CHAPTER IV

GROUP HYPERGRAPHS

4.1 Group Hypergraphs

Let (V,Ξ) be a hypergraph of rank $\gamma \geqslant 2$. Then (V,Ξ) is called a group hypergraph if there exists a binary operation o on V such that (V,0) is a group and there exists admissible set A of $(\gamma-1)$ -subsets of V such that $\Xi=\Xi_A$

4.1.1 Remark Let (V, Ξ_A) be a group hypergraph. Then for each E in Ξ_A and each v in E, $v^{-1}o(E-\{v\})$ belongs to A.

Proof Let (V, Ξ) be a group hypergraph. Let E belong to Ξ_A and v belong to E. Hence, by lemma 3.2.1, there exists A in A such that $E - \{v\} = v \circ A$. Therefore $v^{-1} \circ (E - \{v\}) = A$. Hence $v^{-1} \circ (E - \{v\})$ belongs to A.

4.1.2 Remark Let $H = (V, \Xi)$ and $H^* = (V^*, \Xi^*)$ be isomorphism hypergraphs. If H is a group hypergraph, then H^* is also a group hypergraph.

Proof Let H = (V, E) and H = (V, E) be isomorphism hypergraphs. Let H be a group hypergraph. Let H be a group operation on H and H be an admissible set of subsets of H such that H be an isomorphism from H to H. Define a binary operation H on H by putting

 $u^* * v^* = \alpha^{-1}(\alpha(u^*) \circ \alpha(v^*))$ for every u^*, v^* in V^*

A straight forward verification shows that $(V^*,*)$ forms a group and α is an isomorphism from $(V^*,*)$ onto (V,\circ) .

$$\overset{*}{\mathcal{A}} = \{ A^* \mid \alpha(A^*) \in \mathcal{A} \}.$$

Assume that A^* is any element of A^* . Let u^* be any element in A^* and v^* be any element in V^* . Then $A = \alpha(A^*)$ belongs to A, $u = \alpha(u^*)$ belongs to A and $v = \alpha(v^*)$ belongs to V. Since A is an admissible set, hence there exists $B_{u,v}$ in A such that $(\{v\} \cup v \circ A) - \{v \circ u\}$ = $(v \circ u) \circ B_{u,v}$. Since α is onto, hence there exists $B \subseteq V$ such that $\alpha(B) = B_{u,v}$. Therefore, by definition of A^* , B belongs to A^* . Choose $B_{u^*,v^*} = B$. Hence B_{u^*,v^*} belongs to A^* . For this choice of B_{u^*,v^*} we have

$$(\{v^*\} \cup (v^* * A^*)) - \{v^* * u^*\}$$

$$= \alpha^{-1}(\alpha((\{v^*\} \cup (v^* * A^*)) - \{v^* * u^*\}))$$

$$= \alpha^{-1}(\alpha(\{v^*\} \cup (v^* * A^*)) - \alpha(\{v^* * u^*\}))$$

$$= \alpha^{-1}((\{\alpha(v^*)\} \cup \alpha(v^* * A^*)) - \alpha(\{v^* * u^*\}))$$

$$= \alpha^{-1}((\{\alpha(v^*)\} \cup (\alpha(v^*) \circ \alpha(A^*))) - \{\alpha(v^*) \circ \alpha(u^*)\}$$

$$= \alpha^{-1}((\{v^*\} \cup (v \circ A)) - \{v \circ u\})$$

$$= \alpha^{-1}((\{v^*\} \cup (v \circ A)) - \{v \circ u\})$$

$$= \alpha^{-1}((\alpha(v^*) \circ \alpha(u^*)) \circ \alpha(B_{u^*,v^*}))$$

$$= \alpha^{-1}(\alpha(v^* * u^*) \circ \alpha(B_{u^*,v^*}))$$

$$= \alpha^{-1}(\alpha((v^* * u^*) \circ \alpha(B_{u^*,v^*}))$$

$$= \alpha^{-1}(\alpha((v^* * u^*) \circ B_{u^*,v^*}))$$

$$= (v^* * u^*) * B_{u^*,v^*}$$

Therefore A^* is an admissible set.

Next we shall show that $\Xi^* = \Xi_{A^*}$. Let E^* be any non-empty subset of V^* and v^* be any element of E^* .

