
2.1 Quasi-groups and Groups

A quasi-group is an ordered pair $(Q, 0)$, where Q is non-empty set and 0 is a binary operation on Q such that for every p, q in Q, there exists unique elements x and y such that $q \quad x=p$ and $y \circ q=p$. In what follows we shall consider ony finite quasi-groups, i.e. a quasi-group $(Q, 0)$ such that Q is finite set. The number of elements of Q will be called the ordor of Q. For any subset A of Q and any element q of Q the set $\{q, a, ~ a \in A\}$ will be denoted by $q \circ A$. A fact that will be oftenly used in our arguments in this chapter and chapter III is that $|A|=|q \circ A|$, where the symbol $|S|$ denotes the cardinality of the set S.

A mapping θ from a quasi-group ($\hat{\mathrm{f}, \mathrm{O}) \text { to a quasi-group }\left(Q^{*}, *\right) ~}$ is said to be a homomorphism if for every p, q in $Q, \theta(p \circ q)=\theta(p) * \theta(q)$. If a homomorphism θ is a one-to-one correspondence, then θ is called an isomorphism. If there exists an isomorphism from ($Q, 0$) to ($Q^{*}, *$), then we say that $(Q, 0)$ is isomorphic to $\left(Q^{*}, *\right)$ and will be denoted by $Q \cong Q^{*}$. If Q is an isomorphism from $(Q, 0)$ onto itself, then θ is called an automorphism of $(0,0)$.

Let (Q, O) be a quasi-group. If the quasi-group ($Q, 0$) is associative, i.e. for every p, q, r in $Q,(p \circ q) \circ r=p \circ(q \circ r)$, then $(Q, 0)$ is said to be a group. If $(Q, 0)$ is a group, then there exists unique element e in Q such that for each q in $Q, q \circ e=e \circ q=q$. Such an
element e will be called the identity of Q. Also, we have that for each q in $Q_{\text {, }}$ there exists unique element p in Q such that $p o q=q 0 p$ $=e$. Such an element p will be called the inverse of q and will be denoted by q^{-1}.

A nonempty subset P of a group Q is said to be a subgroup of Q if P itself is a group under the same operation as Q. For each subgroup P of a group Q and each element q in Q. $q \circ P$ is called a left coset of P in G. For each subgroup P of a group Q the following hold:
(2.1.1) Any two left coscts of P in Q are either disjoint or identical set of elements,
(2.1.2) Q is the disjoint union of the left coset of P in Q; and
where $[Q: P]$ is the number of left coset of P in Q and it is called the index of P in Q.

Let S be a non-empty set. Then a one-to-one function of S onto itself will be called permutation. It can be shown that the set of all permutation of formsfagroup. Il This group is know as the symmetric group of S. If Q is a subgroup of the symmetric group, then we say that Q is a permutation group. A permutation group Q is transifive on a subset V of S if
(1) for each σ in Q and each V in $V, \sigma(v)$ belongs to V;
(2) for every v, V^{\prime} in V, there exists σ in Q such that
$\sigma(\mathrm{v})=\mathrm{v}^{\mathbf{\prime}}$.
2.2 Graphs

A graph G is an ordered pair (V, E), where V is a finite non-empty set and $\bar{\varepsilon}$ is a set of 2 -subsets of V. Elements of V and ξ are called vertices and edges of G. If $\xi=S_{2}(V)-\xi$, where $S_{2}(V)$ is the set of all 2-subsets of V, then $\bar{G}=(V, \bar{E})$ is called the complementary graph of G.

Let $G=(V, \varepsilon)$ and $G_{1}=\left(V_{1}, \Sigma_{1}\right)$ be graphs. A one-to-one mapping ψ from V onto V_{1} is call an isomorphism from G onto G_{1} if for every u, v in V,
$\{u, v\}$ belongs to ε if and only if $\{\psi(u), \psi(v)\}$ belongs to \mathcal{E}_{1}.
If there exists an isomorphism from G onto G, then we say that G is isomorphic to G and write $G \cong G_{1}$. If ψ is an isomorphism from G onto itself, then ψ is called an automorphism of G.

Let $G=(V, E)$ be a graph. For each v in V, we define

$$
N_{G}(v) \quad\{u \mid\{u, v\} \varepsilon \varepsilon\}
$$

For each v in V the degree of v in G, denoted by $d_{G}(v)$, is defined by

$$
d_{G}(v) U=\operatorname{lN}_{G}(v) \mid \text { UNIVERSITY }
$$

If for every u, v in $V, d_{G}(u)=d_{G}(v)$, then G is said to be regular.

2.3 Hall's Representation Theorem

To prove our main result of this chapter we need Hall's Representation Theorem. First we introduce some terminologies.

