## CHAPTER V

## EXISTENCE OF ROOM SQUARE OF SIDE $3 \boldsymbol{n}$; $\mathbf{n}>1$

### 5.1 Existence of Room Square of side $3 n$; $n$ y 1

Lemma 5.1.1 Given a Room Square $\chi$ of side $r$; where $r=2 s+1$, there are $s$ permutations $\boldsymbol{p}_{2}, \ldots, \phi_{s}$ of $\{1,2, \ldots, x\}$ with properties that
(I) $k \hat{p}_{i}=k W_{j}$ never occurs unless $i=j$,
(II) (k, k $\phi_{i}$ cell is empty for $1 \leq k \leq r ; 1 \leq i \leq s$.

Proof Let $M=$ (a ${ }_{i j}$ ) where x

$M$ is a matrix of zeros and ones with every row and column sum equal to $s$.

So by theorem 5.1 .9 of [1] $M$ is a sum of $s$ permutation matrices, say

$$
M=P_{1}+P_{2}+\ldots+P_{s}
$$

For each $i=1,2, \ldots, s$, let $\phi_{i}$ be defined by putting $k \phi_{i}=1$ if and only if $(k, I)$ entry of $P_{i}$ is 1 . Then $\mathcal{f}_{i}$ are permutation on the $\operatorname{set}\{1,2, \ldots, r\}$ 。

If $k \phi_{i}=k \phi_{j}$ for some $i$, $j$ such that $i \neq j$, then $P_{i}$ and $P_{j}$ would both have 1 in position ( $k, I$ ) ; where $I=k \phi_{i}=k \phi_{j}$, so $M$ would have an entry equal to 2 or more.

Since for each $k, 1 \leqslant k \leqslant r$, the $\left(k, k \not \phi_{i}\right)$ cell of $P_{i}$ equal to 1 , hence the $\left(k, k \phi_{i}\right)$ cell of $M$ is equal to 1 . Therefore ( $k, k \phi_{i}$ ) cell of $\gamma$ is empty for $1 \leqslant k \leq r, 1 \leqslant i \leqslant s$.

Therefore the lemma follows.

Theorem 5.1.2 If there exists a Room Square of side $n>1$, then there is a Room Square of side $3 n$.


Proof. Let $F$ be a standardized Room Square of side $n$ based on $\{0,1,2, \ldots, n\}$.

For i, $j \in\{1,2,3\}$, we defined $\mathcal{R i j}_{i j}$ for the array formed from $\gamma$ in the following way:
(i) delete all diagonal entries;
(ii) if $x<y$ replace the entry $\{x, y\}$ of $\gamma$ by $\left\{x_{i}, y_{i}\right\}$.

Let $\phi$ be a permutation that satisfies the condition (II) of Lemma 5.1.1. Let $R_{i} \phi$ denote the array obtained by carrying out the permutation $\phi$ on the column of $R_{i j}$; ie column $k$ of $R_{i j}$ becomes column $k \phi$ of $R_{i j} \phi$

Let $\mathcal{L}$ be the $3 n \times 3 n$ array whose $n \times n$ subarrays are displayed as follow :


Figure 5.1
Let $S=\left\{0,1_{1}, 2_{1}, \ldots, n_{1}, x_{2}, \ldots \frac{n_{2}, 1_{3}}{2}, \ldots . n_{3}\right\}$. Since $\mathcal{R}_{11}$ is obtained by deleting all diagonal entries, hence $0, i_{1}$ do not appear in the $i^{\text {th }}$ row of Ry the same argument, we see that $0, i_{2}$ do not appear in the $i$ th row of $\lambda_{22}$. Since the $i^{\text {th }}$ and $R_{2}$ क consist of the same set of elements, hence $0, i_{2}$ do not appear in the $i^{\text {th }}$ row of $\frac{22}{2}$.
Similarly, we see that 0 の $\dot{i}_{3}$ do not appear in the $i^{\text {th }}$ row of $R \sum_{33}$. Therefore elements $0, i_{4}, i_{2}$, amd $i_{3}$ do not appear in the $i^{\text {th }}$ row of Y. where $1 \leq i \leq n$.