Then

$$\alpha(v^{*-1}_{*}(E^{*} - \{v^{*}\}))$$

$$= \alpha(v^{*-1}) \circ \alpha(E^{*} - \{v^{*}\})$$

$$= \alpha(v^{*-1}) \circ (\alpha(E^{*}) - \{\alpha(v^{*})\})$$

$$= (\alpha(v^{*}))^{-1} \circ (\alpha(E^{*}) - \{\alpha(v^{*})\})$$

If E^* belongs to E^* , then $\alpha(E^*)$ belongs to E^* .

Hence, by remark 4.1.1, $\alpha(v^*)^{-1}o(\alpha(E^*)-\{\alpha(v^*)\})$ belongs to A^* , i.e. $\alpha(v^{*-1}*(E^*-\{v^*\}))$ belongs to A^* . Therefore $v^{*-1}*(E^*-\{v^*\})$ belongs to A^* . Hence $E^*=\{v^*\}\cup v^**(v^{*-1}*(E^*-\{v^*\}))$ belongs to E^* . Therefore $E^*=\{v^*\}\cup v^**(v^{*-1}*(E^*-\{v^*\}))$ belongs to E^* , then, by remark 4.1.1, $v^{*-1}*(E^*-\{v^*\})$ belongs to A^* . Therefore $\alpha(v^{*-1}*(E^*-\{v^*\}))$ belongs to A^* . Therefore $\alpha(v^{*-1}*(E^*-\{v^*\}))$ belongs to A^* . Hence $\alpha(E^*)=\{\alpha(v^*)\}\cup \alpha(v^*)\circ(\alpha(v^*)^{-1}\circ(\alpha(E^*)-\{\alpha(v^*)\}))$ belongs to E^* . Hence $E^*=\{v^*\}\cup \alpha(v^*)\cup \alpha(v^*)\circ \alpha(v^*)^{-1}\circ \alpha(v^*)\cup \alpha$

Hence (V*, E) is a group hypergraph.

4.1.3 Proposition Let (V, Ξ_{\downarrow}) be a group hypergraph. Then there exists a subgroup Δ of the automorphism group $\Gamma(V, \Xi_{\downarrow})$ such that $|\Delta| = |V|$ and Δ acts transitively on V.

Proof Let (V, Ξ_A) be a group hypergraph. For each element v of V, we define a mapping $\alpha_v \colon V \to V$ by putting

$$\alpha_{v}(u) = v \circ u$$
 for all u in V

Observe that for any elements u, u' in V if $\alpha_v(u) = \alpha_v(u)$, then we have $v \circ u = v \circ u$, which implies that u = u. Hence α_v is one-to-one. For any w in V, we see that $\alpha_v(v^{-1}\circ w) = v \circ (v^{-1}\circ w) = w$. Hence α_v is onto.

Next we shall show that α_V is an automorphism of (V,Ξ_A) . Let E be any non-empty subset of V. Then

$$\alpha_{v}^{(E)} = v \circ E$$

$$= v \circ (\{u_{o}\} \circ (E - \{u_{o}\}), \{u_{o}\}) \circ (E - \{u_{o}\}), \{u_{o}\} \circ (E - \{u_{o}\}), \{u_{o}\})$$

where u is an element in E. Hence

$$\alpha_{v}(E) = \{v \circ u_{o}\} \cup (v \circ E - \{v \circ u_{o}\})$$

$$= \{v \circ u_{o}\} \cup (v \circ u_{o}) \circ ((v \circ u_{o})^{-1} \circ (v \circ E - \{v \circ u_{o}\}))$$

$$= \{v \circ u_{o}\} \cup (v \circ u_{o}) \circ A,$$

where

$$A = (v \circ u_{o})^{-1} \circ (v \circ E - \{v \circ u_{o}\})$$

$$= u_{o}^{-1} \circ v_{o}^{-1} \circ (v \circ E - \{v \circ u_{o}\})$$

$$= u_{o}^{-1} \circ (E - \{u_{o}\}).$$

If E belongs to $\mathcal{E}_{\mathcal{A}}$, hence, by remark 4.1.1, A belong to \mathcal{A} . Hence $\alpha_{\mathbf{v}}(\mathbf{E})$ belongs to $\mathcal{E}_{\mathcal{A}}$. If $\alpha_{\mathbf{v}}(\mathbf{E})$ belongs to $\mathcal{E}_{\mathcal{A}}$, i.e. $\mathbf{v} \circ \mathbf{E}$ belong to $\mathcal{E}_{\mathcal{A}}$, then, by remark 4.1.1, A belongs to \mathcal{A} . Hence \mathbf{E} belongs to $\mathcal{E}_{\mathcal{A}}$. Therefore $\alpha_{\mathbf{v}}$ is an automorphism of $(\mathbf{v}, \mathcal{E}_{\mathcal{A}})$.

$$\Delta = \{\alpha_{\nabla} \mid \nabla \in V\}.$$

Clearly A is not empty.

