CHAPTER V

EXISTENCE OF ROOM SQUARE OF SIDE 3n; n > 1

5.1 Existence of Room Square of side 3n ; n > 1

Lemma 5.1.1 Given a Room Square \mathcal{R} of side \mathbf{r} ; where $\mathbf{r} = 2\mathbf{s} + 1$, there are \mathbf{s} permutations $\phi_1, \phi_2, \dots, \phi_s$ of $\{1, 2, \dots, \mathbf{r}\}$ with properties that

(I) $k \phi_i = k \phi_j$ never occurs unless i = j,

(II) (k, k ϕ_i) cell is empty for $1 \leq k \leq r$; $1 \leq i \leq s$.

Proof Let M = (a j) where

a_{ij} = { 1 ; if (i,j) cell of }? is empty, 0 ; otherwise.

M is a matrix of zeros and ones with every row and column sum equal to S .

So by theorem 5.1.9 of [1] M is a sum of s permutation matrices, say

$$M = P_1 + P_2 + \dots + P_s$$

For each i = 1, 2, ..., s, let ϕ_i be defined by putting $k \phi_i = 1$ if and only if (k, 1) entry of P_i is 1. Then ϕ_i are permutation on the set $\{1, 2, ..., r\}$. If $k \phi_i = k \phi_j$ for some i, j such that $i \neq j$, then P_i and P_j would both have 1 in position (k, 1); where $l = k \phi_i = k \phi_j$, so M would have an entry equal to 2 or more.

Since for each k, $1 \leq k \leq r$, the $(k, k \not p_i)$ cell of P_i equal to 1, hence the $(k, k \not p_i)$ cell of M is equal to 1. Therefore $(k, k \not p_i)$ cell of \mathcal{R} is empty for $1 \leq k \leq r$, $1 \leq i \leq s$.

Therefore the lemma follows.

Q.E.D.

<u>Theorem 5.1.2</u> If there exists a Room Square of side n > 1, then there is a Room Square of side 3n.

<u>Proof.</u> Let \mathcal{R} be a standardized Room Square of side n based on $\{0, 1, 2, \ldots, n\}$.

For i, j $\in \{1, 2, 3\}$, we defined \mathcal{R}_{ij} for the array formed from \mathcal{R} in the following way :

(i) delete all diagonal entries ;

(ii) if x < y replace the entry $\{x, y\}$ of \mathcal{R} by $\{x_i, y_j\}$. Let ϕ be a permutation that satisfies the condition (II) of Lemma 5.1.1. Let \mathcal{R}_{ij} denote the array obtained by carrying out the permutation ϕ on the column of \mathcal{R}_{ij} ; i.e column k of \mathcal{R}_{ij} becomes column $k\phi$ of \mathcal{R}_{ij} . Let \mathcal{L} be the 3n x 3n array whose n x n subarrays are displayed as follow :

	R.1.1	RØ	RØ 33
e =	R \$	R 31	\mathcal{R}_{12}
	Rod	R13	R21

Figure 5.1

Let $S = \{0, 1_1, 2_1, \dots, n_1, 1_2, \dots, n_2, 1_3, \dots, n_3\}$. Since \mathcal{R}_{11} is obtained by deleting all diagonal entries, hence 0, i₁ do not appear in the ith row of \mathcal{R}_{11} . By the same argument, we see that 0, i₂ do not appear in the ith row of \mathcal{R}_{22} . Since the ith row of \mathcal{R}_{22} and \mathcal{R}_{22} consist of the same set of elements, hence 0, i₂ do not appear in the ith row of \mathcal{R}_{22} . Similarly, we see that 0, i₃ do not appear in the ith row of \mathcal{R}_{33} .

Therefore elements 0, i_1 , i_2 , and i_3 do not appear in the i row of \mathcal{K}_{33} . \mathcal{K}_{33} where $1 \leq i \leq n$.

