CHAPTER II

PRELIMINARIES

2.1 Quasi~-groups and Groups

A quasi-group is an ordered pair (Q,0), where Q is non-empty
set and © is a binary operation on Q such that for every p, q in Q,
there exists unique elements x and y such that q o x = pand y 0o q = p.
In what follows we shall consider only finite quasi-groups, i.ec. a
quasi-group (Q,0) such that § is finite set. The number of elements
of Q will be called the order 0f/Q., For any subset A of Q and any
element q of Q the set {q dé/l/a7; A} will be denoted by q ©A, A fact
that will be oftenly used in/ our arguments in this chapter and chapter
IIT is that |A] = |qo A, whére f:!;e‘e;‘ymbol |S| denotes the cardinality
of the set S,

A mapping © from a qussi-group (Q,0) to.a quasi=-group (Q*,*)

is said to be a homomorphism if for every p, q in Q, ©(pog) = ©(p)+0(q).

If a homomorphism © is a one-to-one correspondence, then © is called
*
an isomorphism, If there exists an isomorphism from (Q,0) to (Q ,*),

then we say that (Q,0) is isomorphic to (Q*,*) and will be denoted by

Q- Q" 1If Q is an isomorphism from (Q,0) onto itself, then O is

called an automorphism of (9,0).

Let (Q,0) be a quasi-group. If the quasi-group (Q,9) is asso-
ciative, i.e. for every p,q,r in Q, (pog)or = po(qor), then (Q,9)
is said to be a group, If (Q40) is a group, then there exists unique

element e in Q such that for each g in Q, qoe = e0gq = q Such an



element e will be called the identity of Q. Also, we have that for
each q in O, there exists unique element p in Q such that poq = qop
= e, Such an element p will be called the inverse of g and will be
denoted by q—q.

A non-empty subset P of a group @ is said to be a subgroup of
Q if P itself is a group under the same operation as Q. For each sub-
group P of & group Q and each element q in Q. qoP is called a lgff

coset of P in 2, TFor each subgroup P of a group Q the following hold:

(24141) Any two left coscts of P in Q are either disjoint or
identical set of eclements,

(247.2) Q is the disjoint union of the left cosets of P in Q3

(2.1.3) [ /2] = %%Jr .

where [Q:P]| is the number of left cosets of P in Q and it is called

and

the index of P in Q.
Let S be a non-empty set. Then a one~to-one function of S
onto itself will be called permutation., It can be shown that the set

of all permutation of S forms a group. This group is know as the

symmetric group of S, If Q is a subgroup of the symmetric group, then

we say that @ is a permutation group. A permutation group Q@ is transi-

tive on a subset V of S if
(1) for each 0 in Q and cach v in V, o(v) belongs to V;
(2) for every v, v' in V, there exists ¢ in Q such that

o(v) = v,




2.2 Graphs

A graph G is an ordered pair (V,%), where V is a finite
non-empty set and = is a set of 2-subsets of V, Elements of V
and & are called vertices and edges of G, If & = SE(V)-3E, where
Sz(V) is the set of all 2-subsets of V, then G = (V,E) is called

the complementary graph of G,

Let G = (V,&) and G, = (V1,E;) be graphs. A one-to-one
mapping ¥ from V onto V1 is call an isomorphism from G onto G1 if

for every u, v in V,
{u,v} belongs to ¥ if,and only if {¢ (u),¥(v)}velongs to E,}.

If there exists an isomorphism from G onto Gq, then we say that G is

. . )
isomorphic to G1 and write/G ==Gi’ If ¢ is an isomorphism from G onto
itself, then ¥ is called an automorphism of G.

Let G = (V,7 ) be a graphs For each v in V, we define
Ng(v) = tu tHu,v e & )
For each v in V the degree of v in G, denoted by dG(V)’ is defined by
dG(V) = ING(V)‘

If for every u, v in V, dG(u) = dG(v), then G is said to be regular,

2.3 Hall's Representation Theorem

To prove our main result of this chapter we need Hall's Repre-
sentation Theorem. First we introduce some terminologies.

