STARTERS', ADDERS AND ROOM SQUARES

> 3.1 Construction of Room Square of rice p^{n} where p is an odd prime and p^{n} can bo written in the form $p^{n}=2^{k} t+1$; were t is an odd integer greater than 1 .

Definition 3e1.1 Lot be a finite Abelian group of order $r=2 s+1$, where s is a positive integer. By a starter in G we shall mean an swtuple $\left.x=\left(x_{1}, T_{1}\right\},\left\{x_{2}, J_{2}\right\}, \ldots 0 \ldots,\left\{x_{s}, y_{s}\right\}\right)$ of unordered pairs of elements of G with the properties that:
(i) the elements $x_{1},{ }^{-2}, \cdots x_{5}, y_{1}, y_{2}, \cdots, y_{s}$ comprise all the non. \cdots zero elements of C,
(ii) the differences $\pm\left(x_{i}-y_{i}\right) ; i=1,2, \ldots 0$, comprise all the non -. zero elements of G generating each precisely once.

A starter X is said to be strong if all sum $\left(\pi_{i}+y_{i}\right)$ i $i=1,2, \ldots 0, s$, are distinct rand are non zero elements of G

By an adder for a starter X, we shall then an swipple
$A_{\pi}=\left(a_{1}, a_{2}, \ldots a_{a}\right)$ of non - zero elements of G such the the elements $X_{i}+a_{i}, y_{i}+a_{i}: i=1,2, \ldots .0$ are all distinct and comprise all the non - zero elements of G.

Thoron 3.1.2 If an abelian croup of ode ardor r has a starter and an adder, then there is a Room Square of ride rob

Proof Let $\mathrm{X}=\left(\left\{\mathrm{x}_{1}, \mathrm{y}_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots . .\left\{x_{5}, y_{j}\right\}\right)$ and
$A_{x}=\left(a_{1}, a_{2}, \ldots a_{s}\right)$ be a starter and an adder of an aphelian group G of od order $r=2 s+1$.

Lett us label the group elements of G as $O=\mathcal{G}_{1}, G_{2}, \ldots, s_{r}$. Let $G=\operatorname{GU}\left\{s_{0}\right\}$, where g_{0} is not a member of G. Extend + to G^{*}

wo first construct the first rom of Rask follnit:
(1) place $\{0,5\},$,4 in the $(1,1)$ cell of R.
(2) for $k \neq 1$, if $s_{k}=a_{i}$ for some i, then we place $\left\{x_{i}, y_{i}\right\}$ in the $(1, k)$ cell otherwise the $(1, k)$ cell will be left empty 。

The construction of other rows will be bared on the first row as
 and $G_{k}+\tilde{c}_{j}=\operatorname{S}_{1}$ ChULALONGIORNU UNIVERSITY * a unicgue 1 and $I^{*}, 1 \leq 1, \quad{ }_{1}^{*} \leq r$. We shall denote I and I^{*} by $I_{j k}$ and $I_{j k}^{*}$ respectively 。 now for $j>1$, we construct row j as follow:

Put $\left\{\mathfrak{S}_{0},\left\{_{j}\right\}\right.$ in the (j, j) coll. We leave the (j, k) coll empty when the $\left(1, l_{j k}\right)$ cell is empty, however if $\left\{x_{i}, Y_{i}\right\}$ is in the (1, $1_{j k}$), then we place $\left\{x_{i}+\tilde{c}_{j}, y_{i}+\mathcal{E}_{j}\right\}$ in the (j,k) coll.

We shall show that the resulting array is a Room Square. By property (i) of a starter X, we observe that the elements appearing in row 1 will contain all elements of G^{*} exactly once. The elements appearing in row j are obtained from those in row 1 by adding g_{j} to the elements of row 1. So, by the group property we see that all elements of G^{*} will appear in row j precisely once.

