)

For simplicity, the capillary is considered as a drilled hole in
a block. In order to account for the impermeable plane at the mouth level,
n=1, & >0, B >0, the following statement allows for zero flux perpen-

dicular to the plane by the use of imaginary points below the plane, e.g.

1,960 T %M-1,3,kn (a7

The initial condition given by Eq.(2.28) becomes

® ykp " 0 8 T=0,1>1/Mn, 0835 0gkge . (2.38)

At the junction of the one- and three-dimensional regions just at the

capillary mouth (L =M, j = 1, k = 1) Eq.(2.29) becomes
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E % aet Y aite t M2an Y i e

M,1,1,n+1 4

Equation(2.39) is based on implicit finite difference approximation,

together with the assumption of equal spacing in the three-dimensional

region (&An = Af = AR).
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