THE SPACE * (Ω) AND SCHWARTZ FUNCTIONS

In this chapter we first recall some notations in the real n-dimensional Euclidean space \mathbb{R}^{n}. Later on we are going to study the space $\bar{\infty}(\Omega)$ and Schwartz functions which will be used constantly in the succeeding chapters.

The materials of this chapter are drawn from references [4], $[5],[7],[9],[10]$ and $[11]$.

For function defined on \mathbb{R}^{n} we need a concise notation for partial derivatives. First we denote $\partial / \partial x_{j}$ by ∂_{j} and then we write, for each family $r=\left(r_{1}, \ldots, r_{n}\right)$ of nonnegative integer, $\partial^{r}=\partial_{1}^{r_{1}} \partial_{2}^{r_{2}} \ldots \partial_{n}^{r}$. The symbol r is called a multi-index, and its order is $|r|=r_{1}+\cdots+r_{n}$.

2.1 The Space $D(\Omega)$

2.1.1 Definition. Let be a real-valued function defined on an open subset Ω of \mathbb{R}^{n}. The support (or carrier) of φ, denoted by Supp (ψ), is the closure of the set on which its valued are different from zero.
2.1.2 Remark. For any two real-valued functions φ and 4 , defined on an open subset Ω of \mathbb{R}^{n}, and any real number $\alpha \neq 0$,

$$
\begin{array}{lll}
\operatorname{Supp}(\varphi+4) & \leftrightarrows & \operatorname{Supp}(\varphi) \quad U \quad \operatorname{Supp}(4), \\
\operatorname{Supp}(\alpha) & \operatorname{Supp}(\varphi) .
\end{array}
$$

Proof : For each x belongs to Ω such that $(\varphi+\psi)(x)=\varphi(x)+4(x) \neq 0$, we have that either $\psi(x) \neq 0$ or $\psi(x) \neq 0$. Then by using the facts, $A \subseteq B$ implies $\bar{A} \subseteq \bar{B}$ and $\overline{A U B}=\bar{A} U \bar{B}$, we get the first result.

For any $\alpha \neq 0$ and for each x belongs to Ω such that $\propto \varphi(x) \neq 0$, we have that $\varphi(x) \neq 0$. And for each x such that $\varphi(x) \neq 0$, we have that $x \varphi(x) \neq 0, x \neq 0$. Hence the second result.
2.1.3 Notations. Let n be an open subset of \mathbb{R}^{n}. The infinitely differentiable functions on Ω with compact support form a vector space, denoted by $\mathbb{\infty}(\sqrt{ })$.

For each compact subset K of Ω, these functions φ of $\nrightarrow(\Omega)$ for which $\operatorname{Supp}(\varphi) \subseteq \mathrm{K}$ form a vector subspace of $\varnothing(\Omega)$, which we shall denote by ه $(\Omega ; \mathrm{K})$.
2.1.4 Remark. $O(\Omega)$ is the union of its subspace $\mathcal{D}(\Omega ; \mathrm{K})$ as K varies over all the compact subsets of Ω.

Proof: It suffices to prove that $\varnothing(\Omega) \leq \underset{K c \Omega}{U}$ (\varnothing; K). For every $\varphi \mathscr{A}(\Omega), \varphi$ has the compact support K, say. Then $\psi \in \propto(\Omega ; K)$.
2.1.5 Theorem. For any compact subset K of Ω and any non-negative integer m, let

$$
p_{m, K}(\varphi)=\max _{|r| \leq m} \sup _{x \in K}\left|\partial^{r} \varphi(x)\right| \quad(\varphi \in D(\Omega ; K))
$$

(note that in the bracket means "for all $\varphi \in \mathcal{\infty}(\Omega ; K)$ "). Then $p_{m, K}$ is a norm on $D(\Omega ; K)$.