Let $\left\{g_{d}, g_{b}\right\}$ be any unordered pair of elements of G. From the property (ii) of X, there will be $\left\{x_{i}, y_{i}\right\}$ in X such that

$$
\begin{aligned}
& \text { (\&) } \quad g_{a}-g_{b}=/\left(x_{i}-y_{i}\right) \text {, } \\
& \text { (} \beta \text {) } \\
& g_{a}-g_{b}=x_{i}-y_{i} \\
& \text { Let } g=\left\{\begin{array}{lll}
g_{a}-y_{i} & \text { if (o) } & \text { holds } \\
g_{b}-y_{i} & \text { if (B) } & \text { holds. }
\end{array}\right.
\end{aligned}
$$

Then $\left\{x_{i}+g, y_{i}+g\right\}=\left\{g_{a}, g_{b}\right\}$. Therefore, every unordered pair $\left\{E_{a}, E_{b}\right\}$ of elementsาวยกสึis a member of the set $\left\{x_{i}+\theta, y_{i}+\theta\right\} i=1,2, \ldots$. s; $\left.\theta \in G\right\}$, so every unordered pair of elements of G appears some where in R. The unordered pairs of the form $\left\{g_{0}, g_{i}\right\} ; g_{i} \in G$ appears in the (i, i) cell. By counting we see that each row contains s unordered pairs from G and one unordered pair of the form $\left\{g_{0}, g_{i}\right\}$. Hence each row contains $s+1$ unordered pairs. Hence the entire array contains $r(s+1)$ unordered pairs. Since G^{*} contains $r+1$ elements, hence there are exactly $\frac{(r+1)(r)}{2}=r(s+1)$ unordered pairs from G^{*}. Therefore every unordered pairs of elements of G^{*} appears precisely once in R 。

It remains to be shown that each elements of G^{*} appears in every column

Let $\{u, v\}$ be any unordered pair of element of G^{*} in the k th column of R.

Assume that $\{u, v\}$ is in the (ja) cell. By the construction of \mathcal{D}, we see that

$$
\begin{aligned}
& u=x_{p}+g_{j} \\
& v=\frac{y_{p}}{v}+s_{j}
\end{aligned}
$$

for some p; where the mongered pair $\left\{x_{p}, y_{p}\right\}$ appears in the $\left(1, I_{j k}\right)$ cell.
The pair $\left\{x_{p}, y_{p}\right\}$ is \ln the (1, $I_{j k}$) cell if and only if the $\left(I_{j t}^{*}, I_{k t}^{*}\right)$
 Hence the (j, k) cell contains $\left\{x_{p}+g_{j}, y_{p}+g_{j}\right\}$ if and only if the $\left(I_{j t}^{*}, I_{k t}^{*}\right)$ cell contains $\left\{x_{p}+g_{j}+g_{t} 9 y_{p}+g_{j}+g_{t}\right\}$.

Note that the $\left(I_{j t}^{*}, 1\right)$ cell is the $\left(I_{j t}^{*}, I_{k t}^{*}\right)$ cell where $I_{k t}^{*}=1$. Since $I_{k t}^{*}=1$ if and only if $g_{k}+g_{t}=0$, that is if and only if $-g_{k}=g_{t}$. For any $t,\left\{x_{p}+g_{j}+g_{t}, y_{p}+g_{j}+g_{t}\right\}$ appears in column 1.

Since $-g_{k}=g_{t}$, for some t. Hence $\left\{x_{p}+g_{j}-g_{k}, y_{p}+g_{j}-g_{k}\right\}$ appears in column 1. Choose $u^{\prime}=x_{p}+g_{j}-g_{k} ; v^{*}=y_{p}+g_{j}-g_{k}$ 。

Then $u=u^{v}+g_{k}$ and $v=v^{\prime}+g_{k}$. So, we see that the elements in column k are obtained from the elements in column 1 by adding g_{k} to those in column 1. Thus, if the elements of column 1 comprise all elements of G^{*} exactly once, then so do those every column .

For column 1, we observe that when $k>1$, the ($k, 1$) cell contains $\left\{x_{i}+g_{k}, y_{i}+E_{k}\right\}$ if and only if $\left(1, I_{1 k}\right)$ cell contains $\left\{x_{i}, y_{i}\right\}$; that is if and only If $g_{k}=a_{i}$. So, the entries in the first column are $\xi_{0}, b_{1}, y_{i}+a_{i}, y_{i}+a_{i}, i=1,2, \ldots, s$. Since A_{x} is an adder, hence $x_{i}+a_{1}, y_{i}+a_{i} ; i=1,2, \ldots, s$. comprise all the non 2000 elomenta $0:$ G . Therefore the first column contains all the elements of G^{*} exactly once.

$$
O . E . D
$$

Theorem 3.1 .3 If $X=\left(\left\{x_{1}, y_{1}\right\}\right.$, $\left.\left.\left\{x_{2}, y_{2}\right\}, \ldots . x_{s}, y_{s}\right\}\right)$ is a strong starter in an abelian group G of odd order $r=2 s \div 1$. then $A_{X}=\left(-\left(x_{1} \div y_{1}\right),-\left(x_{2}+y_{2}\right) \ldots,-\left(x_{s}+y_{s}\right)\right)$ is an adder for X_{0}.