By the same arguments, it can be seen that $0, i_{1}, i_{2}$, and $i_{3}$ do not appear in the $(n+i)^{\text {th }}$ row and $(2 n+i)^{\text {th }}$ row of $\mathscr{L}$.

$$
\text { Let } \mathscr{L}^{*} \text { be the array obtained from } \mathcal{L} \text { by placing }
$$

$$
\begin{aligned}
& \left\{0, i_{1}\right\} \quad \text { in the }(i, i) \text { cell of } \mathscr{Z}, \\
& \left\{i_{2}, i_{3}\right\} \quad \text { in the }(i, i \phi) \text { cell of } \mathscr{L}, \\
& \left\{0, i_{2}\right\} \quad \text { in the }(i+n, i \phi+n) \text { cell of } \mathscr{L}, \\
& \left\{i_{1}, i_{3}\right\} \quad \text { in the }(i+n, i+n) \text { cell of } \mathscr{Z},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{0, i_{3}\right\} \quad \text { in the }(i+2 n, i \phi+2 n) \text { cell of } \mathcal{L}, \\
& \left\{i_{1}, i_{2}\right\} \text { in the }(i+2 n, i+2 n) \text { cell of } \mathcal{L}, \\
& \text { for all } i=1,2, \ldots, n .
\end{aligned}
$$

We shall show that $\mathscr{L}^{*}$ is a Room Square of side $3 n$ based on $S$. It is clear from the construction that each cell of $\mathscr{Z}^{\prime \prime}$ is empty or contains two distinct elements from Si Next, we shall show that each row 1 of $\mathcal{L}^{*}$ contains all elements of 8 precisely once. This will be done in three cases;
case 1 $\quad 1 \leqslant 1 \leqslant n$
We shall show that for all $s \in S$, there exists a unique $J$ such that $s$ is in the $(i, f)$ cell of $\mathcal{L}^{*}$.
case 1.1 If $s=0$ or $i_{1}$, then $s$ appears in the $(1, i)$ cell of $\mathscr{L}^{*}$. case 1.2 If $s=1$ or $\frac{1}{3}$ then $s$ appears in the ( $1,1 \phi$ cell of $\mathcal{Z}^{*}$. case 1.3 If $s \neq 0, i_{1}, i_{3}$, then there exist $x \neq i$, 0 such that $s=x_{1}$ or $s=x_{2}$ or $s=x_{3}$. Since $\mathcal{R}$ is a Room Square, hence $x$ appears at least once in the $i^{\text {th }}$ row of $R$. Since $x \neq i, x$ is not a diagonal entry of $R$. Hence if $s$ is $x_{1}$ or $x_{2}$ or $x_{3}$, it must appear in the $i^{\text {th }}$ row of $R_{11}$ or $R_{i} \phi_{1}$ or $R_{33}$ respectively. Therefore every element of S must be in the $(i, j)$ cell of $\mathcal{Z}^{*}$ for some $j ; 1 \leqslant j \leqslant 3 n$.

Next, we shall show that each element of S appears at most once in any row $i$ of $\mathcal{Z}^{*}$.