Let $\alpha_{_{\boldsymbol{V}}},\;\alpha_{_{\boldsymbol{V}}},\;$ belong to Δ and u belong to V. Hence

$$\alpha_{\mathbf{v}} \circ \alpha_{\mathbf{v}^{\dagger}}(\mathbf{u}) = \alpha_{\mathbf{v}}(\mathbf{v}^{\dagger} \circ \mathbf{u})$$

$$= \mathbf{v} \circ (\mathbf{v}^{\dagger} \circ \mathbf{u})$$

$$= (\mathbf{v} \circ \mathbf{v}^{\dagger}) \circ \mathbf{u}$$

$$= \alpha_{\mathbf{v} \circ \mathbf{v}^{\dagger}}(\mathbf{u}),$$

which implies that $\alpha_v \circ \alpha_v$, belongs to Δ . For any α_v in Δ and any u in V, $\alpha_v(\alpha_{v-1}(u)) = v \circ (v^{-1}\circ u) = u$.

Hence

$$\alpha \frac{-1}{v} = \alpha \frac{-1}{v}$$

Therefore, for each a_v in Δ , α_v^{-1} belongs to Δ . Hence Δ is a subgroup of $\Gamma(V, \Xi_{A})$.

Define a mapping $\Theta: V \to \Delta$ by

$$\Theta(v) = \alpha_v$$
 for all v in V.

Clearly, θ is onto. To see that it is one-to-one, assume that $\theta(v) = \theta(v')$, i.e. $\alpha_v = \alpha_v$. Hence for each u in V, $\alpha_v(u) = \alpha_v(u)$, i.e. $v \circ u = v' \circ u$ for all u in V. In particular when u = e, the identity, we have v = v'. Therefore θ is one-to-one. Hence

$$|\Delta| = |V|$$

To show that Δ is transitive over V, let v, v' be any elements of V. Note that α belongs to Δ and we have

$$\alpha_{v \circ v^{-1}}(v) = (v \circ v^{-1}) \circ v$$
$$= v \circ v^{-1}$$

Therefore Δ is transitive over V_{\bullet}

Hence $\Gamma(V, \mathcal{E}_{\downarrow})$ has a subgroup Δ of order |V| such that Δ acts transitively on V.

The converse of the above proposition is also true. To prove the converse, we need the following lemmas.

4.1.4 Lemma Let Δ be any transitive subgroup of the automorphism group $\Gamma(V,\Xi)$ of $H=(V,\Xi)$. Then for each w in V, $\Delta_{w} = \{ Y \in \Delta \mid Y(w) = w \} \text{ is a subgroup of } \Delta \text{ of index } [\Delta:\Delta_{w}] = |V|.$

Proof Let $H=(V,\Xi)$ be a hypergraph. Assume that Δ is a transitive subgroup of the automorphism group $\Gamma(V,\Xi)$. Let w belong to V and

$$\Delta_{w} = \{ \gamma \in \Delta \mid \gamma(w) = w \}.$$

Note that identity of Δ belongs to Δ_w , hence $\Delta_w \neq \emptyset$. Let Y_1, Y_2 belong to Δ_w , hence $Y_1(w) = w$ and $Y_2(w) = w$. Therefore $Y_1 \circ Y_2(w) = Y_1(w) = w$ and $Y_1^{-1}(w) = Y_1^{-1}(Y_1(w)) = w$. Thus $Y_1 \circ Y_2$ and Y_1^{-1} belongs to Δ_w . Hence Δ_w is a subgroup of Δ_w .