Proof First we show that the components in A_{x} are distinct and non - zero elements from G .

Suppose that $-\left(x_{i}+y_{i}\right)=-\left(x_{j}+y_{j}\right)$ for $i \neq j$, then
$x_{i}+y_{i}=x_{j} * y_{j}$ which contradicts to the assumption that X is strong starter.

Since each component in $\left(\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right), \ldots .,\left(x_{s}+y_{s}\right)\right)$ is non - zero then each component in $\left(-\left(x_{1}+y_{1}\right),-\left(x_{2}+y_{2}\right), \ldots\right.$. $\left.-\left(\mathrm{x}_{\mathrm{s}}+\mathrm{y}_{\mathrm{s}}\right)\right)$ is non - zero.

To show that A_{x} is an adder for X, we must show that the elements $x_{i}-\left(x_{i}+y_{i}\right), y_{i}-\left(x_{i}+y_{i}\right) ; i=1,2, \ldots$, s are distinct and comprise all the non - zero elements of G.

$$
\text { If } \begin{aligned}
x_{i}-\left(x_{i}+y_{i}\right) & =x_{j}-\left(x_{j}+y_{j}\right), \text { or } \\
y_{i}-\left(x_{i}+y_{i}\right) & =y_{i}-\left(x_{j}+y_{j}\right), \text { or } \\
x_{i}-\left(x_{i}+y_{i}\right) & =y_{j}-\left(x_{j}+y_{j}\right) \text { for } i \neq j, \text { then }
\end{aligned}
$$

we would have $y_{i}=y_{j}$ or $x_{i}=x_{j}$, or $y_{i}=x_{j}$ respectively.
In any case, the conclusion is contrary to the assumption that X is a starter.
จุฬาลงกรณ์มหาวิทยาลัย

Now, if $x_{i}-\left(x_{i}+y_{i}\right) N=\|$ for some i, then $y_{i}=0$ which is a contradiction. Similary if $y_{i}-\left(x_{i}+y_{i}\right)=0$ for some i, then $x_{i}=0$ which is a contradiction.

By counting the elements $x_{i}-\left(x_{i}+y_{i}\right), y_{i}-\left(x_{i}+y_{i}\right)$, $i=1,2, \ldots, s$, we see that there are 2 s elements.

So $x_{i}-\left(x_{i}+y_{i}\right), y_{i}-\left(x_{i}+y_{i}\right) i=1,2, \ldots$, s comprise all the non - zero elements of G precisely once.

Hence A_{x} is an adder for X.

> Q.E.D.

Theorem 3.1.4 There exists a strong starter for $G=G F\left(p^{n}\right)$; where p is a prime and $p^{n}=2^{k} t+1$ for k a positive integer and t an integer greater than 1.

Proof. Let $2^{k-1}=d$ and x be a primitive elements in $\operatorname{GF}\left(2^{k} t+1\right)$. Let $x_{0}=\left(\left\{x^{0}, x^{d}\right\},\left\{x, x^{d+1}\right\}, \ldots \ldots .,\left\{x^{d-1}, x^{2 d-1}\right\}\right)$, $x_{2 d}=\left(x^{2 d}, x^{3 d}\right\},\left\{x^{2 d+1}, x^{3 d+1}\right\}, \ldots$. ,$\left.\left\{x^{3 a-1}, x^{4 a-1}\right\}\right)$,

$$
\begin{aligned}
x_{(2 t-2) d}= & \left(\left\{x^{(2 t-2) d,}(2 t-1) d\right\},\left\{x^{(2 t-2) d+1}, x^{(2 t-1) d+1}\right\},\right. \\
& \text { CHULALONGKOSM, } \left.\left\{x^{(2 t-1) d-1}, x^{2 t d-1}\right\}\right) .
\end{aligned}
$$