It can be seen that $0, i_{1}, i_{2}$ and $i_{3}$ appear precisely once in each row i of $Z^{*}$. Therefore, we only need to prove the case $s=x_{1}$, $s=x_{2}$ and $s=x_{3}$ where $x \neq i$. Let $s \in s$ be such that $s \neq 0$, $i_{1}, i_{2}$ and $i_{3}$ 。
Suppose that $s$ appears twice in row $i$ of $\mathscr{L}^{*}$; therefore there exist $\mathbb{Z}_{k}, \mathbf{z}_{1} \in S$ and $1 \leqslant j / 0, j^{\prime} \leqslant 3 n$ such that
$\left\{s, y_{k}\right\}$ and $\left\{s, 2^{2}\right\}$ are in the (i, $j$ ) cell and the ( $i, j^{\prime}$ ) cell of ${ }^{*}$ respectively where i $\neq j^{\circ}$
If $s=x_{1}$, then $\left\{s, d x_{k}\right\}$ and $\left\{s, z_{1}\right\}$ must be of the form $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{1}, z_{1}\right\}_{0}$ Therefore, they must appear in the $i$ th row of $\mathfrak{R}_{1}$. Hence the $i$ th row of $\mathcal{R}_{11}$ contains $x_{1}$ twice. From the definition of $\sqrt{11}$ this can happen only if $x$ appears twice in the $i{ }^{\text {th }}$ row of , which is not possible. Hence we have a contradiction. Chulalongkorn University
If $s=x_{2}$, then $\left\{s, y_{k}\right\}$ and $\left\{s, z_{1}\right\}$ must be of the form $\left\{x_{2}, y_{2}\right\}$ and $\left\{x_{2}, z_{2}\right\}$. Therefore, they must appear in the $i^{\text {th }}$ row of $\gamma$ ot . Hence the $i^{\text {th }}$ row of $R_{2 / 2}$ contain $x_{2}$ twice. From the definition of Ref , this can happen only if $x$ appears twice in $i^{\text {th }}$ row of $\mathcal{A}$ which is not possible. Hence we have a contradiction. By similar argurnent if $s=x_{3}$, we can show that $s$ can not appear twice in row i of $\chi^{*}$ 。
case 2. $n<i \leqslant 2 n$.
Since $n<i \leqslant 2 n$, hence we may write $i=n+i \prime ;$ where $1 \leqslant i^{\prime} \leqslant n$. We shall show for all $s \in S$, there exists a unique $j$ such that $s$ is in the (i, j) cell of $\chi^{\prime}{ }^{*}$.
case 2.1 If $s=0$ or $i^{\prime \prime}{ }^{\prime}$, then $s$ appears in the $\left(n+i \prime, n+i^{\prime} p\right)$ $\operatorname{cell}$ of $\chi^{*}$.
case 2.2 If $s=i^{\prime}$, or', 3 , then $s$ appears in the $\left(n+i \prime\right.$, $\left.n+i^{\prime}\right)$ cell of $\mathcal{L}^{*}$.
case 2.3 If $s \neq 0$, $i^{\prime}, i^{\prime} z^{\prime}$ and $i^{\prime} \frac{3}{}$, then there exist $x \neq 0$, i' such that $s=x_{1}$ or $s=x_{2}$ or $s=x_{3}$.
Assume that $s=x_{1}$.
Since $R$ is a Room Square, hence $x$ appears in the $i^{\text {th }}$ row of $R$. Therefore there exists a $\neq x$ 合uch that $\{a, x\}$ appears in the i, th row or $\gamma$. Since $0 x \neq a$, then lix $<a$ or $a<x$. If $x<a$, then the pair $\left\{x_{1}, a_{2}\right\}$ appears in the $i^{\prime}$ th row of $\mathcal{R}_{12}$. If $a<x$, then the pair $\left\{a_{3}, x_{1}\right\}$ appears in the $i$, th row of $Q_{31}$. Hence, either $\mathcal{R}_{12}$ or $\mathcal{R}_{31}$ must contain $x_{1}$ in the $i$, th row, that is $s=x_{1}$ appears in the $(n+i \prime, j)$ cell of $\mathscr{L}^{*}$ for some $j$; $1 \leqslant j \leq 3 n$ 。

Suppose $s=x_{2}$. Since $\mathcal{R}$ is a Room Square, hence $x$ appears in the $i^{\text {th }}$ row of $R$ Therefore there exists $b \neq x$ such that $\{x, b\}$ appears in the $i^{\text {, th }}$ row of $R$. Since $b \neq x$, hence $b<x$ or $x<b$.