Proof : It follows immediately from the properties of absolute values and the definition.
2.1.6 Theorem. For all $\varphi_{1}, \varphi_{2} \in \varnothing(\Omega$; K), let

$$
d\left(\varphi_{1}, \varphi_{2}\right)=\sum_{m=0}^{+\infty} \frac{\sum_{m, K}\left(\varphi_{1}-\varphi_{2}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)\right]},
$$

where $p_{m, K}$ is defined as in $(2.1 \cdot 5)$. Then d is a metric on $D(\Omega ; K)$. From now on we shall use the metric d to define a topology for $\varnothing(\Omega ; K)$.

Proof : Since $\frac{t}{1+t} \leq 1$ for all $t \geq 0$, we see that for every non-negative integer m,

$$
\frac{p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)\right]} \leqslant \frac{1}{2^{m}} .
$$

And since the series $\sum_{m=0}^{+\infty} 1 / 2^{m}$ converges, we set that
$d\left(\varphi_{1}, \varphi_{2}\right)=\sum_{m=0}^{+\infty} \frac{p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)\right]} \leqslant \sum_{m=0}^{+\infty} \frac{1}{2^{m}}\left\langle+\infty\left(\varphi_{1}, \varphi_{2} \in \infty(\Omega ; K)\right)\right.$.

The conditions $d\left(\varphi_{1}, \varphi_{2}\right) \triangleq 0, d\left(\varphi_{1}, \varphi_{2}\right)=0$ iff $\varphi_{1}=\varphi_{2}$, and $d\left(\varphi_{1}, \varphi_{2}\right)=d\left(\varphi_{2}, \varphi_{1}\right)$ are obvious. We must therefore check the triangular inequality. The result will follow if we prove that
if a, b, c are three nonnegative numbers and if
(*)
$c \leqslant$
$a+b$
then
-
$c /(1+c) \leqslant a /(1+a)+b /(1+b)$.

If c or $a+b$ are equal to zero, there is nothing to prove so that we may assume that none of these two numbers is equal to zero. Then (*) is equivalent to
which implies
$(1+1 / c)^{-1} \leq(1+1 /(a+b))^{-1}=a /(1+a+b)+b /(1+a+b)$.

The left-hand side is $c /(1+c)$; the right-hand side is obviously at most equal to

$$
a /(1+a) \cap+b /(1+b) \text {, } า \text { ลัย }
$$

whence (**). This proves that d is a metric.
2.1.7 Remark. The metric d is translation invariant, ie.,

$$
d\left(\varphi_{1}, \psi_{2}\right)=d\left(\psi_{1}-\varphi_{2}, 0\right) \quad\left(\varphi_{1}, \psi_{2} \in \infty(\Omega ; K)\right)
$$

Proof. For all $\varphi_{1}, \psi_{2} \in \mathcal{D}(\Omega ; K)$,

$$
d\left(\varphi_{1}, \psi_{2}\right)=\sum_{m=0}^{+\infty} \frac{p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi_{1}-\varphi_{2}\right)\right]}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{+\infty} \frac{p_{m, K}\left(\left(\varphi_{1}-\psi_{2}\right)-0\right)}{2^{m}\left[1+p_{m, K}\left(\left(\psi_{1}-\psi_{2}\right)-0\right)\right]} \\
& =d\left(\varphi_{1}-\varphi_{2}, 0\right) .
\end{aligned}
$$

2.1.8 Lemma. Let $B\left(\varphi_{0}, \varepsilon\right)$ be the open ball in $\mathcal{N}(\Omega ; K)$ with centre ψ_{0} and radius ε.
(i) Then there exists an interger $m_{0} \geq 0$ and $\delta_{0}(\varepsilon)>0$ such that $\left\{\varphi \in \mathscr{R}(\Omega ; K): p_{m}, \mathbb{N}\left(\frac{\left.\psi_{0}\right)}{\varphi_{0}}<\delta_{0}\right\} \subset B\left(\varphi_{0}, \varepsilon\right)\right.$.
(ii) If $\left(\varphi_{j}\right)$ is a sequence in $\infty(\Omega ; K)$ such that for every multi-index $r,\left(\partial^{y} \varphi_{j}\right)$ converges to $\partial^{r} \varphi_{0}$ as $j \rightarrow+\infty$, uniformly on K, then there exists j_{0} such that for all $j>j_{0}$, $\varphi_{j} \in B\left(\varphi_{0}, \varepsilon\right)$.