We shall show that

$$
X=\left(X_{0}, X_{2 d}, \ldots . ., X_{(2 t-2) d}\right) \text { is a strong starter for }
$$

$$
G=G F\left(2^{k} t+1\right) . \text { The elements } x^{0}, x^{1}, \ldots . ., x^{2 t d-1}=x^{p^{n}-2}
$$

$$
\text { comprises } G-\{0\} \text {. }
$$

The differences between elements in the components of $X_{0}, X_{2 d}$,
$\ldots . . X_{(2 t-2)} d^{\text {are }}$
$\pm x^{o}\left(1-x^{d}\right), \pm x\left(1-x^{d}\right), \ldots \ldots . \pm \pm x^{d-1}\left(1-x^{d}\right)$,
$\pm x^{2 d}\left(1-x^{d}\right), \pm x^{2 d+1}\left(1-x^{d}\right), \ldots \ldots . . \pm x^{3 d-1}\left(1-x^{d}\right)$,
-
-
-
$\pm x^{(2 t-2) d}\left(1-x^{d}\right), \pm x^{(2 t-2) d+1}\left(1-x^{d}\right)$,
$\pm x^{(2 t-1) d-1}\left(1-x^{d}\right)$ respectively.

Note that $\left(1-x^{d}\right)$ is non - zero element of G, since the order of x is by hypothes is $2 t d>d$.

We claim that all the differences are distinct and comprise the nonzero elements of G.
case 1 If $x^{2 i d+j}\left(1-x^{d}\right) \quad=O N x^{2 i^{\prime} d+j^{\prime}}\left(1-x^{d}\right)$ or
$-x^{2 i d+j}\left(1-x^{d}\right)=-x^{2 i^{\prime} d+j^{\prime}}\left(1-x^{d}\right)$.

Then $\quad x^{2 i d+j} \ddot{=} x^{2 i^{\prime} d+j^{\prime}} ;$ where $0 \leq i, i^{\prime} \leq t-1$ and
$0 \leqslant j, j^{\prime} \leqslant d-1$.
Therefore $x^{2 i d+j}-x^{2 i^{\prime} d+j^{\prime}}=0$, that is $x^{2 i d+j}\left(1-x^{2 i^{\prime} d+j^{\prime}-2 i d-j}\right)=0$.

Hence $x^{2 i^{\prime} d+j^{\prime}-2 i d-j}=1$. Since x is of order $2 t d$.

Hence

$$
2 i^{\prime} d+j^{\prime}-2 i d-j \equiv 0(\bmod 2 t d)
$$

In particular $j^{\prime} \sim j \equiv 0(\bmod 2 d)$, and since $0 \leqslant j, j^{\prime} \leqslant d-1$,
we must have $j^{\prime}-j=0$. Therefore $2\left(i^{\prime}-i\right) d \equiv O(\bmod \cdot 2 t d)$ 。 That is $\left(i{ }^{\prime}-i\right) \equiv 0(\bmod t)$, and since $0 \leqslant i$, $i^{\prime} \leqslant t-1$, hence $i^{\prime}-i=0$.
case 2. If $x^{2 i d+j}\left(1-x^{d}\right)=-x^{2 i^{\prime} d+j^{\prime}}\left(1-x^{d}\right)$ for $0 \leqslant i$, $i^{\prime} \leqslant t-$ and $0 \leqslant j, j^{\prime} \leqslant \bar{d}-1$, then $x^{2 i d+j}+x^{2 i \prime d+j^{\prime}}=0$. Suppose that $2 i d+j=2 i \prime d+j^{\prime}$. Then we have $2 x^{2 i d+j}=0$. Therefore the field $G F\left(p^{n}\right)$ would have characteristic 2 , an impossibility since p^{n} is odd. Therefore $2 i d+j \neq 2 i \neq d+j$.

Assuming that id $+j<2 i^{\prime} d+j^{\prime}$, we write

$$
x^{2 i d+j}\left(1+x^{2 i^{\prime} d+j^{\prime}}-2 i d-j\right)=0,
$$

then $\quad x^{2 i} d+j^{\prime}-2 i d-j$

$$
x^{2\left(j^{\prime}-j\right)+4 a\left(i^{\prime}-i\right)}=1 \text {. }
$$

This must mean

$$
2\left(j^{\prime}-j\right)+4 d\left(i^{\prime}-i\right) \equiv O(\bmod 2 d t), \text { since } 2 d t \text { is the order }
$$

of X. In particular

$$
2\left(j^{\prime}-j\right) \equiv 0(\bmod 2 d)
$$

and since $0 \leqslant j \leqslant d-1$ and $0 \leqslant j^{\prime} \leqslant d-1$ we must have $j^{\prime}-j=0$.