If $x<b$, then $\left\{x_{2}, b_{3}\right\}$ appears in the $i^{\text {,th }}$ row of $R_{23}$ 。 Therefore $\left\{x_{2}, b_{3}\right\}$ appears in the $i^{\text {,th }}$ row of $\gamma R_{23} \phi$. If $b<x$, then $\left\{b_{1}, x_{2}\right\}$ appears in the $i^{\text {th }}$ row of $R_{12}$. Hence, either $R_{12}$ or $R_{23}$ must contain $x_{2}$ in the $i$, th row. By similar argument if $s=x_{3}$, we can show that $s$ appears in the $\left(n+i^{\prime}, j\right)$ cell of $\mathcal{L}^{*}$ for some $1 \leq j \leq 3 n$.

Next we shall show that each element $s$ of $S$ appears at most once in any row $i$ of $\mathscr{L}^{*}$. It can be seen from the definition of $\mathscr{L}^{*}$ that $0, i^{\prime}, i^{\prime} 2^{\prime}$, and in appear precisely once in each row $i$ of $\mathscr{L}$ * So, we only need to prove the case $5 \neq 0, i^{\prime} 1^{\prime} i^{\prime} 2$ and $i^{\prime} 3$.
 $x \neq 0$, $i^{\prime}$ such that $s=x_{1}$ or $s=x_{2}$ or $s=x_{3}$.

Suppose that $s \in S$ appears twice in row iThof $\mathcal{L}^{*}$, therefore there exist $y_{k}, z_{I} \in S$ and $1 \leq j, \quad j^{\prime} \leq 3 n$ such that

$$
\left\{s, y_{k}\right\} \text { and }\left\{s, z_{I}\right\} \text { are in the }(n+i \prime, j) \text { cell and the }
$$ $\left(n+i^{\prime}, j^{\prime}\right)$ cell of $\mathcal{L}^{*}$ respectively where $j \neq j^{\prime}$.

If $s=x_{1}$, it follows that $s$ appears in $\chi_{31}$ or $\mathcal{R}_{12}$. Hence there exists $t \neq x$ such that $\{x, t\}$ appears in the $i{ }^{\text {th }}$ th ow of $\not \subset$ Since $x \neq t$, then $x<t$ or $t<x$.

If $t<x$, the both pairs $\left\{s, y_{k}\right\}$ and $\left\{s, z_{1}\right\}$ must be of the form $\left\{x_{1}, t_{3}\right\}$ or $\left\{x_{2}, t_{1}\right\}$. Since we only consider the case $s=x_{\text {}}$, therefore $\left\{s, y_{k}\right\}$ and $\left\{s, z_{1}\right\}$ must be of the form $\left\{x_{1}, t_{3}\right\}$. Therefore they appear in the $i^{\text {, th }}$ row of $R_{31}$. Hence $i^{\text {, th }}$ row of $R_{31}$ contains $x_{1}$ twice. From the definition of $\chi_{37}$, this can happen only if $x$ appear twice in the $i^{\text {th }}$ row of $R$, which is not possible. Hence we have a contradiction. By a similar argument the supposition $x<t$ also leads to a contradiction.

By similar arguments if $s=x_{2}$ or $s=x_{3}$ we can show that $s$ can not appear twice in row if of $\mathcal{L}^{*}$.

## case 3 $2 n<i \leqslant 3 n$

By similar arguments we can show that each row i of $\mathscr{L}^{*}$ contains all element of $S$ precisely once.

Therefore each row $i$ of $\mathcal{L} *$ contains all elements of S precisely once.

Next, we shall show that for each $j$, the $j^{\text {th }}$ column of $\mathscr{L}^{*}$ contains all elements of S precisely once. This will be done in three cases.
case $1 \quad 1 \leqslant j \leqslant n$
We shall show that for all $s \in S$, there exists a unique $i$ such that $s$ is in the ( $i, j$ ) cell of $\mathcal{L}^{*}$.