Proof : (i) Since the series $\sum_{m=0}^{+1 / 2 m}$ converges, for any given $\varepsilon>0$, we may find an integer $m_{0} \geqq 0$ such that

$$
\sum_{m=m_{0}+1}^{+\infty} 1 / 2^{m} U^{m} \text { VIER } \varepsilon / 2
$$

And since $\left(\frac{t}{1+t}\right) \rightarrow 0$ as $t \rightarrow 0$, there exists a $\delta_{0}(\varepsilon)>0$ such that

$$
\frac{p_{m_{0}, K}\left(\varphi-\varphi_{0}\right)}{1+p_{m_{0}, K}\left(\varphi-\psi_{0}\right)}<\varepsilon / 4
$$

whenever $\quad P_{m_{0}}, K\left(\varphi-\varphi_{0}\right)<\delta_{0}(\varepsilon)$.
As $p_{m, K}$ is nondecreasing with m and $\frac{t}{1+t}$ is increasing with $t(t \geq 0)$, we have

$$
\frac{p_{m, K}\left(\varphi-\varphi_{0}\right)}{1+p_{m, K}\left(\varphi-\varphi_{0}\right)} \leqslant \frac{p_{m_{0}, K}\left(\varphi-\varphi_{0}\right)}{1+p_{m_{0}}, K\left(\varphi-\varphi_{0}\right)}<\varepsilon / 4 \quad\left(m \leqslant m_{0}\right) .
$$

Thus $\sum_{m=0}^{m_{0}} \frac{p_{m}, K^{\left(\varphi-\psi_{0}\right)}}{2^{m}\left[1+p_{m}, K\left(\varphi-\psi_{0}\right)\right]} \leqslant \sum_{m=0}^{m_{0}} \frac{\varepsilon}{4 \cdot 2^{m}}<\frac{\varepsilon \cdot 2}{4}=\frac{\varepsilon}{2}$.
Therefore

$$
\begin{aligned}
\sum_{m=0}^{+\infty} \frac{p_{m, K}\left(\varphi-\varphi_{0}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi-\varphi_{0}\right)\right]}=\sum_{m=0}^{m} & \frac{p_{m, K}\left(\varphi-\varphi_{0}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi-\varphi_{0}\right)\right]}
\end{aligned}+\sum_{m=m_{0}+1}^{+\infty} \frac{p_{m, K}\left(\varphi-\varphi_{0}\right)}{2^{m}\left[1+p_{m, K}\left(\varphi-\varphi_{0}\right)\right]}
$$

whenever

$$
p_{m_{0}, K}\left(\varphi-\varphi_{0}\right)<\hat{\delta}_{0} .
$$

(ii) Let $B\left(\varphi_{0}, \mathcal{L}\right)$ be the open bell in $\mathcal{A}(\Omega ; K)$ with centre φ_{0} and radius ε. Let m_{0} and $f_{0}(\varepsilon)$ be as in (i) so that $d\left(\psi, \varphi_{0}\right)<\varepsilon$ whenever $p_{m_{0}}, K\left(\varphi-\varphi_{0}\right)<\delta_{0}$. Since for every multi-index r, $\left(\partial_{j}^{r} \varphi_{j}\right) \rightarrow \partial^{r} \varphi_{0}$ as $j \rightarrow+\infty$, uniformly on k, for $\hat{\delta}_{0}>0$, there exists j_{0} such that for all $j>j_{o}$

$$
p_{m_{0}}, K\left(\varphi_{j}-\varphi_{0}\right)<\delta_{0}
$$

and thus for all $j>j_{o}$,

$$
\varphi_{j} \in B\left(\varphi_{0}, \psi\right)
$$

2.1.9 Lemma. Under this topology, a sequence $\left(\varphi_{j}\right)$ in $\mathcal{X}(\Omega ; K)$ converges to φ_{0} in $\not \subset(\Omega ; K)$ iff for every multi-index r, $\left(\partial^{r} \varphi_{j}\right)$ converges to $\partial^{r} \psi_{0}$ as $j \rightarrow+\infty$ uniformly on K.