Therefore

$$
\begin{aligned}
4 d\left(i^{\prime}-i\right) & \equiv 0(\bmod 2 d t) \text {. That is } \\
2\left(i^{\prime}-i\right) & \equiv 0(\bmod t) . \\
\text { Since }-t+1 \leqslant i^{\prime}-i \leqslant t-1 & \text { so } i^{\prime}=i \text { or } 2\left(i^{\prime}-i\right)= \pm t .
\end{aligned}
$$

If $i^{\prime}=i$ ，then we have $2 x^{2 i d+j}\left(1-x^{d}\right)=0$ which is impossible since $2, x$ and $1-x^{d}$ axe non－zero in $\operatorname{GF}\left(p^{n}\right)$ 。

If $2\left(i^{\prime}-i^{\prime}\right)= \pm t$ ，then it contradicts the fact that t is an odd integer．

Therefore differences between elements is the component of $X_{0}, X_{2 d}, \ldots, X_{(2 t-2)}$ d are distinct and non－zero．By counting the clements in the components of $X_{0}, X_{2 d}, \ldots, X_{(2 t-2) d}$ ，we see that there are $p^{n}-1$ elements，hence they comprise all elements of $G-\{0\}$ ．

The fact they that starter X is strong can $b \in$ seen by noting that the sums of elements in the pairs in the components of $X_{0}, X_{2 d}, \ldots$ ， $X_{(2 t-2) d}$ are the same as differences with the factor $\left(1+x^{d}\right)$ rather than $\left(1-x^{d}\right)$ 。 But $\left(1+x^{d}\right)$ is nonzero，since X is of order 2 td．Then the sums of elements in the pairs in the components $X_{0}, X_{2 d}, \ldots, X_{(2 t-2)} d$ are non－zero．

Suppose that $x^{2 i d+j}\left(1+x^{d}\right)=x^{2 i \prime d+j^{\prime}}\left(1+x^{d}\right) ;$ where $0 \leqslant i, i^{\prime} \leqslant t-1$ and $0 \leqslant j, j^{\prime} \leqslant d-1$ ．By similar argument that we have shown in case 1 ． we shall have $i=i^{\prime}$ and $j=j^{\prime}$ 。

Therefore the theorem follows．

Theorem 3.1.5 If p is an odd prime such that $p^{n}=2^{k} t \pm 1$, where t is an odd integer greater than 1 and k is a positive integer, then there is a Room Square of side p^{n}.

Proof. This theorem follows from theorems 3.1.2, 3.1.3, 3.1.4.
G.E.D.

Corollary 3.1.6 There is a Room Square of side p, where p is an odd prime and $p=2^{k} t+1$; where k is a positive integer, t is an odd integer greater than 1.

Proof. This corollary is just a special case $(n=1)$ of theorem 3.1.5.

Q.E.D.
3.2 Construction of Room Square of side $5 p^{n}$ where p is an odd prime and p^{n} aan be written in the porm $p^{n}=2^{k} t+1$, whero t is an odd integor greater than 1.

Theorem 3.2.1 If G is a finite abelian group of order relatively prime which admits a strong starter, then there is a strong starter in the direct sum of G with the cyclic group of order 5 .

Proof. Let us write $n=2 s+1$ for the order of G. Since G is finite abelian group, then it is a direct sum of cyclic group, we can interpret any cyclic group of order m as the ring of integer modulo m under addition, and consider G as the additive group of the direct sum of
these rings. In this way we endow G with a multiplication. This multiplication will have an identity element, 1 say; We write $1+1$ as 2 and $1+1+1$ as 3 and 2^{-1} and 3^{-1} will exist since $(n, 6)=1$.

Let the strong starter in G be

$$
x=\left(\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots .,\left\{x_{s}, y_{s}\right\}\right)
$$

Choose two nonzero elements a and b of G such that neither a nor b equals $x_{i}+y_{i}$ for any i. This can be done as there are s elements in the set of sums of X, while there are 2 s - non - zero elements of G and $s \geqslant 3$.