Let (Nv) be a system of sets, i.e. for each v in V, N is
veV :

a set. If (uv) is a system of elements such that u, belongs to N_

veV



for all v belongs to V, then we say that (uv) is a system of
veV

representative of (Nv) « TFurthermore, if the uv‘s are distinct
veV

we call (uv) a system of distinct representative, to be abbrevi-
‘ veV

ated SDR, of (N )

. TFor each system (N_) of sets and each
veV VveV

subset S of V we shall denote v N_ by N(S). Now, Hall's Represen-
v ES

tation Theorem can be stated as follows,

2¢3+1 Theorem Let (Nv) be any finite system of subset
' veV
of a set X, i.e, V is finite and for each v in Y, Nvis a subset of X.

Then (N_) has SDR if and only if Ju(s) | > |s| for all subset S ofV,

v eV

This theorem is due to Hall |74

2.4 A Property of Regular Graphs.

The following result on regular graph is essential to our
study on quasi-group hypergraphs,

2el4e¢1 Theorem Let G = (V,E)ibe a regular graph and W be any
set sﬁch that |W| = |NGCv)i. Then for each v in V we can associate

a one-to-one function’ﬂv from W onto NG(v) such that

Vo, vev gy »Vweu (o £ 1 .

Proof Let (V,¥) be a regular graph of degree ke
If k = O we have W = f, In this case we can take ﬂv =@ for all v
in V., So, we are left to consider the case where k > O, In this case
Hall's Representation Theorem (Theorem 2.3.,1) will be used. For con-
venience, in the remaining of this proof we shall denote NG(v) by N_.
First we shall show that (Nv) has an SDR., Let S be any subset of

vEV
V. To verify that |N(S)| » |8|, 1let



0 = {(u,v)|v eVvanduenl,
u v
K = {(u,v) |v e S and uw e N_},
u v

L, = {(uyv) lu e N, T

observe that

U B i k4
wueN(s) ¢ veSs

1
e

v

Note that each side of the above equation is disjoint union, hence

we have

I S50 =R
u eN(S) “l ve:s"’I

Clearly Ku‘Z Ou. Therefore we. have

h |o|; RN § A
weN(s)/ Py ¥

Observe that

o= W1 = «
and
e dnclatn Unkve
hence we have
z k > r k,
u€ N(S) v ES
i.€e
[N(8)| x > |s] k.
Therefore

In(s)| > |s|



Hence, by theorem 2.3.1, (N ) has an SDR. Let (u ) be an
Vavev ViveV
SDR of (N_) i
Vayev
i ; (1) (1)
For each v in V, we define Wy i Ul and Nv = Nv' Observe that
we have define uiq) and N§1) such that

(1)l

(1) for each u in Vv, |N = k = k-(1-1), and

(2) M) has (al')) as an SDR.
v vev veV

Let % be any positive integer less than or equal to k., Assume that

u(j) (3)

v

and N_“° have been defined for @1l v in V and for all positive

>

integer j < & such that
(3) for each j </%/ /and each u in V, INﬁJ)I = k=(j=1), and

(4) for each j < ¥ jN(J) has (uij))v as an SDR,

v-sV eV

2
We now define Ns ) as followa. Eor each v in V, let

N(z)”§7 == === {u(2-1)} .
v : < X

L
We shall show that (Ni 5 has an SDR. Let S be any subset of V.

veV
To verify that |N(2)(S)| > | 8] where N(“)(s) = U Nél) , let
vES
Oéﬁ) = {(u,v) | ve Vand ue N(k)
93 {(uyv) | ve S and u e v | 3F
u v
Lig) = {(u v) | u e N(z)} "

Observe that



(2) (%)
K = u- L
ue N(l)(S) e ves v

n

Note that each side of the above equation is a disjoint union, hence

we have
(2) (%)
(AR LS T LT
ueN 7(8) veS
Clearly Kil) = Oig). Therefore we have

“)1 5 ),

to e

s Sl ’(s) =

For each element u in V and for each i< {4y u is among (u(l% V,l.e.

u = u(l) for some v, in V,/ /Sinece N(z) -{u(1),u(2),..., {4=T) )
v i v, v, :
B [ [ REE & ! - S i
hence u ¢ N(ﬁ) i Therefore (u,vi) ¢ Oix). Hence
1 e —
ol¥ . o ={lu,v )i = 12 i& e N wh £ f
8 ek a U, i 1 = 5’ :-’:.—t{!ﬂ,’_. L u-gf ” waere v Vi or any

i < &, then we must havé.u £ uii)for any 1< 2. For otherwise

u(l) =u = u(l) for some i, This is contary to the fact that (u(i% ;

v vi v veV
is an SDR. Hence u eNiQ). Therefore Ou~ {(u,vi)li = 1,2,...,2-1}@=O§ﬁ>.
Hence