Let $\left(N_{V}\right)_{V \in V}$ be a system of sets, ie. for each v in V, N_{V} is
a set. If $\left(u_{v}\right){ }_{v \in V}$ is a system of elements such that u_{v} belongs to N_{v}
for all v belongs to V, then we say that $\left(u_{v}\right)_{V \varepsilon V}$ is a system of representative of $\left(N_{V}\right)_{V \varepsilon V}$. Furthermore, if the u_{v} 's are distinct we call ($\left.u_{V}\right)_{V \in V}$ a system of distinct representative, to be abbreviate $S D R$, of $\left(N_{V}\right)_{V \varepsilon V}$. For each system $\left(N_{V}\right)_{V \varepsilon V}$ of sets and each subset S of V we shall denote $U_{V \in S} N_{V}$ by $N(S)$. Now, Hall's Representtation Theorem can be stated as follows.
2.3.1 Theorem Let $\left(N_{V}\right)_{V \varepsilon V}$ be any finite system of subset of a set X, i.e. V is finite and for each V in $V_{V} N_{V}$ is a subset of X. Then $\left(N_{V}\right)_{V \in V}$ has $S D R$ if and only if $|N(S)| \geqslant|S|$ for all subset S of V. This theorem is due to Hall

2.4 A Property of Regular Graphs.

The following result on regular graph is essential to our study on quasi-group hypergraphs.
2.4.1 Theorem Let $G=(V, E)$ be a regular graph and W be any set such that $|W|=\left|N_{G}(v)\right|$. Then for each v in V we can associate a one-to-one function \mathbb{T}_{v} from W onto $N_{G}(v)$ such that

$$
\forall u, v \in v\left(u \neq v \rightarrow \forall w_{\mathcal{W}} \in\left(\pi_{u}(w) \not \pi_{v}(w)\right)\right)
$$

Proof Let (V, ξ) be a regular graph of degree k. If $k=0$ we have $w=\varnothing$. In this case we can take $\pi_{V}=\varnothing$ for all v in V. So, we are left to consider the case where $k>0$. In this case Hall's Representation Theorem (Theorem 2.3.1) will be used. For convenience, in the remaining of this proof we shall denote $N_{G}(v)$ by N_{v}. First we shall show that $\left(N_{V}\right)_{V \in V}$ has an $S D R$. Let S be any subset of V. To verify that $|N(S)| \geqslant|S|$, let

$$
\begin{aligned}
& o_{u}=\left\{(u, v) \mid v \varepsilon v \text { and } u \varepsilon N_{v}\right\}, \\
& K_{u}=\left\{(u, v) \mid v \varepsilon S \text { and } u \varepsilon N_{v}\right\}, \\
& L_{v}=\left\{(u, v) \mid u \varepsilon N_{v}\right\} .
\end{aligned}
$$

Observe that

$$
{ }_{u} \varepsilon_{N(S)}^{U}{ }^{K} u=u_{v \varepsilon S}^{L_{v}}
$$

Note that each side of the above equation is disjoint union, hence we have

Clearly $K_{u} \subseteq O_{u}$. Therefore we have

Observe that

and

$$
u^{\Sigma} \varepsilon_{N(S)}^{k} \geqslant \sum_{\varepsilon_{S}} k \text {, }
$$

ie.

$$
|N(S)| k \quad \geqslant|s| k .
$$

Therefore

$$
|N(S)| \quad \geqslant|s|
$$

Hence, by theorem 2.3.1, ($\left.N_{V}\right)_{V \varepsilon V}$ has an SDR. Let $\left(u_{V}\right)_{V \varepsilon V}$ be an $S D R$ of $\left(N_{V}\right)_{V \in V}$.
For each v in V, we define $u_{v}^{(1)}=u_{v}$ and $N_{v}^{(1)}=N_{v}$. Observe that we have define $u_{v}^{(1)}$ and $N_{v}^{(1)}$ such that
(1) for each u in $V,\left|N_{u}^{(1)}\right|=k=k-(1-1)$, and
(2) $\left(\mathbb{N}_{V}^{(1)}\right)_{V \varepsilon V} \operatorname{has}\left(u_{V}^{(1)}\right)_{V \varepsilon V}$ as an SDR.