By the same arguments, it can be seen that 0, i_1 , i_2 , and i_3 do not appear in the $(n + i)^{th}$ row and $(2n + i)^{th}$ row of \mathcal{L} .

$$\{0, i_1\} \text{ in the (i, i) cell of } \chi, \\ \{i_2, i_3\} \text{ in the (i, i$$$$$$$$$$$$$$$) cell of } \chi, \\ \{0, i_2\} \text{ in the (i+n, i$$$$$$$$$$$$$$$$$$$$$$$$$) cell of } \chi, \\ \{i_1, i_3\} \text{ in the (i+n, i+n) cell of } \chi, \end{cases}$$

$$\left\{ \begin{array}{l} 0, i_{3} \end{array} \right\} \quad \text{in the } (i + 2n, i \not + 2n) \text{ cell of } \mathcal{L}, \\ \left\{ \begin{array}{l} i_{1}, i_{2} \end{array} \right\} \quad \text{in the } (i + 2n, i + 2n) \text{ cell of } \mathcal{L}, \\ \text{for all } i = 1, 2, \dots, n. \end{array}$$

We shall show that \swarrow ^{*} is a Room Square of side 3n based on S. It is clear from the construction that each cell of \swarrow ^{*} is empty or contains two distinct elements from S.

Next, we shall show that each row i of \mathcal{L}^* contains all elements of 8 precisely once. This will be done in three cases.

We shall show that for all $s \in S$, there exists a unique j such that s is in the (i, j) cell of \mathcal{L}^* .

<u>case 1.1</u> If s = 0 or i_1 , then s appears in the (i, i) cell of \mathcal{L}^* . <u>case 1.2</u> If $s = i_2$ or i_3 then s appears in the (i, $j \notin$ cell of \mathcal{L}^* . <u>case 1.3</u> If $s \neq 0$, i_1 , i_3 , then there exist $x \neq i$, 0 such that $s = x_1$ or $s = x_2$ or $s = x_3$. Since \mathcal{R} is a Room Square, hence xappears at least once in the ith row of \mathcal{R} . Since $x \neq i$, x is not a diagonal entry of \mathcal{R} . Hence if s is x_1 or x_2 or x_3 , it must appear in the ith row of \mathcal{R}_{11} or $\mathcal{R}_{22} \oplus$ or $\mathcal{R}_{33} \oplus$ respectively. Therefore every element of S must be in the (i, j) cell of \mathcal{L}^* for some $j = 1 \leq j \leq 3n$.

Next, we shall show that each element of S appears at most once in any row i of \mathfrak{Z}^* .

It can be seen that 0, i_1 , i_2 and i_3 appear precisely once in each row i of $\not\gtrsim^*$. Therefore, we only need to prove the case $s = x_1$, $s = x_2$ and $s = x_3$ where $x \neq i$. Let $s \in S$ be such that $s \neq 0$, i_1 , i_2 and i_3 .

Suppose that s appears twice in row i of \mathbb{X}^* ; therefore there exist \mathbf{y}_k , \mathbf{z}_1 , \in S and 1 \leq j, j' \leq 3n such that

{ s, y_k} and { s, z₁ } are in the (i, j) cell and the (i, j') cell of χ^* respectively where $j \neq j'$.

If $s = x_1$, then $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_1, y_1\}$ and $\{x_1, z_1\}$. Therefore, they must appear in the i th row of \mathcal{R}_{11} . Hence the i th row of \mathcal{R}_{11} contains x_1 twice. From the definition of \mathcal{R}_{11} this can happen only if x appears twice in the i th row of \mathcal{R}_{11} which is not possible. Hence we have a contradiction.

If $s = x_2$, then $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_2, y_2\}$ and $\{x_2, z_2\}$. Therefore, they must appear in the ith row of \mathcal{R}_2 . Hence the ith row of \mathcal{R}_2 contain x_2 twice. From the definition of \mathcal{R}_2 , this can happen only if x appears twice in ith row of \mathcal{R}_2 , which is not possible. Hence we have a contradiction. By similar argument if $s = x_3$, we can show that s can not appear twice in row i of χ^* .

case 2. $n < i \leq 2n$.

Since $n \ i \ \leq 2n$, hence we may write i = n + i'; where 1 $\ i' \ i' \ i'$ n. We shall show for all $s \ \in S$, there exists a unique j such that s is in the (i, j) cell of $\ i'$.

case 2.1 If s = 0 or i'_2 , then s appears in the $(n + i', n + i'\beta)$ cell of χ^* .

case 2.2 If s = i' or i'_3 , then s appears in the (n:* i', n + i') cell of χ^* .

case 2.3 If $s \neq 0$, i'_1 , i'_2 , and i'_3 , then there exist $x \neq 0$, i'such that $s = x_1$ or $s = x_2$ or $s = x_3$.