Write $\quad h=2^{-2}(b-a)$ and $g=2^{-1} a$.
Finally, partition the set of non-zero elements of G into two classes P and N, in such a way that $h \in P$. $-3^{-1} h \in P$ and $x \in P$ if and only if $-x \in \mathbb{N}$ 。

จพาลงกรณัมหาวิทยาลัย
For convenience, we assume that $P=\left\{h, x_{11}, x_{12}, \ldots, x_{1 I}\right\}$; $\mathbb{N}=\left\{x_{21}, x_{22}, \ldots ., x_{2 m 1}\right\}$. We shall denote the elements of z_{5} by $0,1,2,3,4$ and denote the elements of $G \oplus Z_{5}$ by (x, i), where $x \in G$ and $i \in Z_{5}$.

Now setting

$$
\begin{aligned}
A= & \left(\left\{\left(x_{1}, 0\right),\left(y_{1}, 0\right)\right\},\left\{\left(x_{2}, 0\right),\left(y_{2}, 0\right)\right\}, \ldots,\left\{\left(x_{s}, 0\right),\left(y_{s}, 0\right),\right\}\right) \\
B= & \left(\left\{\left(x_{11}+g, 1\right),\left(2 x_{11}+g, 2\right)\right\},\left\{\left(x_{12}+g, 1\right),\left(2 x_{12}+g, 2\right)\right\}, \ldots,\right. \\
& \left.\left\{\left(x_{11}+g, 1\right),\left(2 x_{11}+g, 2\right)\right\}\right),
\end{aligned}
$$

$$
\begin{aligned}
& C=\left(\left\{\left(x_{11}+g, 4\right),\left(2 x_{11}+g, 3\right)\right\},\left\{\left(x_{12}+g, 4\right),\left(2 x_{12}+g, 3\right)\right\}, \ldots \ldots,\right. \\
& \left.\left\{\left(x_{11}+g, 4\right),\left(2 x_{11}+g, 3\right)\right\}\right), \\
& D=\left(\left\{\left(x_{21}+g, 1\right),\left(2 x_{21}+g, 3\right)\right\},\left\{\left(x_{22}+g, 1\right),\left(2 x_{22}+g, 3\right)\right\}, \ldots \ldots \cdot\right. \\
& \left.\left\{\left(x_{2 m}+g, 1\right),\left(2 x_{2 m}+g, 3\right)\right\}\right), \\
& E=\left\{\left\{\left(x_{21}+g, 4\right),\left(2 x_{21}+g, 2\right)\right\},\left\{\left(x_{22}+g, 4\right),\left(2 x_{22}+g, 2\right)\right\}, \ldots \ldots,\right. \\
& \left.\left\{\left(x_{2 m}+g, 4\right),\left(\frac{2 x_{2 m}}{}+g, 2\right)\right\}\right) \text {, } \\
& F=\{\{(h+g, 1),(g, 2),\{(n+g, 4),(g, 3)\},\{(g, 1),(g, 4)\} \text {, } \\
& \{(2 h+g, 2),(2 h+g, 3)\}) \text {. }
\end{aligned}
$$

We claim that $X^{*}=(A, B, C, D, E, F)$ is a strong starter for $G \oplus Z_{5}$. To prove that X^{*} is a starter, we must show that every non-zero elements of $G \oplus Z_{5}$ occurs in one component of X^{*} and that the set of all differences between elements of pairs in the components of X^{*} also consists of non-zero elements of $G \not+Z{ }_{5}$.
Since X is a starter, we see that each nonzero element of $G \oplus Z_{5}$ of the form $(x, 0)$ appears precisely once in some pair in the components of A .

Since $x+g$ will run over G as x runs over G, hence each element of the form $(x, 1)$ appears precisely once in one of B, D or F.

Since $2 x+g$ will run over G as x runs over G, hence each element of the form $(x, 2)$ appears exactly once in B, D or F. Similarly all elements of the form $(x, 3)$, and $(x, 4)$ appear exactly once.

Next we shall that all nonzero elements also occur as the difference of pairs in the components of X^{*} 。

Again, since X is a starter, it follows that all elements of the form ($x, 0$) occur as differences of pairs in the components of A. Observe that from B and C we can obtain the difference

$$
\begin{aligned}
\left(x_{1 i}, 1\right) & =\left(2 x_{1 i}+g, 2\right)-\left(x_{1 i}+g, 1\right) \\
-\left(x_{1 i}, 1\right) & =\left(x_{1 i}+g, 1\right)-\left(2 x_{1 i}+g, 2\right)
\end{aligned}
$$

Since $x_{1 i} \in P$, hence $-x_{1 i} \in N$. The only elements of $G \oplus Z_{5}$ of the form $(x, 1)$ which are not among the $\left(x_{1 i}, 1\right)$ and $-\left(x_{1 i}, 1\right)$ are $(0,1),(h, 1)$ and $(-h, 1)$. However, these elements can be seen to be the differences of pairs in F

จุฬาลงกรณ์มหาวิทยาลัย
The remaining non-zero elements of $G \oplus Z_{5}$ can be seen to be differences of elements in the pair in X^{*} in the same way as those of the form $(x, 1)$. It can be seen that all the elements of the form $(x, 2)$ can be written as differences of elements in the pairs of B, E, and F.