Let ℓ be any positive integer less than or equal to k . Assume that $u_{V}^{(j)}$ and $N_{V}^{(j)}$ have been defined for $a I I V$ in V and for all positive integer $j<\ell$ such that
(3) for each $j s$, and each u in $V,\left|N_{u}^{(j)}\right|=k-(j-1)$, and
(4) for each $j<\ell, \frac{(N(j))_{V}}{V}$ has $\left(u_{V}^{(j)}\right)_{V \in V}$ as an SDR. We now define $N_{V}^{(l)}$ as follows. For each v in V, let

$$
\left.N_{v}^{(l)}=N_{v}^{(l-1)}-\left\{u_{v}^{(l-1)}\right\}\right) .
$$

We shall show that $\left(N_{V}^{(\ell)}\right)_{V} V^{\text {Shes an }}$ SDR. Lั Let S be any subset of V.

$$
\begin{aligned}
& o_{u}^{(\ell)}=\left\{(u, v) \mid v \varepsilon V \text { and } u \varepsilon N_{v}^{(\ell)}\right\}, \\
& K_{u}^{(\ell)}=\left\{(u, v) \mid v \varepsilon S \text { and } u \varepsilon N_{v}^{(\ell)}\right\}, \\
& I_{v}^{(\ell)}=\left\{(u, v) \mid u \varepsilon N_{v}^{(\ell)}\right\} .
\end{aligned}
$$

Observe that

$$
u \in N_{N}^{u(l)}(S)^{K_{u}^{(l)}}=u_{v \in S} I_{v}^{(l)}
$$

Note that each side of the above equation is a disjoint union, hence we have

$$
\sum_{u \in N}^{(\ell)}(S)\left|K_{u}^{(\ell)}\right|=\sum_{v \in S}\left|I_{v}^{(\ell)}\right| .
$$

Clearly $K_{u}^{(\ell)}=O_{u}^{(\ell)}$. Therefore we have

$$
\sum_{\sum_{\in N}(\ell)}^{\frac{10}{(S)}}{ }_{u}^{(\ell)} \sum_{v \in S}\left|I_{v}^{(\ell)}\right| \text {. }
$$

For each element u in v and for each $i<\ell$, u is among $\left(u_{v}^{(i)}\right)_{v \in V}$,ie. $u=u_{v_{i}}^{(i)}$ for some v_{i} in v. since $N_{v_{i}}^{(l)}=N_{v_{i}}-\left\{u_{v_{i}}^{(1)}, u_{v_{i}}^{(2)}, \ldots, u_{v_{i}}^{(l-1)}\right\}$, hence $u \notin N_{v_{i}}^{(l)}$, Therefore $\left(u, v_{i}\right) \not o_{u}^{(\ell)}$. Hence
$o_{u}^{(l)} \leqslant o_{u}-\left\{\left.\left(u, v_{i}\right)\right|_{i}=\{2, \ldots, l-1\}\right.$. If $u \varepsilon \delta_{v}$ where $v \neq v_{i}$ for any
$i<\ell$, then we must have $u \neq u_{v}^{(i)}$ for any $i<\ell$. For otherwise
$u_{v}^{(i)}=u=u_{v_{i}}^{(i)}$ for some i. This is contrary to the fact that $\left(u_{v}^{(i)}\right)_{v \in V}$ is an SDR. Hence $u \varepsilon N_{v}^{(l)}$. Therefore $o_{u}-\left\{\left(u, v_{i}\right) \mid i=1,2, \ldots, l-1\right\} \subseteq o_{u}^{(\eta)}$. Hence

$$
o_{u}^{(l)}=o_{u}-\left\{\left(u, v_{i}\right) \mid i=1,2, \ldots, l-1\right\}
$$

If $1 \leqslant i<j<l$, then $u_{v_{i}}^{(i)} \notin N_{v_{i}}^{(j)}$, but $u_{v_{i}}^{(j)} \varepsilon \mathbb{N}_{v_{i}}^{(j)}$. Hence $u_{v_{i}}^{(i)} \neq u_{v_{i}}^{(j)}$.
Therefore, if $i \neq j$ we must have $v_{i} \neq v_{j}$. For otherwise we would have $u_{v_{i}}^{(i)}=u_{v_{i}}^{(j)}$. Hence

$$
\begin{aligned}
\left|0_{u}^{(l)}\right| & =\left|o_{u}-\left\{\left(u, v_{i}\right) \mid i=1,2, \ldots, l-1\right\}\right| \\
& =\left|o_{u}\right|-\left|\left\{\left(u, v_{i}\right) \mid i=1,2, \ldots, \ell-1\right\}\right| \\
& =k-(\ell-1) .
\end{aligned}
$$

Clearly,

$$
\left|L_{v}^{(l)}\right|=\left|N_{v}^{(l)}\right|=k-(l-1)
$$

Therefore we have

$$
\sum_{u_{\varepsilon}(l)}^{\Sigma}(S)^{k-(l-1)} \Rightarrow / \sum_{\varepsilon S}
$$

i.e.