Proof : Necessity. Let r be an arbitrary fixed multi-index, let $\operatorname{|r} \mid=m_{0}$, and let $\varepsilon>0$. By the hypothesis on (ψ_{j}), there exists j_{0} such that for all $j>j_{0}$,

$$
d\left(\varphi_{j}, \psi_{0}\right)=\sum_{m=0}^{+\infty} \frac{p_{m, k}\left(\varphi_{j}-\psi_{0}\right)}{2^{m}\left[1+p_{m, k}\left(\psi_{j}-\psi_{0}\right)\right]}<\frac{\varepsilon}{2^{m}(1+\varepsilon)},
$$

which implies that

$$
\frac{p_{m_{0}, K}\left(\varphi_{j}-\varphi_{0}\right)}{1+p_{m_{0}}, K\left(\varphi_{j}-\varphi_{0}\right)}
$$

$$
<\frac{\varepsilon}{1+\varepsilon} .
$$

Therefore $p_{m_{0}, K}\left(\psi_{j}-\psi_{0}\right)<\varepsilon$, which implies that $\left|\partial^{r} \psi_{j}(x)-\partial^{r} \psi_{0}(x)\right|<\varepsilon$ for all $x \in K$ and all $j>j_{0}$. We conclude that $\left(\partial^{r} \varphi_{j}\right) \rightarrow \partial^{r} \psi_{0}$ as $j \rightarrow+\infty$, uniformly on K.

Sufficiency. By (2.1.3 (ii)), there exists a j_{0} such that for all $j>j_{0}, \varphi_{j} \in B\left(\varphi_{0}, \varepsilon\right)$. That is $\left(\varphi_{j}\right) \rightarrow \varphi_{0}$ in $\infty(\Omega ; K)$.
2.1.10 Theorem. Let $(\Omega ; K)$ be a space as defined in $(2.1 .6)$ and let T be a linear form on $A(\Omega ; K)$. Then the following conditions are equivalent :
(i) T is continuous on $\infty(\Omega ; K)$.
(ii) There exists a nonnegative integer m_{0} and a positive constant β such that

$$
|T(\varphi)| \leq \beta p_{m_{0}, K}(\varphi) \quad(\psi(\notin(\Omega ; K)) .
$$

(iii) If $\left(\varphi_{j}\right)$ is a sequence in $D(\Omega ; K)$ and tends to zero in $\mathscr{D}(\Omega ; K)$, then $\left(T\left(\varphi_{j}\right)\right)$ tends to zero as $j \rightarrow+\infty$.

Proof : (i) implies (ii). Let \&o any element of $\otimes(\Omega ; K)$. Because of the translation invariant character of d, we may assume $\varphi_{0}=0$. Then, by the continuity of T, for any given $\varepsilon>0$, there exists a $\delta(\varepsilon)>0$ such that for all $\varphi \in \notin(\Omega ; K)$, $|T(\varphi)|<\epsilon(*)$ whenever $d(\varphi, 0)<\delta$. Consider $B(0, \delta)$; by (2.1.3 (i)), there exists an integer $m_{0} \geq 0$ and a $\delta(\delta)>0$ such that

$$
\left\{\varphi \notin(\Omega ; K): p_{m_{0}, K}(\varphi)<\delta_{0}\right\} \subset B(0, \delta)
$$

Thus for every $\ell \in D(\Omega ; K)$ such that $P_{m_{0}, K}\left(\frac{\delta_{0} \varphi}{2 P_{m_{0}}, K(\varphi)}\right)<\delta_{0}$, we have (*) and by the linearity of T that $\frac{\delta_{0}}{2 p_{m_{0}}, K}(\varphi)|T(\varphi)|<\varepsilon$.