(%) .
O, = Ou= ldyv,) |4 = 1,2,.0., 2-1]
If 1¢1i<j <2, then u(i)¢ N(J), but u(J)s N( ). Hence u(i)f u(j).
v v v . v, v,
1 i i Vi : i

Therefore, if i # j we must have V5 £ vj. For otherwise we would have

uéi) B u‘(,j) .
i i

Hence
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loiz)l i |Ou'{(“'vi)| 1,2,.5., §-1}|
= |Ou|-|{(u,vi) |i = 1,2,000, l_’]]‘l
= k - (2-1)0
Clearly,
IL(2)| 4 'N(Z)l P N L,
v v
Therefore we have
z (2) k=(2=2" #//% k=(2=1),
uehN "(8) v/es
i.e.
INE(8) | (k1)) o fslCienta-1))
Therefore

N2 (o) Spet—

(2) (2
T -l T
Hence, by theorem 2.3.1, (hv )v v has an SDR., Let (uv %v .y be

(2)
an SDR of (Nv )veV°
: : (1) (i)
Hence for each i = 1,2,...,k, we can define (Nv )v and (uv )

eV veV

such that

(5) for egali's = 12, ileik, (ufri))v is an SDR of (Néi))

eV ve V?

and
(6) for each i = 1,2,...,k=1, Nii+1)= Nii)_-{uii)}.

From (6) it follows that
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() (2 (0
v

(7) for each v in V, u, sevey U are distinct.

Let W be any set such that ]W| = k. Then there exists a one-to-one

function ¥ from W onto {1,2,...,k}. For each v in V, define

'“v : W -l»Nv by

ﬁv(w) = uiw(w)) for all w in W,

It follows from (7) that'ﬁv is one-to-one function from W onto N

and follows from (5) that for every my v in V if u £ v then

T (w) #T (w) for all w in W,
u v

Hence for each v in V we can ésésociate & one-to-one function’ﬂv from

W onto NG(v) such that

Vu, vev (u v/ Vwew o (w A1 ).

25 Hypergraphs

A hypergraph H is an ordered pair (V,¥), where V is a finite
non-empty set and & is a’seé of nbn-empty subsets of V. The sets in
& are called hyperedges or simply’g¢dges while the elements of V are
called vefticeg, By ;ggg of a hypergraph we mean the maximum cardina-
lity of the edges in the hypergraph, A hypergraph in which every edge

has the same cardinality is called & uniform hypergraph, In this

thesis we shall consider only uniform hypergraphs. In the sequel, by
@ hypergraph we meen a uniform hypergraph,

Let H = (V,E) and H, = (V1,E%) be hypergraphs. A one-to-one
mapping ¥ from V onto V1 is called an isomorphism from H onto H1 AL

for each subset E of V,
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E belongs to E if and only if y(E) belongs to E,].
Here and in the sequel, W(E) denotes the set {y(v)]| v € E}s If there
is an isomorphism from H onto H1, then we say that H is isomorphic

to H, and write H 2,H1. If ¥ is isomorphism from H onto itself, then

1
¥ is called an automorphism of H, It can be shown that the set of
all automorphisms of any hypergraph H forms a group under composition,

This group is known as the automorphism group of H, It will be denoted

by N(H) or N(v,E).
To each vertex v of & hypergraph H = (V,8) we associate a

hypergraph Hv = (vv,gv), where

=4

v = E- (v} | E/¢ & and v 1},

and

V=U§o
v v

Following Berge B],_ we associate a graph (H)2 = (V,(E)z)
to each hypergraph H = {(V,%), where

(5)2 = {e | elis a 2-subset of Some E in & }.

2.5¢1 Remark = Let H = (V,%) be & hypergraph. Then for each

v in V, N(§3 (v) =V = (Vv viv].
2

2¢542 Proposition Let H = (V,E) be a hypergraph. If for

every u, v in V, Hu & Hv’ then (ﬁ32 is regular.

Proof Let H = (V,8) be a hypergraph such that for every .

wy vin Vy B % Ho. Then [V | = |V |. Hence [v] - |v |-1 = Iv|- b I-1.
By remark 2.5.7, we have |N (w)] = |n (v)]| .
(M, m,

Hence (§72 is regular, #
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