If $s=0$ ，or $j_{1}$ ，then $s$ appears precisely once in the（ $j, j$ ） cell of 半。

If $s=\left(j \phi^{-1}\right)_{2}$ or $\left(i \phi^{-1}\right)_{3}$ ，then $s$ appears precisely once in the $\left(j p^{-1}, j\right) \operatorname{cell}$ of $\mathcal{L}^{\text {道。 }}$

It remains to concider the cases where $s \neq 0, j,\left(j p^{-1}\right)_{2},(j \neq-1)_{3}$ ． Therefore there exists $x \neq 0, j$, such that $s=x_{1}$ or there exists $x \neq 0$ ，$j \phi^{-1}$ such that $s=x_{2}$ or there exists $x \neq 0, j \not \phi^{-1}$ such that $s=x_{3}$ ．
We first show that $s$ appears in the（i，i）cell of $\mathcal{Z}^{*}$ for some $i$ ． If $s=x_{1}$ where $x \neq 0, j$ ，action there exists $b \neq x$ such that $\{x, b\}$ is in the $j^{\text {th }}$ column of R．Hence $\left\{x_{1}, b_{1}\right\}$ appears in the $j^{\text {th }}$ column of $R_{11}$－Therefore $s=x_{1}$ appears in the（i，$j$ ）cell of $R$ for some $i$ ； $1<$ into 3 nงาวิทยาลัย If $s=x_{2}$ ；where $x \neq 0, j \psi^{-1}$ ，then by a similar argument there exists $c \neq x$ such that $\{x, c\}$ is in the $j \phi^{-1}$ th column of 2 Since $x \notin c$ ，hence $x<c$ or $c<x$ ． If $x<c$ ，then $\left\{x_{2}, c_{3}\right\}$ appears in the $j \phi^{-1}$ th column of $Q_{23}$. Therefore $\left\{x_{2}, c_{3}\right\}$ appears in the $j^{\text {th }}$ column of $h_{2} \phi$ ． If $c<x_{9}$ then $\left\{x_{2}, c_{3}\right\}$ appears in the $j \phi{ }^{-1}$ th column of $Q_{32} 。$ Therefore $\left\{x_{2}, c_{3}\right\}$ appears in the $j^{\text {th }}$ column of $\gamma_{32} \phi$ ．

Hence either $R_{23}$ or $\gamma_{32} \not{ }^{\prime}$ must contain $x_{2}$ in the $j^{\text {th }}$ column, that is $s=x_{2}$ appears in the (in) coll of $\mathcal{L}^{*}$ for some $i ; 1 \leq i \leq 3 n$

By similar arguments if $s=x_{3}$ where $x \neq 0, j \phi^{-1}$, we can show that $\mathrm{s}=x_{3}$ appears in the $j^{\text {th }}$ column of $\mathcal{L}^{*}$ Next, we shall show that $s \neq 0, j_{1},\left(j \phi^{-1}\right)_{2},\left(j \phi^{-1}\right)_{3}$ appear at most once in colum $j$ of $2^{*}$. That is we only consider the cases $s=x_{1}$ where $x \neq 0, j$ and $s=x_{2}$ where $/ \quad x \neq 0, j \not \chi^{-1}$ and $s=x_{3}$ where $x \neq 0$, $j \not \psi^{-1}$.

Suppose that $s$ appears twice in the $j^{\text {th }}$ column of $\mathcal{X}^{*}$, then there exist $y_{k}, z_{1} \in S$ and $1 \leq i, i \prime \leqslant 3 n$ such that $i \neq i$ and $\left\{s, y_{k}\right\}$ and $\left\{s, z_{I}\right\}$ appear in the ( $i, j$ ) cell and ( $i, j$ ) cell of * respectively.