Choosing $\beta=2 \varepsilon / \delta_{O}$, we have

$$
|T(\varphi)|<\beta p_{\mathrm{m}_{0}, \mathrm{~K}}(\varphi) \quad(\varphi \in \varnothing(\Omega ; \mathrm{K})) .
$$

Since $0 \in \mathbb{N}(\Omega ; K)$ and $p_{m_{0}}, K(0)=0$, we can conclude that there
exists an integer $m_{0} \geq 0$ and a constant $\beta>0$ such that

$$
|T(\varphi)| \leq \beta p_{m_{0}, K}(\psi) \quad(\varphi \in \infty(\Omega ; K))
$$

(ii) implies (iii). Assume (ii); ie., there exists an integer $m_{0} \geq 0$, and a constant $\beta>0$ such that $|T(\varphi)| \leqslant \beta p_{m_{0}, K}(\varphi)$ $(\varphi \in \infty(\Omega ; K))$. Let $\left(\psi_{j}\right)$ be any sequence in $\otimes(\Omega ; K)$ which tends to zero. Then for any given $\varepsilon>0$, there exists a j_{0} such that for all $j>j_{0}$,

$$
a\left(\varphi_{j}, 0\right)=\sum_{m=0}^{+\infty} \frac{p_{m, K}\left(\varphi_{j}\right)}{2^{m}\left[1+p_{m}, K\left(\varphi_{j}\right)\right]}<\frac{\varepsilon}{2^{m_{0}(\beta+\varepsilon)}}
$$

which implies that

$$
\frac{p_{m_{0}, K}\left(\varphi_{j}\right)}{\left.2^{m^{0}\left[1+p_{m_{0}}, K\right.}\left(\varphi_{j}\right)\right]}<\frac{\varepsilon}{2^{m_{0}}(\beta+\varepsilon)}
$$

or

$$
p_{\mathrm{m}_{0}, \mathrm{~K}}\left(\varphi_{\mathrm{j}}\right) \text { tHORN }<\text { aNVERS } \beta
$$

Thus $\left|T\left(\varphi_{j}\right)\right|<\varepsilon \quad$ for all $j>j_{0}$.

This means that $\left(T\left(\varphi_{j}\right)\right) \rightarrow 0$ as $j \rightarrow+\infty$.
(iii) implies (i). Suppose T is not continuous at $\varphi_{0} \cdot$ Because of the translation invariant character of d, we may assume $\varphi_{0}=0$. Then there exists $\varepsilon>0$ such that for any $\delta>0$, there is $\varphi \in \neq(\Omega ; K)$ such that $d(\varphi, 0) \leq \delta$ and $|T(\varphi)|>\varepsilon$. Choose $\delta_{j}=\frac{1}{j}, j=1,2,3, \ldots$ Then for each δ_{j}, there exists $\varphi_{j}(\AA ; K)$ such that $d\left(\varphi_{j}, 0\right) \leqslant \delta_{j}$ and $\left|T\left(\varphi_{j}\right)\right|>\varepsilon$. For any given $\delta_{0}>0$, there exists $\delta_{j_{0}}$ such that $\delta_{0} \geq \delta_{j_{0}}$ and therefore for every $j>j_{0}$, we have that $d\left(\varphi_{j}, 0\right) \leq \delta_{0}$. This means that there exists $\left(\varphi_{j}\right) \rightarrow 0$, but $\left(T\left(\varphi_{j}\right)\right) \nrightarrow 0$, which contradicts (iii).
2.2 Schwartz Functions

2.2.1 Definition. on $\mathbb{\mathbb { R } _ { 2 }}$, we define the function

$\sigma(t)= \begin{cases}\exp (-1 / t) & \text { for } \quad t>0 \\ 0 & \text { for } \\ t \leq 0 .\end{cases}$
We can proved, by induction on the order, that derivatives of σ of all order exist, and are zero, at $t=0$. Hence σ is infinitely differentiable.