Since Δ_w is a subgroup of Δ , hence Δ has a left coset decomposition $\alpha_1 \circ \Delta_w \circ \alpha_2 \circ \Delta_w \circ \cdots \circ \alpha_m \circ \Delta_w$, where α_i belongs to Δ for all $i=1,2,\ldots$, m and $\alpha_i \circ \Delta_w \cap \alpha_i \circ \Delta_w = \emptyset$ for $i \neq j$. To show m=|V|, let V belong to V. Then there exists β in Δ such that $\beta(w)=v$. Since β belongs to Δ , β belongs to $\alpha_i \circ \Delta_w$ for some i, $1 \leqslant i \leqslant m$. Then

 $\beta = \alpha_{\mathbf{i}} \circ \alpha \quad \text{for some } \alpha \text{ in } \Delta_{\mathbf{w}}. \quad \text{Therefore } \beta(\mathbf{w}) = \alpha_{\mathbf{i}} \circ \alpha(\mathbf{w}) = \alpha_{\mathbf{i}}(\mathbf{w}).$ Hence $\mathbf{v} = \alpha_{\mathbf{i}}(\mathbf{w}).$ Then \mathbf{v} belongs to $\{\alpha_{\mathbf{i}}(\mathbf{w}) \mid \mathbf{i} = 1, 2, \ldots, m\}.$ Therefore $\mathbf{v} \subseteq \{\alpha_{\mathbf{i}}(\mathbf{w}) \mid \mathbf{i} = 1, 2, \ldots, m\}.$ Hence $|\mathbf{v}|$ is less than or equal $\mathbf{m}.$ To show that opposite inequality. We show that the function $\mathbf{v} : \alpha_{\mathbf{i}} \circ \Delta_{\mathbf{w}} \mapsto \alpha_{\mathbf{i}}(\mathbf{w})$ is a one-to-one function from the cosets in to $\mathbf{v}.$ Suppose that $\mathbf{v}(\alpha_{\mathbf{i}} \circ \Delta_{\mathbf{w}}) = \mathbf{v}(\alpha_{\mathbf{j}} \circ \Delta_{\mathbf{w}}), \mathbf{i.e.} \quad \alpha_{\mathbf{i}}(\mathbf{w}) = \alpha_{\mathbf{j}}(\mathbf{w}).$ Then $\alpha_{\mathbf{j}}^{-1} \circ \alpha_{\mathbf{i}}(\mathbf{w}) = \mathbf{w}, \quad \text{which implies that } \alpha_{\mathbf{j}}^{-1} \circ \alpha_{\mathbf{i}} \quad \text{belongs to } \Delta_{\mathbf{w}}, \text{ or equivalently } \alpha_{\mathbf{i}} \circ \Delta_{\mathbf{w}} = \alpha_{\mathbf{j}} \circ \Delta_{\mathbf{w}}.$ Therefore \mathbf{m} is less than or equal $|\mathbf{v}|$. Hence $\mathbf{m} = |\mathbf{v}|$. Therefore

$$[\Delta : \Delta_{\mathbf{w}}] = |\mathbf{v}|.$$

4.1.5 Lemma Let Δ be any transitive subgroup of the automorphism group $\Gamma(V,\Xi)$ of $H=(V,\Xi)$ of order |V|. If Y_O is an element of Δ such that $Y_O(u)=u$ for some u in V, then $Y_O=e$, the identity of Δ .

Proof Let $H=(V,\Xi)$ be a hypergraph. Assume that Δ is a transitive subgroup of the automorphism group $\Gamma(V,\Xi)$ of order |V|. Let γ_0 in Δ and u in V be such that $\gamma_0(u)=u$. Let

$$\Delta_{u} = \{ \gamma \epsilon' \Delta | \gamma(u) = u \}.$$

Hence Y_0 belongs to Δ_u . By lemma 4.1.4, Δ_u is a subgroup of Δ and $[\Delta:\Delta_u] = |V|$. Since $|V| = |\Delta|$ and $[\Delta:\Delta_u] = \frac{|\Delta|}{|\Delta|}$, therefore $|\Delta_u| = 1$. Hence $\Delta_u = \{e\}$. Therefore $Y_0 = e$.

4.1.6 <u>Proposition</u> Let $H = (V, \Xi)$ be a hypergraph of rank at least 2. If its automorphism group $\Gamma(V, \Xi)$ contain a subgroup Δ of order |V| such that Δ acts transitively on V, then H is a group hypergraph.

Proof Let $H = (V, \Xi)$ be a hypergraph of rank at least 2. Assume that the automorphism group $\Gamma(H)$ contains a subgroup Δ of order |V| such that Δ acts transitively on V.

Case I Suppose $\Xi = \emptyset$. Let o be any group operation on V. Let $A = \emptyset$. Then $\Xi_A = \emptyset$, which implies that $\Xi = \Xi_A$. Hence (V, Ξ) is group hypergraph.