Assume that $s = x_1$.

Since \mathcal{R} is a Room Square, hence x appears in the ith row of \mathcal{R} . Therefore there exists a \neq x such that $\{a, x\}$ appears in the ith row or \mathcal{R} . Since $x \neq a$, then x < a or a < x. If x < a, then the pair $\{x_1, a_2\}$ appears in the ith row of \mathcal{R}_{12} . If a < x, then the pair $\{a_3, x_1\}$ appears in the ith row of \mathcal{R}_{31} . Hence, either \mathcal{R}_{12} or \mathcal{R}_{31} must contain x_1 in the ith row, that is $s = x_1$ appears in the (n + i', j) cell of \mathcal{L}^* for some j; $1 \leq j \leq 3n$.

Suppose $s = x_2$. Since \mathcal{R} is a Room Square, hence x appears in the ith row of \mathcal{R} . Therefore there exists $b \neq x$ such that $\{x, b\}$ appears in the ith row of \mathcal{R} . Since $b \neq x$, hence b < x or x < b. If x < b, then $\{x_2, b_3\}$ appears in the ith row of \mathcal{R}_{23} . Therefore $\{x_2, b_3\}$ appears in the ith row of \mathcal{R}_{23} . If b < x, then $\{b_1, x_2\}$ appears in the ith row of \mathcal{R}_{12} . Hence, either \mathcal{R}_{12} or \mathcal{R}_{23} must contain x_2 in the ith row. By similar argument if $s = x_3$, we can show that s appears in the (n + i', j) cell of χ^* for some $j; 1 \leq j \leq 3n$.

Next we shall show that each element s of S appears at most once in any row i of \mathcal{L}^* . It can be seen from the definition of \mathcal{L}^* that 0, i', i'₂, and i'₃ appear precisely once in each row i of \mathcal{L}^* . So, we only need to prove the case $s \neq c, i'_1, i'_2$ and i'₃. Let s \in S be such that $s \neq 0, i'_1, i'_2, i'_3$. Hence there exists $x \neq 0, i'$ such that $s = x_1$ or $s = x_2$ or $s = x_3$. Suppose that $s \notin$ S appears twice in row i of \mathcal{L}^* , therefore there exist $y_k, z_1 \notin$ S and $1 \leq j, j' \leq 3n$ such that

 $\{s, y_k\}$ and $\{s, z_l\}$ are in the (n + i', j) cell and the (n + i', j') cell of χ^* respectively where $j \neq j'$.

If $s = x_1$, it follows that s appears in \mathcal{R}_{31} or \mathcal{R}_{12} . Hence there exists $t \neq x$ such that $\{x, t\}$ appears in the it the row of \mathcal{R} . Since $x \neq t$, then x < t or t < x. If t < x, the both pairs $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_4, t_3\}$ or $\{x_2, t_1\}$. Since we only consider the case $s = x_1$, therefore $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_4, t_3\}$. Therefore they appear in the ith row of \mathcal{R}_{31} . Hence ith row of \mathcal{R}_{31} contains x_1 twice. From the definition of \mathcal{R}_{31} , this can happen only if x appear twice in the ith row of \mathcal{R} , which is not possible. Hence we have a contradiction. By a similar argument the supposition x < t also leads to a contradiction.

By similar arguments if $s = x_2$ or $s = x_3$ we can show that s can not appear twice in row i of χ^* .

case 3 $2n \leq i \leq 3n$

By similar arguments we can show that each row i of χ^* contains all element of S precisely once.

Therefore each row i of χ^* contains all elements of S precisely once.

Next, we shall show that for each j, the jth column of \mathcal{L}^* contains all elements of S precisely once. This will be done in three cases.

case 1 $4 \leq j \leq n$

We shall show that for all s \in S, there exists a unique i such that s is in the (i, j) cell of χ^* .

44

If s = 0, or j_1 , then s appears precisely once in the (j, j) cell of j_1^{*} .

If $s = (j\phi^{-1})_2$ or $(j\phi^{-1})_3$, then s appears precisely once in the $(j\phi^{-1})_3$, j) cell of \mathcal{Z} .