All the elements of the form ($x, 3$) can be written as difference of clements in the pair of D, E and F.

All the elements of the form (x,4) can be written as differences of elements in the pair of B, C and F.

So X^{*} is a starter of $G\left(+Z_{5}\right.$.

We complete the proof by showing that the starter X^{*} is strong.
We shall show that the sums of elements in pairs in the comnonents of X^{*} are all distinct and non-zero elements of $G \& Z_{5}$. The sums of elements in the pairs in A have the form $\left(x_{i}+y_{i}, 0\right)$. Since X is a strone starter. Hence $x_{i}+y_{i} ; i=1,2, \ldots$, s are non-zero and distinct.

Hence the sums of elements in the psir in the components of A are non-zero and distinct.

The sums of elements in the pairs in the components of B are of the form $(3 x+2 g, 3)$ where x, p and $x \neq h$. Similarly the sums of elements in the pairs in the components C are of the form $(3 x+2 q, 2)$ where $x \in P$ and $x \neq h$.

Similarly the sums of elements in the pairs in the components D, and P are of the form $(3 x+2 g, 4)$ and $(3 x+2,1)$ for $x \in N$.

Clearly all the elements of the forms $(3 x+2 p, 3),(3 x+2 g, 2)$, $(3 x+2 p, 4)$ and $(3 x+2 g, 4)$ Qare non-zero.TY

Suppose that $3 x+2 p=3 x_{1}+2 p$ where $x_{1} \neq x$. Then ve have $3 x=3 x_{1}$. Since 3^{-1} evists. Hence $x_{1}=x$.

Therefore all elements of the form $(3 x+2 r, 3),(3 x+2 m, 2),(3 x+2 r, 4)$
and ($3 x+2 g, 1$) sre distinct and non-zero.
Finally the sums of the pair fron F are $(h+2 g, 3),(h+2 p, 2)(2 g, 0)$ and $(4 h+2 g, 0)$. These are distinct from the other sums. Sunpose that $(h+2 g, 3)$ is among the above sums.

Hence $(h+2 g, 3)=(3 x+2 g, 3)$ for some $x \in P$ ，and $x \neq h$ ．
Therefore we have must $h+2 g=3 x+2 g$ ，

$$
\begin{aligned}
h & =3 x \\
3^{-1} h & =x
\end{aligned}
$$

This shows that $3^{-1} h \in P$ ，which is a contradiction．Hence $(h+2 g, 3)$ is distinct from the other sums．The same argument shows that $(h+2 g, 2)$ are distinct from the other sums．

Suppose that（ $2 g, 0$ ）is among the above sums．
Hence $(2 g, 0)=\left(x_{\dot{i}}+y_{i}, 0\right)$ for some $\left\{x_{i}, y_{i}\right\}$ in X ． Therefore $a=2 g=x_{i}+y_{i}$ ，which is contrary to the choice of a 。

Fine $(2 \mathrm{~g}, 0)$ is not among the above sums．Similarly we can show that $(4 h+2 g, 0)$ is distinct from the other sums．

Therefore $X^{*}=(A, B, C, D, E, F)$ is a strong starter for $G\left(H Z_{5}\right.$ 。

$$
O_{0} E_{0} T_{0}
$$

Theorem 3．2．2 If p is an odd prime such that $p^{n}=2^{k} t+1$ ；where k is a positive integer，and t is an odd integer greater than 1，then there is a Room Square of side $5 p^{n}$ 。

Proof．This theorem follows from theorems 3．2．1，3．1．2，3．1．3 and 3．1．4．

Corollary 3.2.3. If p is an odd prime and such that $p=2^{k} t+1$, where k is a positive integer and t is an odd integer greater than 1, then there is a Room Square of side 5 p .

Proff. This Corollary is just a special case $n=1$ of theorem 3.2 .2 .