Case II Suppose $\Xi \neq \emptyset$. Then there exists at least one element in Ξ . Let E belong to Ξ . Fix u in E, let

$$A = \{A \mid A \subseteq A - \{e\} \text{ and } (\{u\} \cup A(u)) \in E\}$$
,

where $A(v) = \{\rho(v) \mid \rho \in A\}$.

For each v in E-{u_o}, there exists σ_{v} in Δ -{e} such that $\sigma_{v}(u_{o}) = v$. Observe that

$$\{\sigma_{v}(u_{o}) \mid v \in E - \{u_{o}\}\} = E - \{u_{o}\}.$$

Hence

$$E = \{u\} \cup \{\sigma(u) \mid v \in E - \{u\}\}$$

Therefore $\{u_0\} \cup \{\sigma_v(u_0) \mid v \in E - \{u_0\}\}$ belongs to Ξ . Hence $\{\sigma_v \mid v \in E - \{u_0\}\}$ belongs to A. Therefore $A \neq \emptyset$.

To see that $\mathcal A$ is admissible, let A be any element of $\mathcal A$, ρ be any element of A and σ be any element of Δ .

Choose

$$B_{\rho,\sigma} = \rho^{-1} \circ (\{e\} \cup A - \{\rho\}).$$

We shall show that $B_{\rho,\sigma}$ belongs to \mathcal{A} . Since $A \subseteq \Delta - \{e\}$, hence $A - \{\rho\} \subseteq \Delta - \{e,\rho\}$. Therefore we have

$$\rho^{-1} \circ (A - \{\rho\}) \subseteq \rho^{-1} \circ (\Delta - \{e, \rho\})$$

$$= \rho^{-1} \circ \Delta - \rho^{-1} \circ (\{e, \rho\})$$

$$= \Delta - \{\rho^{-1}, e\}$$

$$\subseteq \Delta - \{e\}$$

Since $\rho \in A$ and $A \subseteq \Delta - \{e\}$, hence $\rho \neq e$. Therefore $\rho^{-1} \in \Delta - \{e\}$. Thus

$$\{\rho^{-1}\}\ \cup \rho^{-1} \circ (A - \{\rho\}) \subseteq \Delta - \{e\}$$

But

$$B_{\rho,\sigma} = \rho^{-1} \circ (\{e\} \cup A - \{\rho\})$$

$$= \{\rho^{-1}\} \cup \rho^{-1} \circ (A - \{\rho\}).$$

Hence we have

$$B_{\rho,\sigma} \subseteq \Delta - \{e\}.$$

Observe that

$$\{u_{o}\} \cup B_{\rho,\sigma}(u_{o}) = \{u_{o}\} \cup \rho^{-1}_{o}(\{e\} \cup (A - \{\rho\}))(u_{o})$$

$$= \{u_{o}\} \cup \rho^{-1}(\{e\} \cup (A - \{\rho\}))(u_{o}))$$

$$= \{u_{o}\} \cup \rho^{-1}(\{u_{o}\} \cup (A(u_{o}) - \{\rho(u_{o})\}))$$

$$= \rho^{-1}(\{\rho(u_{o})\} \cup \{u_{o}\} \cup (A(u_{o}) - \{\rho(u_{o})\}))$$

$$= \rho^{-1}(\{u_{o}\} \cup A(u_{o}))$$

Since $\{u_o\}$ v $A(u_o)$ belongs to \mathcal{E} , hence $\{u_o\}v$ $B_{\rho,\sigma}(u_o)$ belongs to \mathcal{E} . Therefore $B_{\rho,\sigma}$ belongs to \mathcal{A} . From our choice of $B_{\rho,\sigma}$ we see that

$$(\sigma \circ \rho) \circ B_{\rho,\sigma} = (\sigma \circ \rho) \circ (\rho^{-1} \circ (\{e\} \cup A - \{\rho\}))$$

$$= \sigma \circ (\{e\} \cup (A - \{\rho\}))$$

$$= \{\sigma\} \cup (\sigma \circ A - \{\sigma \circ \rho\})$$

$$= (\{\sigma\} \cup \sigma \circ A) - \{\sigma \circ \rho\})$$

Hence A is an admissible set.