Next we define on \mathbb{R}^{n} the function

$$
\sigma_{1}(x)=\alpha \sigma\left(1-\|x\|^{2}\right)= \begin{cases}\alpha \exp \left(-\frac{1}{1-\|x\|^{2}}\right) & (\|x\|<1) \\ 0 & (\|x\| \geq 1)\end{cases}
$$

The constant α is defined by

$$
x=\left(\int_{\|x\|<1} \exp \left(-\frac{1}{1-\|x\|^{2}}\right) d x\right)^{-1},
$$

so that we have

$$
\int_{\mathbb{R}^{n}} \sigma_{1}(x) d x=1
$$

and hence σ_{1} is infinitely differentiable.

For any $\varepsilon>0$, we put

$$
\sigma_{\varepsilon}(x) \quad=\varepsilon^{n} \sigma_{1}(x / \varepsilon) \quad\left(x \in \mathbb{R}^{n}\right) .
$$

Throughout this thesis the function σ_{ε} will be called the Schwartz function.

where S_{n} denotes the surface area of a unit sphere.

$$
\text { (ii) For any } \varepsilon>0, \sigma_{\varepsilon} D\left(\mathbb{R}^{n}\right) \text { and }
$$

$$
\int_{\mathbb{R}^{n}} f_{\varepsilon}(x) d x=1
$$

$$
\text { (iii) If } B=B\left(x_{0}, \varepsilon\right) \text { is a ball such that }
$$

$\bar{B} \subset \Omega$, then for all $x \in \Omega, x \longmapsto \sigma_{\varepsilon}\left(x-x_{0}\right)$ belongs to A $(\Omega ; \bar{B})$ 。

Proof: (i)

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \sigma_{1}(x) d x & =\int_{\bar{B}(0,1)} \sigma_{1}(x) d x \\
& =x \int_{\bar{B}(0,1)} \exp \left(-\frac{1}{1-\|x\|^{2}}\right) d x \\
& \left.=\alpha \int_{0}^{1} r^{n-1} \int_{\|\rho\|=1} \exp \left(-\frac{1}{1-r^{2}}\right) d s(\theta)\right) d r
\end{aligned}
$$

where $d s(\theta)$ is the surface area element on the sphere $S(0, r)$.

$$
\begin{aligned}
&=\alpha \int_{0}^{1} r^{n-1} \exp \left(-\frac{1}{1-r^{2}}\right)\left(\int_{\|\theta\|=1} d s(\theta)\right) d r \\
&=o s_{n} \int_{0}^{1} r^{n-1} \exp \left(-\frac{1}{1-r^{2}}\right) d r \\
& \text { (ii) } \sigma_{2}(x) \in 风\left(\mathbb{R}^{n}\right), \text { since } \sigma_{1}(x) \text { is infinitely }
\end{aligned}
$$

differentiable, and by changing the variable, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{\mathrm{n}}} \sigma_{\varepsilon}(x) d x=\int_{\mathbb{R}^{\mathrm{n}}} \varepsilon^{\mathrm{n}} \sigma_{1}(x / \varepsilon) d x=\int_{\mathbb{R}^{\mathrm{n}}}^{1} \sigma_{1}(x / \varepsilon) d(x / \varepsilon)=1 . \\
& \text { (iii) Since } \sigma_{\varepsilon}(x)>0(\|x\|<\varepsilon) \text {, and } \sigma_{\varepsilon}(x)=0(\|x\| \geq \varepsilon),
\end{aligned}
$$

we have that

$$
\operatorname{Supp}\left(\sigma_{\varepsilon}(x)\right)=\left\{x \in \mathbb{R}^{n}:\|x\| \leq \varepsilon\right\}
$$

Thus

$$
\operatorname{Supp}\left(\sigma_{\varepsilon}\left(x-x_{0}\right)\right)=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\| \leqslant \varepsilon\right\}=\bar{B}\left(x_{0}, \varepsilon\right) .
$$

That is，if $\bar{B} \subset \Omega$ ，then for all $x \in \Omega, x \mapsto \sigma_{\varepsilon}\left(x-x_{0}\right)$ belongs to $\infty(\Omega ; \vec{B})$ ．