It remains to concider the cases where $s \neq 0$, j, $(j \not p^{-1})_2$, $(j \not p^{-1})_3$. Therefore there exists $x \neq 0$, j, such that $s = x_1$ or there exists $x \neq 0$, $j \not p^{-1}$ such that $s = x_2$ or there exists $x \neq 0$, $j \not p^{-1}$ such that $s = x_3$.

We first show that s appears in the (i, j) cell of χ^* for some i. If $s = x_1$ where $x \neq 0$, j, then there exists $b \neq x$ such that $\{x, b\}$ is in the jth column of \mathcal{R}_2 . Hence $\{x_1, b_1\}$ appears in the jth column of \mathcal{R}_{11} . Therefore $s = x_1$ appears in the (i, j) cell of \mathcal{R} for some i; $1 \leq i \leq 3n$.

If $s = x_2$; where $x \neq 0$, $j\phi^{-1}$, then by a similar argument there exists $c \neq x$ such that $\{x, c\}$ is in the $j\phi^{-1}$ th column of \Re . Since $x \neq c$, hence x < c or c < x.

If x < c, then $\{x_2, c_3\}$ appears in the $j\phi^{-1}$ th column of \mathcal{R}_{23} . Therefore $\{x_2, c_3\}$ appears in the j^{th} column of \mathcal{R}_{23}^{ϕ} . If c < x, then $\{x_2, c_3\}$ appears in the $j\phi^{-1}$ th column of \mathcal{R}_{32}^{ϕ} . Therefore $\{x_2, c_3\}$ appears in the j^{th} column of \mathcal{R}_{32}^{ϕ} . Hence either \mathcal{R}_{23}^{ϕ} or \mathcal{R}_{32}^{ϕ} must contain x_2 in the jth column, that is $s = x_2$ appears in the (i, j) cell of χ^* for some i; $1 \leq i \leq 3n$

By similar arguments if $s = x_3$ where $x \neq 0$, $j \phi^{-1}$, we can show that is = x_3 appears in the jth column of χ^* Next, we shall show that $s \neq 0$, j_1 , $(j \phi^{-1})_2$, $(j \phi^{-1})_3$ appear at most once in column j of χ^* . That is we only consider the cases $s = x_1$ where $x \neq 0$, j and $s = x_2$ where $x \neq 0$, $j \phi^{-1}$ and $s = x_3$ where $x \neq 0$, $j \phi^{-1}$.

Suppose that s appears twice in the jth column of χ^* , then there exist y_k , $z_l \in S$ and $1 \leq i$, $i' \leq 3n$ such that $i \neq i'$ and $\{s, y_k \}$ and $\{s, z_l\}$ appear in the (i, j) cell and (i', j) cell of χ^* respectively.

If $s = x_1$, then the pairs $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_1, y_1\}$ and $\{x_1, z_1\}$ respectively. Therefore, they must appear in the jth column of β_{11}^2 .

Hence the jth column of \mathcal{R}_{11} contains x_1 twice. From the definition of \mathcal{R}_{11} , this can happen only if x appears twice in the jth column of \mathcal{R}_{11} , which is not possible. Hence we have a contradiction.

If $s = x_2$, it follows that s appears in \mathcal{R}_{23}^{ϕ} or \mathcal{R}_{32}^{ϕ} . Hence there exists $\mathbf{r} \neq \mathbf{x}$ suct that $\{\mathbf{x}, \mathbf{r}\}$ is in the $\mathbf{j}\phi^{-1\text{th}}$ column of \mathcal{R} . Since $\mathbf{x} \neq \mathbf{r}$, hence $\mathbf{x} < \mathbf{r}$ or $\mathbf{r} < \mathbf{x}$. If x < r, then the pairs $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_2, r_3\}$ or $\{x_3, r_2\}$. Since we only consider the case $s = x_2$, therefore both $\{s, y_k\}$ and $\{s, z_1\}$ must be of the form $\{x_2, r_3\}$. Therefore, they appears in the $j\phi^{-1}$ column of \mathcal{R}_{23} , that is in the j^{th} column of \mathcal{R}_{23} . Hence j^{th} column of \mathcal{R}_{23} contains x_2 twice. From the definition of \mathcal{R}_{23} , this can happen only if x appears twice in the $j\phi^{-1}$ th column of \mathcal{R} which is not possible. Hence we have a contradiction.