$$
\left|N^{(\ell)}(S)\right|(k-(l-1))>|S|(k-(l-1))
$$

Therefore

Hence, by theorem 2.3.1, $\left(N_{V}^{(l)}\right)_{v \varepsilon V}$ has an SDR. Let $\left(u_{v}^{(\ell)}\right)_{v \varepsilon V}$ be an SDR of $\left(N_{V}^{(\ell)}\right)_{V \in V^{*}}$
Hence for each $i=1,2, \ldots, k$, we can define $\left(N_{V}^{(i)}\right)_{V \varepsilon V}$ and $\left(u_{V}^{(i)}\right)_{V \varepsilon V}$ such that
(5) for each $i=1,2, \ldots, k,\left(u_{V}^{(i)}\right)_{V \varepsilon V}$ is an SDR of $\left(N_{V}^{(i)}\right)_{V \varepsilon V}$,
and
(6) for each $i=1,2, \ldots, k-1, N_{v}^{(i+1)}=N_{v}^{(i)}-\left\{u_{v}^{(i)}\right\}$.

From (6) it follows that
(7) for each v in $v, u_{v}^{(1)}, u_{v}^{(2)}, \ldots, u_{v}^{(k)}$ are distinct.

Let W be any set such that $|W|=k$. Then there exists a one-to-one function ψ from W onto $\{1,2, \ldots, k\}$. For each v in V, define $\mathbb{T}_{v}: W \rightarrow N_{V}$ by

$$
\pi_{v}(w)=u_{v}^{(\psi(w))} \text { for all } w \text { in } w .
$$

It follows from (7) that \mathbb{T}_{V} is one-to-one function from W onto N_{V}, and follows from (5) that for every u, v in V if $u \neq v$ then $\pi_{u}(w) \neq \pi_{v}(w)$ for all w in $W_{\text {. }}$

Hence for each v in V we can associate a one-to-one function \mathbb{T}_{V} from W onto $N_{G}(v)$ such that

$$
\forall u, v \in V\left(u \neq v \rightarrow \forall w \varepsilon w\left(\pi_{u}(w) \neq \pi_{v}(w)\right)\right) .
$$

2.5 Hypergraphs

A hypergraph H is an ordered pair (V, ε), where V is a finite non-empty set and E is a set of non-empty subsets of V. The sets in ξ are called hyperedges or simply edges while the elements of V are called vertices. By rank of a hypergraph we mean the maximum cardinality of the edges in the hypergraph. A hypergraph in which every edge has the same cardinality is called a uniform hypergraph. In this thesis we shall consider only uniform hypergraphs. In the sequel, by a hypergraph we mean a uniform hypergraph.

Let $H=(V, E)$ and $H_{1}=\left(V_{1}, \varepsilon_{1}\right)$ be hypergraphs. A one-to-one mapping ψ from V onto V_{1} is called an isomorphism from H onto H_{1} if for each subset E of V,
E belongs to E if and only if $\psi(E)$ belongs to E_{1}. Here and in the sequel, $\psi(E)$ denotes the set $\{\psi(v) \mid V \in E\}$. If there is an isomorphism from H onto H_{1}, then we say that H is isomorphic to H_{1} and write $H \cong \mathrm{H}_{1}$. If ψ is isomorphism from H onto itself, then ψ is called an automorphism of H. It can be shown that the set of all automorphisms of any hypergraph H forms a group under composition. This group is known as the automorphism group of H. It will be denoted by $\Gamma(H)$ or $\Gamma(V, \varepsilon)$.

To each vertex v of a hypergraph $H=(V, \xi)$ we associate a hypergraph $H_{V}=\left(V_{V}, \varepsilon_{v}\right)$, where

$$
\varepsilon_{\nabla}=\{E-\{v\} \mid E \in \in \text { and } v \in \mathbb{E}\} .
$$

and

$$
V_{V}=v E_{V}
$$

Following Berger $[3]$, we associate a graph $(H)_{2}=\left(V,(\varepsilon)_{2}\right)$ to each hypergraph $H=(V$, है) where
$(E)_{2}=\{e \mid$ e is a 2-subset of some E in $E\}$.
2.5.1 Remark Let $H=(V, \vec{z})$ be a hypergraph. Then for each
v in $V, N_{(H)_{2}}(v)=V-\left(V_{v} u\{v\}\right)$.
2.5.2 Proposition Let $H=(V, E)$ be a hypergraph. If for every u, v in $V, H_{u} \cong H_{v}$, then $(H)_{2}$ is regular.

Proof Let $H=(V, \varepsilon)$ be a hypergraph such that for every u, v in $V_{,} H_{u} \cong H_{v}$. Then $\left|V_{u}\right|=\left|V_{v}\right|$. Hence $|V|-\left|V_{u}\right|-1=|v|-\left|V_{v}\right|-1$. By remark 2.5.1, we have $\left|N_{(H)_{2}}(u)\right|=\mid N_{(H)_{2}}$ (v)|. Hence (H) ${ }_{2}$ is regular.