2．2．3 Theorem．Let f be any continuous function with compact support K contained in Ω ．Let δ be the distance from K to the complement of Ω ，and for any $\varepsilon, 0<\varepsilon<\delta$ ，let

$$
K_{\varepsilon}=\{x \in \Omega: \text { dist }(x, K) \leq \varepsilon\} \text {. }
$$

Then $f_{\varepsilon}(x)=\int_{\|y-x\| \leq \varepsilon} f(y) \varepsilon_{\varepsilon}(x-y) d y=\int_{\|y\| \leq \varepsilon} f(x-y) \sigma_{\varepsilon}(y) d y \quad(x \in \Omega)$ belongs to $\mathcal{A l}^{2}\left(\Omega \mathrm{~K}_{\varepsilon}\right)$ ．Further $f_{\varepsilon} \rightarrow f$ as $\varepsilon \rightarrow 0^{+}$，uniformly on Ω 。 Proof ：For any $\varepsilon, 0<\varepsilon<\delta$ ，we define the regularization f_{ε} of f by $\quad f_{\varepsilon}(x)=\int_{\Omega} f(y) \sigma_{\varepsilon}(x-y) d y=\int_{f}(x-y) \sigma_{\varepsilon}(y) d y$,
or

$$
f(x)=\int_{\|y-x\| \leq \varepsilon} f(y) \sigma_{\varepsilon}(x-y) d y=\int_{\| \cap \text { 位 }}^{\| y} f(x-y) \sigma_{\varepsilon}(y) d y \quad(x \in \Omega)
$$

The integral is convergent since f and σ_{ε} have compact support， we can differentiate f_{ε} ．Then for any multi－index r ，we have

$$
\partial_{f_{\varepsilon}}^{r}(x)=\partial_{x^{r}}^{r} f_{\varepsilon}(x)=\int_{\Omega} f(y) \partial_{x}^{r} \sigma_{\varepsilon}(x-y) d y .
$$

That is，$f_{\varepsilon} \epsilon \infty(\Omega)$ ，hence $f_{\varepsilon} \epsilon$ 为 $\left(\Omega_{q} K\right)$ ，since $\operatorname{Supp}\left(f_{\varepsilon}\right) \leq K$ 。 By（2．2．2（ii）），we have

$$
\begin{aligned}
\left|f_{\varepsilon}(x)-f(x)\right| & =\left|\int_{\|y\|<\varepsilon} f(x-y) \sigma_{\varepsilon}(y) d y-f(x) \int_{\|y\|<\varepsilon} \sigma_{\varepsilon}(y) d y\right| \\
& =\int_{\|y\|<\varepsilon}[f(x-y)-f(x)] \sigma_{\varepsilon}(y) d y \mid \\
& \leq \int_{\|y\|<\varepsilon}|f(x-y)-f(x)| \sigma_{\varepsilon}(y) d y \\
& \leq \sup _{\|y\|<\varepsilon}|f(x-y)-f(x)| \int_{\| y} \sigma_{\varepsilon}(y) d y \\
& \leq \sup |f(x-y)-f(x)| .
\end{aligned}
$$

But now, by the (uniform) continuity of f, the right side tends to zero, uniformly in x, as $\& 0^{+}$. The proof is complete.
2.2.4 Remark. The function f in the theorem can be uniformly approximated by functions of (Ω) with supports contained in a given compact neighbourhood of K.VERSITY
2.2.5 Theorem. If K is compact and contained in the open set Ω, there is a function $\varphi \in \mathbb{D}(\Omega)$ taking the value 1 in a neigh neighbourhood of K and lying between 0 and 1 on Ω.