Next we shall show that $(\triangle, \Xi_{\mathcal{A}})$ is isomorphic to (V, Ξ) . Define a mapping ψ^* : $\triangle \rightarrow V$ by

$$\psi^*(\sigma) = \sigma(u_0)$$
 for all σ in Δ

Let σ_1 , σ_2 belong to Δ . Assume that $\psi^*(\sigma_1) = \psi^*(\sigma_2)$. Then $\sigma_1(u_0) = \sigma_2(u_0)$. Hence $\sigma_2^{-1} \circ \sigma_1(u_0) = u_0$. Therefore $\sigma_2^{-1} \circ \sigma_1$ is an element of Δ such that $(\sigma_2^{-1} \circ \sigma_1)(u_0) = u_0$. Hence, by lemma 4.1.5, we have $\sigma_2^{-1} \circ \sigma_1 = e$. Therefore $\sigma_1 = \sigma_2$. Hence ψ^* is one-to-one. Let u be any element of V. Hence there exists σ^* in Δ such that $\sigma^*(u_0) = u$. That is $u = \sigma^*(u_0) = \psi^*(\sigma^*)$. Hence ψ^* is onto Finally we shall show that ψ^* is an isomorphism from (Δ, \mathcal{E}_1) onto (V, \mathcal{E}_1) .

Let F be any non-empty subset of A. Then

$$\psi^*(F) = F(u_0)$$

$$= (\{\gamma\} \cup (F - \{\gamma\}))(u_0),$$

for some & in F. Hence

$$\psi^{*}(F) = \{ \gamma(u_{0}) \} \cup (F - \{\gamma\})(u_{0})$$

$$= \{ \gamma(u_{0}) \} \cup \gamma \circ \gamma^{1} \circ (F - \{\gamma\})(u_{0})$$

$$= \{ \{ \{ u_0 \} \} \cup \{ \{ \{ \}^{-1} \circ (\mathbb{F} - \{ \} \}) (u_0 \} \}$$

$$= \{ \{ \{ \{ u_0 \} \cup \{ \{ \}^{-1} \circ (\mathbb{F} - \{ \} \}) (u_0 \} \} \} \}.$$

If F belongs to Ξ_{+} , then, by remark 4.1.1, $Y^{-1} \circ (F - \{Y\}) = A$ for some A in A. Hence we have $\psi^*(F) = Y(\{u_0\} \cup A(u_0))$. Since $\{u_0\} \cup A(u_0)$ belongs to Ξ_{+} , and Y is an automorphism, hence $Y(\{u_0\} \cup A(u_0))$ belongs to $Y(\{u_0\} \cup A(u_0))$ belongs to $Y(\{u_0\} \cup A(u_0))$ belongs to $Y(\{u_0\} \cup A(u_0))$, where $Y^{-1}(\psi^*(F))$ belongs to $Y(\{u_0\} \cup A(u_0))$, where $Y^{-1}(\psi^*(F))$ belongs to $Y(\{u_0\} \cup A(u_0))$ belongs to $Y(\{u_0\} \cup A(u_0))$

$$F = \{Y\} \cup Y \circ (Y^{-1} \circ (F - \{Y\}))$$
$$= \{Y\} \cup Y \circ A,$$

which belongs to $\mathcal{E}_{\mathcal{A}}$. Hence ψ^* is an isomorphism from $(\Delta, \mathcal{E}_{\mathcal{A}})$ onto (V,\mathcal{E}) .

Therefore, by remark 4.1.2, (V, E) is a group hypergraph.

We may now summarize proposition 4.1.3 and proposition 4.1.6 into the following.

4.1.7 Theorem A hypergraph $H = (V, \Xi)$ of rank at least 2 is a group hypergraph if and only if its automorphism group contain a subgroup Δ of order |V| such that Δ acts transitively on V.

APPENDIX

An Example of a Quasi-group Hypergraph. Let $Q = \{0,1,2,3,4,5\}$. Let a binary operation o on Q be given by the following table :

-						
0	0	1	2	3	4	5
0	2	5	3	4	0	1
1	3	14	2	5	1 .	0
2	4	1	5	0	2	3
3	5	0	14	1	3	2
4	0	3	1	2	4	5
5	1	2	0	3	5	4

Clearly (Q,o) forms a quasi-group. It can be verified that

is an admissible set. For this A we have

$$\mathcal{E}_{A} = \{\{0,2,5\},\{1,3,4\},\{2,4,1\},\{3,5,0\},\{4,0,3\},\{5,1,2\}\}.$$

Hence (Q, E) is a quasi-group hypergraph.