By a similar argument the supposition r < x also leads to a contradiction. By similar argument if $s = x_3$, we can show that s can not appear twice in the jth column of \mathcal{L} .

case 2. $n < j \leq 2n$

We shall that for all $s \in S$, there exists a unique i such that s is in the (i, j) cell of $\not\subset$ ^{*}. Since $n < j \leq 2n$, we may write j = n+j' where $j \leq j' \leq n$.

If s = 0, or $(j' \phi^{-1})_2$, then s appears precisely once in the $(j' \phi^{-1} + n, j' + n)$ cell of χ^* .

If s = j', or j'_{3} , then s appears precisely once in the (j'+n, j'+n) cell of χ^* .

It remains to consider the case $s \neq 0$, j'_1 , j'_3 , $(j' \not p^{-1})_2$. Hence there exists $x \neq 0$, j' such that $s = x_1$ or there exists $x \neq 0$, j' such that $s = x_3$ or there exists $x \neq 0$, $j' \not p^{-1}$ such that $s = x_2$. We first show that s appears in the (i, j) cell of χ^* for some i. If $s = x_2$ where $x \neq 0$, $j \not p^{-1}$, then there exists $k \neq x$ such that $\{k, x\}$ appears in the $j^* \not p^{-1} \stackrel{\text{th}}{=}$ column of \mathcal{R} . Hence $\{k_2, x_2\}$ appears in the $j^* \not p^{-1\text{th}}$ column of \mathcal{R}_{22} , that is in the $j^* \stackrel{\text{th}}{=}$ column of $\mathcal{R}_{22} \stackrel{\text{th}}{=}$.

If $s = x_1$; where $x \neq 0$, j', then there exists $e \neq x$ such that $\{x, e\}$ is in the j'th column of $\{x, e\}$ Since $x \neq e$, hence x < e or e < x.

If x < e, then $\{x_1, e_3\}$ appears in the j'th column of \mathcal{R}_{13} . If e < x, then $\{e_3, x_1\}$ appears in the j'th column of \mathcal{R}_1 . Hence, either \mathcal{R}_{13} or \mathcal{R}_1 must contain x_1 in the j'th column, that is $s = x_1$ appears in the (i, j' + n) cell of \swarrow for some i; $1 \leq i \leq 3n$.

By similar argument if $s = x_3$, we can show that $s = x_3$ appears in the jth column of χ^* .

Next, we shall show that $s \neq 0$, j'_1 , j'_3 , $(j' \not p^{-1})_2$ appears at most once in column j of $\not z^*$. That is we only consider the cases $s = x_1$ where $x \neq 0$, j' and $s = x_3$ where $x \neq 0$, j and $s = x_2$ where $x \neq 0$, $j \not p^{-1}$.

Suppose that s appears twice in the jth column of $\not\gtrsim^*$, then there exist y_k , $z_1 \in S$ and $1 \leq i$, $i \leq 3n$ such that $i \neq i$ and $\{s, y_k\}$ and $\{s, z_l\}$ appear in the (i, j) cell and the (i', j) cell of \neq respectively.

If $s = x_2$ where $x \neq 0$, $j \neq 1$, it follows that s appears in \mathcal{R}_{22} . Hence there exists $p \neq x$ such that $\{p, x\}$ appears in the $j \not \phi^{-1}$ th column of \mathcal{R} . Since $x \neq p$, hence x < p or p < x. If x <p, then the pairs $\{s, y_k\}$ and $\{s, z_l\}$ must be of the form $\{x_2, y_2\}$ and $\{x_2, z_2\}$ respectively. Therefore, they appear in the $j' \phi^{-1}$ th column of \mathcal{R}_{22} , that is in the j' th column of \mathcal{R}_{22} . Therefore $s = x_2$ appears twice in the j'th column of R_{22} , this can happen only if x appears twice in the $j^{*} o^{-1}$ th column of ho_{e} which is not possible . Hence we have a contradiction . By a similar argument if p < x also leads to a contradiction . If $s = x_1$ where $x \neq 0$, j', it follows that s appears in \mathcal{R}_{31} or \mathcal{K}_{13} . Hence there exists $d \neq x$ such that $\{x, d\}$ is in the j' th column of \mathcal{R} . Since $x \neq d$, hence $x \not< d$ or d < x. If x < d, then the pairs {s, y_k} and {s, z_1 } must be of the form $\{x_1, d_3\}$ or $\{x_3, d_1\}$. Since we only consider the case $s = x_1$, then $\{s, y_k\}$ and $\{s, z_1\}$ both must be of the form $\{x_1, d_3\}$. Therefore they appear in the j'th column of \mathcal{R}_{13} . Hence j'th column of \mathcal{R}_{13} contains x_1 twice. From the definition of \mathcal{R}_{13} , this can happen only if x appears twice in the j'th column of \searrow ,

which is not possible. Hence we have a contradiction.