If $s=x_{1}$, then the pairs $\left\{s, y_{k}\right\}$ and $\left\{s, z_{1}\right\}$ must be of the form $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{1}, z_{1}\right\}$ respectively. Therefore, they must appear in the $j^{\text {th }}$ column of $\gamma \vec{y}_{11}$.
Hence the $j^{\text {th }}$ column of $\mathcal{R}_{11}$ contains $x_{1}$ twice. From the definition of $\mathcal{R}_{11}$, this can happen only if $x$ appears twice in the $j{ }^{\text {th }}$ column of P, which is not possible. Hence we have a contradiction. If $s=x_{2}$, it follows that $s$ appears in $R_{2} \phi$ or $R_{3} \phi$. Hence there exists $r \neq x$ such that $\{x, r\}$ is in the $j \phi^{-1 \text { th }}$ column of $\mathbb{R}$. Since $\mathbf{x} \neq \boldsymbol{r}$, hence $\mathrm{x}<\boldsymbol{r}$ or $\boldsymbol{r}<\mathbf{x}$.

If $x<r$, then the pairs $\left\{s, y_{k}\right\}$ and $\left\{s, z_{l}\right\}$ must be of the form $\left\{x_{2}, r_{3}\right\}$ or $\left\{x_{3}, r_{2}\right\}$. Since we only consider the case $s=x_{2}$, therefore both $\left\{s, y_{k}\right\}$ and $\left\{s, z_{1}\right\}$ must be of the form $\left\{x_{2}, r_{3}\right\}$. Therefore, they appears in the $j \phi^{-1}$ column of $\chi_{23}$, that is in the $j^{\text {th }}$ column of 23 . Hence $s^{\text {th }}$ column of 23 contains $x_{2}$ twice. From the definition of $\mathscr{Q}$ appears twice in the i $\phi^{-1}$ th column of $R$ which is not possible. Hence we have a contradiction.

By a similar argument the supposition $r<x$ also leads to a contradiction. By similar argument if $s=x_{3 *}$, we can show that $s$ can not appear twice in the $j^{\text {th }}$ column of $\mathscr{L}^{*}$.
case 2. $\quad n<3 \leqslant 2 n$
We shall that for all $s \in S$, there exists a unique $i$ such that $s$ is in the $(i, j)$ cell of $\mathcal{Z}^{*}$. Since $n<j \leqslant 2 n$, we may write $j=n+j^{\prime}$ where $1 \leqslant j^{n} \leqslant n$.

If $s=0$, or $\left(j, \phi^{-1}\right)_{2}$, then $s$ appears precisely once in the $\left(j^{\prime} \phi^{-1}+n, j^{\prime}+n\right)$ cell of $Z^{*}$.

If $s=j^{\prime}$, or $j_{3}^{\prime}$, then $s$ appears precisely once in the $\left(j^{\prime}+n, j^{\prime}+n\right)$ cell of $\mathscr{L}^{*}$.
It remains to consider the case $s \neq 0, j^{\prime}, j_{3}^{\prime},\left(j^{\prime} \phi_{1}^{-1}\right)_{2}$. Hence there exists $x \neq 0, j^{\prime}$ such that $s=x_{1}$ or there exists $x \neq 0$, $j^{\prime}$ such that $s=x_{3}$ or there exists $x \neq 0, j^{\prime} \phi^{-1}$ such that $s=x_{2}$.

We first show that $s$ appears in the (i, $j$ ) cell of $\mathcal{L}^{*}$ for some $i$. If $s=x_{2}$ where $x \neq 0, j \not \phi^{-1}$, then there exists $k \neq x$ such that $\{k, x\}$ appears in the $j^{\prime} \phi^{-1}+$ colum of $\ell$ Hence $\left\{k_{2}, x_{2}\right\}$ appears in the $j^{\prime \prime} \boldsymbol{p}^{-1 \text { th }}$ column of $\mathcal{R}_{22}$, that is in the $j^{\prime}$ th column of $X Q$
If $s=x_{1}$; where $x \neq 0$, j, $\}$, then there exists $e \neq x$ such that $\{x, e\}$ is in the $j$, th column of fl? Since $x \neq e$, hence $x<e$ or e < x.