Proof : Let δ be the distance from K to the complement of Ω, and for any $\varepsilon, 0<\xi<\delta$, let

$$
K_{\varepsilon}=\{x \in \Omega: \operatorname{dist}(x, K) \leq \varepsilon\} .
$$

Then by the Urysohn's lemma ([9]), there is a continuous function, say f; taking the value 1 on $K_{\varepsilon / 2}$, the value 0 outside $K_{3 \varepsilon / 4}$, and values between 0 and 1 in the annular region between. If $0<\varepsilon_{1}<\varepsilon / 4$, by $(2.2 .3)$, we can find the function

$$
f_{\varepsilon_{1}}(x)=\int_{\|y\| \leq \varepsilon_{1}} f(x-y) \sigma_{\varepsilon_{1}}(y) d y \quad(x \in \Omega)
$$

which belongs to $D\left(\Omega ; K_{\varepsilon_{1}}\right)$. Set $\psi(x)=f_{\varepsilon_{1}}(x)$. Then ψ has all the required properties, ie.,
(i) $\quad \psi \in D(\Omega ; K / \varepsilon) \subset \nsim(\Omega)$,
(ii) $\quad \psi(x) \equiv 1$ on $\frac{K_{1}}{\varepsilon_{1}}$, since $f(x) \equiv 1$ on $K \varepsilon_{1}$
and (2.2.2 (ii)),
(iii) $0 \leqslant \varphi(x) \leqslant 1(x \in \Omega)$, since $0 \leq f(x) \leqslant 1(x \in \Omega)$.
2.2.6 Theorem. Suppose that the compact set K is contained in the union of the open sets $\Omega_{1}, \Omega_{2}, \cdots, \Omega_{m}$. Then there are non-negative functions $\varphi_{j}(\infty)\left(\Omega_{j}\right)$ such that

$$
\varphi(x)=\sum_{j=1}^{m} \varphi_{j}(x) \quad \begin{cases}\leq 1 & \left(x \in \Omega=\bigcup_{j=1}^{m} \Omega_{j}\right) \\ =1 & (x \in K)\end{cases}
$$

Proof : Let K_{1} be any compact neighbourhood of $K-\bigcup_{j=2}^{m} \Omega_{j}$, contained in Ω_{1}, let K_{2} be a compact neighbourhood of $K-\left(K_{1} \cup \bigcup_{j=3}^{m} \Omega_{j}\right)$, contained in Ω_{2}, and so on. Then $K \subseteq \bigcup_{j=1}^{m} K_{j}$
and $K_{i} \cap K_{j}=\varnothing$ for $i \neq j$. By (2.2.5), there are functions
$4_{j} \in \partial\left(\Omega_{j}\right)$ lying between 0 and 1 on Ω_{j} and taking the value 1 on K_{j}. Put

$$
\varphi_{1}=\psi_{1}, \varphi_{2}=\psi_{2}\left(1-\psi_{1}\right), \ldots, \psi_{m}=4_{m}\left(1-\psi_{1}\right)\left(1-\psi_{2}\right) \ldots\left(1-\psi_{m-1}\right)
$$

Then all the conditions are satisfied, because
(i) ψ_{j} are non-negative, since $0 \leqslant \psi_{j} \leqslant 1$,
(ii) $\varphi_{j} \in \nexists\left(\Omega_{j}\right)$, since $\operatorname{supp}\left(\varphi_{j}\right) \subseteq \operatorname{Supp}\left(\psi_{j}\right)$,
(iii) $\varphi=\sum_{j=1}^{m} \varphi_{j}=4 / 1+\psi_{2}\left(1-\psi_{1}\right)+\ldots+\psi_{m}\left(1-\psi_{1}\right)\left(1-\psi_{1}\right) \ldots\left(1-\psi_{m-1}\right)$

$$
\begin{aligned}
& =1-1+4_{1}+4_{2}\left(1-4_{1}\right)+\ldots+4_{m}\left(1-4_{1}\right)\left(1-4_{2}\right) \ldots\left(1-4_{m-1}\right) \\
& =1-\left(1-4_{1}\right)+4_{2}\left(1-4_{1}\right)+\ldots+4_{m}\left(1-4_{1}\right)\left(1-4_{2}\right) \ldots\left(1-4_{m-1}\right) \\
& =1-\left(1-4_{1}\right)\left(1-4_{2}\right) \ldots\left(1-4_{m}\right) .
\end{aligned}
$$