By a similar if d < x, it also leads to a contradiction. By similar arguments if $s = x_3$ where $x \neq 0$, j' we can show that $s = x_3$ can not appear twice in the jth column of \gtrsim^* .

case 3. $2n \leq j \leq 3n$.

By argument similar to those in case 2, we can show that for all $s \in S$ there exists a unique i such that $s \in (i, j)$ cell of χ^* .

It remains to be shown that every unordered pair of elements of S appears precisely once in \mathbb{X}^{*} .

Let s, t be any two distinct elements of S . We shall show that $\{s,\,t\,\}$ must appear in some cell of ${\mathcal L}^*$.

If s or t = 0, let us assume that s = 0. Since $t \neq s$ hence t = x_i for some i = 1, 2, 3 and $1 \leq x \leq n$.

If i = 1, then $\{0, x_1\}$ appears in the (x, x) cell of χ^* .

If i = 2, then $\{0, x_2\}$ appears in the $(x + n, x\phi + n)$ cell of \mathcal{L}^* . If i = 3, then $\{0, x_3\}$ appears in the $(x + 2n, x\phi + 2n)$ cell of \mathcal{L}^* . If $s \neq 0$ and $t \neq 0$ then there exist x, y such that $x = x_i$ and $t = y_i$ where $1 \leq i$, $j \leq 3$ and $1 \leq x$, $y \leq n$. case 1 x = y.

Since $s \neq t$ hence $i \neq j$. If i = 1; j = 2, then the pair $\{x_1, x_2\}$ appears in the (x + 2n, x + 2n) cell of \mathcal{L}^* . If i = 1; j = 3, then the pair $\{x_1, x_3\}$ appears in the (x + n, x + n) cell of \mathcal{L}^* . If i = 2; j = 3, then the pair $\{x_2, x_3\}$ appears in the $(x, x\emptyset)$ cell of \mathcal{L}^* .

case 2 $x \neq y$.

Since $s \neq t$, hence $i \neq j$ or i = j. case 2.1 $i \neq j$

Since $x \neq y$, hence $\{x,y\}$ appears in some cell of \mathcal{R} . Hence $\{x_i, y_j\}$ appears in some cell of \mathcal{R}_{ij} or \mathcal{R}_{jj} . <u>case 2.2</u> i = j

Since $x \neq y$, hence $\{x, y\}$ appears in some cell of \mathcal{R} . Hence $\{x_i, y_j\} = \{x_i, y_i\}$ appears in some cell of \mathcal{R}_{ii} or \mathcal{R}_{ii} where $1 \leq i \leq 3$. Therefore every unordered pair of elements of S appears in \mathcal{X}^* . Next we shall show that each unordered pair of elements of S appears at most once in \mathcal{X}^* . Since each row of \mathcal{R} contains $\frac{1}{2}$ (n+1) pairs, hence each row of \mathcal{R}_{ij} or \mathcal{R}_{ij} ; where $1 \leq i, j \leq 3$, contains $\frac{1}{2}$ (n-1) pairs. To obtain \mathcal{X}^* , we insert 2 new pairs of elements from S in some empty cell of each row of χ . Therefore each row of χ^* contains $3\left\{\frac{1}{2}(n-1)\right\}+2$ pairs. Therefore the total number of pairs in χ^* is

$$3n \left[3 \left\{ \frac{1}{2} (n-1) \right\} \div 2 \right] = \frac{9n^2}{2} - \frac{9n}{2} \div 6n ,$$
$$= \frac{1}{2} (9n^2 - 9n \div 12) ,$$
$$= \frac{1}{2} \cdot 3n (3n \div 1) .$$

This is precisely the number of unordered pairs which can be formed from elements of S, so each unordered pairs of elements of S appears at most once in χ^* . Therefore χ^* is a Room Square of side 3n based on S.

Q.E.D.