If $x<e$, then $\left\{x_{1}, \theta_{3}\right\}$ appears in the $j$ th column of $X_{13}$. If $e<x$, then $\left\{\theta_{3}, x_{1}\right\}$ appears in the $j$ th column of $\mathfrak{R}_{31}$. Hence, either $X_{13}$ or $\beta_{31}$ must contain $x_{1}$ in the $j$ th column, that is $s=x_{1}$ appears in the $\left(i, j^{\prime}+n\right)$ cell of $\mathcal{L}^{*}$ for some i; $1 \leqslant i \leqslant 3 n$.

By similar argument if $A(s)=x_{3}$, N we can show that $s=x_{3}$ appears in the $j^{\text {th }}$ column of $z^{*}$.

Next, we shall show that $s \neq 0, j_{1}^{\prime}, j^{\prime}{ }_{3},\left(j^{\prime} \not \phi^{-1}\right)_{2}$ appears at most once in column $j$ of $Z^{*}$. That is we only consider the cases $s=x_{1}$ where $x \neq 0, j$ and $s=x_{3}$ where $x \neq 0, j$ and $s=x_{2}$ where $x \neq 0, j \phi^{-1}$.

Suppose that $s$ appears twice in the $j^{\text {th }}$ column of $\chi^{*}$, then there exist $y_{k}, z_{I} \in S$ and $1 \leq i$, $i^{\prime} \leq 3 n$ such that $i \neq i^{\prime}$ and
$\left\{s, y_{k}\right\}$ and $\left\{s, z_{1}\right\}$ appear in the $(i, j)$ cell and the (ir, ii) cell of $f^{*}$ respectively.
 Hence there exists $p \neq x$ such that $\operatorname{pos}^{\prime} \quad$ appears in the jut 1

 $\left\{x_{2}, y_{2}\right.$ z and $\left\{x_{2}, z_{2}\right\}$ respectively. Therefore, they appear in the $j^{\prime \prime} \psi^{-1}$ th colum of that is in the $j^{\prime}$ th colum m of $\neq 2$ Therefore $s=x_{2}$ appears twice in the $j$ th column of $2 \alpha$, this can happen on by if $x$ appears twice in the $j^{2} q^{-1}$ th column of H? which is not possible Hence we lave a contradiction By a similar argument if $p<x$ also leads to a contradiction If $s=x_{1}$ where $x \neq 0$, jos, ittollows that $s$ appears in kin ox $Y_{y}$. Hence there exists $d$ forpsuch that $\{$ x, d is in the $j^{r}$ th column of $\quad$ since $x \neq d, \operatorname{hence} x<d \quad 0 \quad d<x$ If $x<d, \operatorname{then}$ the pairs $\left\{s, y_{k}\right\}$ and $\left\{s_{0} z_{1}\right\}$ must be of the form $\left\{x_{1}, d_{3}\right\}$ or $\left\{x_{3}, d_{1}\right\}$. Since we only consider the case $s=x_{1}$, then $\left\{s, y_{k}\right\}$ and $\left\{s, z_{I}\right\}$ both must be of the form $\left\{x_{1}, d_{3}\right\}$. Therefore they appear in the jo th column of K2 $\quad$. Hence j' th colum of $\mathrm{K}_{13}$ contains $x_{1}$ twice. From the definition of $\mathrm{N}_{13}$, this can happen only if $x$ appears twice in the $j$ th column of $)$
which is not possible. Hence we have a contradiction. By a similar if $d<x$, it also leads to a contradiction. By similar arguments if $s=x_{3}$ where $x \neq 0, j$ we can show that $s=x_{3}$ can not appear twice in the $j^{\text {th }}$ column of $\chi^{*}$.
case 3. $2 n<j \leqslant 3 n$
By argument similar to those in case 2, we can show that for all $s \leftarrow S$ there exists a iquique $i$ such that $s \in$ (i, j) cell or $\mathcal{L}^{*}$.

It remains to be show that every unordered pair of elements of $S$ appears precisely oncelin $x^{*}$.

Let $s$, $t$ be any two distinct elements of $S$. We shall show that $\{s, t\}$ must appear in some cell of $\mathcal{L}^{*}$.

If $s$ or $t=0$, let us assume that $\mathrm{s}=0$. Since $t \neq \mathrm{s}$ hence $t=x_{i}$ for some $i=1,2,3$ and $\| 1 \leq x S \leq \ln$. If $i=1$, then $\left\{0, x_{1}\right\}$ appears in the $(x, x)$ cell of $\mathcal{L}^{*}$. If $i=2$, then $\left\{0, x_{2}\right\}$ appears in the $(x+n, x \notin+n)$ cell of $\mathscr{L}^{*}$. If $i=3$, then $\left\{0, x_{3}\right\}$ appears in the $(x+2 n, x \phi+2 n)$ cell of $\mathcal{L}^{*}$, If $s \neq 0$ and $t \neq 0$ then there exist $x, y$ such that $x=x_{i}$ and $t=y_{j}$ where $1 \leqslant i, j \leqslant 3$ and $1 \leqslant x, y \leqslant n$.
case $1 \quad \mathrm{x}=\mathrm{y}$.

Since $s \neq t$ hence $i \neq j$.
If $i=1 ; j=2$, then the pair $\left\{x_{1}, x_{2} ;\right.$ appears in the $(x+2 n, x+2 n)$ cell of $\mathscr{L}^{*}$.

If $i=\left\{; j=3\right.$, then the pair $\left\{x_{1}, x_{3}\right\}$ appears in the $(x+n, x+n)$ cell of $\mathscr{L}^{*}$.

If $i=2 ; j=3$, then the pair $\left\{x, 2, x_{3}\right\}$ appears in the ( $x, x \not \subset$ ) cell of $\mathcal{L}^{*}$.
case $2 \quad x \neq y$.
Since $s \neq t$, hence $i \neq j$ or $i=j$.

## case 2.1 i $\neq j$

Since $x \neq y$, hence $\{x, y\}$ appears in some cell of $\mathcal{X}$.
Hence $\left\{x_{i}, y_{i j}\right\}$ appears in some cell of $\mathcal{R}_{i j}$ or $R_{i j} \phi_{j}$. case $2.2 \quad i=j$

Since $x \neq y$, hence $\{x, y\}$ appears in some cell of $R$. Hence $\left\{x_{i}, y_{j}\right\}=\left\{x_{i}, y_{i}\right\}$ appears in some cell of $R_{i i}$ or $R_{i i}$ where $1 \leq i \leq 3$. Therefore every unordered pair of elements of S appears in $\mathcal{L}^{*}$.

Next we shall show that each unordered pair of elements of $S$ appears at most once in $\mathscr{L}^{*}$.
Since each row of $X 2$ contains $\frac{1}{2}(n+1)$ pairs, hence each row of $\mathcal{R}_{\text {jj }}$ or $\mathcal{R}_{i} \phi_{j}$; where $1 \leq i, j \leq 3$, contains $\frac{1}{2}(n-1)$ pairs.
To obtain $\mathcal{X}^{*}$, we insert 2 new pairs of elements from $S$
in some empty cell of each row of $\alpha$
Therefore each row of $\mathcal{L}^{*}$ contains $3\left\{\frac{1}{2}(n-1)\right\}+2$ pairs . Therefore the total number of pairs in $\mathcal{X}^{\mathcal{*}}$ is

$$
3 n\left[3\left\{\frac{1}{2}(n-1)\right\} \div 2\right]=\frac{9 n^{2}}{2}-\frac{9 n}{2}+6 n,
$$

$$
=\frac{1}{2}\left(9 n^{2}-9 n+12\right)
$$



This is precisely the number of unordered pairs which can be formed from elements of $S$, so each pmofderedpairs of elements of $S$ appears at most once in $\mathcal{Z}^{*}$. Therefore $\mathcal{Z}^{*}$ is a Room Square of side $3 n$ based on $S$

Q.E.D.

