CHAPTER I

INTRODUCTION

1.1 Metal Indicator

A metal indicator(1) is an indicator which exhibits one visual response in the presence of a metal ion through complexation with it and a different one in its absence. Metal indicator mostly has an azoic structure and diverse structure.

Generally they are widely used in chalometric titrations for the end-point detection.

During the major portion of a direct chelometric titration, the metal indicator exists almost entirely in its "metal-lized" form and the "free" metal ion in progressively chelated by the chelon titrant. At the equivalence point, the chelon removes the traces of the metal from the metal-indicator complex and the indicator changes to its "free" form, thus signaling the end point. It is possible to classify the metal indicators broadly into four types according to their mode or mechanism of reaction.

1. Metallofluorescent indicators. (Metalfluorochromic indicators)

The chelation properties and mechanism of these indicators are similar to metallochromic indicators except that on formation of a chelate the fluorescence of the free form of the indicator is quenched or the chelate itself exhibits fluorescence. Chelometric titrations with such indicators are usually performed with the solution subjected to ultraviolet illumination.

2. Diverse metal-sensitive and metal-specific indicators.

This group of metal indicators are simple inorganic or organic substances, and which in general are themselves colorless, function to form colored complexes with a select number of metal ions. The color formation is attributed in some cases to charge-transfer spectra or to alteration of the ligand field strength. Such indicators usually exhibit for lower molar absorptivities, and hence are less sensitive than metallochromic indicators. In selected cases, the action and sensitivity of such indicators may be improved by the addition of an organic solvent, such as an alcohol or a ketone, to the titration medium. Common examples of such metal-sensitive indicators include thiocyanate ion, thiourea, iodide ion, salicylic acid, sulfosalicylic acid, and Tiron.

3. Turbidity indicators.

These indicators form finely divided insoluble substances with the metal ion. Thus, oxalate ion has been employed in the titration of EDTA with calcium ion, the end-point is signaled by the formation of insoluble calcium oxalate. Turbidity indicators are of little contemporary interest for complexometric titrations.

4 Metallochromic indicators.

Körbl and Přibil introduced the term metallochromic indicator(1) to designate a metal indicator that has acid-base activity and that functions in a chelometric titration by reacting with the

metal ion to form a chelate substantially soluble in the titration medium. In the structure of such indicators, one or more ligand groups must be directly jointed to a resonance system (such indicators are usually socalled mordant or chrome dyes). The change in the spacing of low-lying T-electron energy level resulting from the chelating causes a shift in the wavelength of the absorption bands, and hence a change in colour. The extent of the shift may depend to some extent on the metal ion involved, but the extent of the shift is a general property. For this reason, metallochromic indicators are applicable to a variety of metal ions, their use being limited usually by other factors, such as the formation of complexs with certain ions which are either too weak or too strong or which are too slow to substitution ability to permit their use in the direct chelometric titration of such ions.

Metallochromic indicators usually show significant acid-base indicator activity associated with the dissociation of protons of groups linked to the resonance system (or their protonation). The colour changes exhibited upon chelation usually fall within the ranges that can be elicited by pH changes, since the electronic configuration of the resonance system is similarly influenced by dissociation of protons (or protonation) and by chelation. The existence of such acid-base indicator activity often limits the usefulness of a metallochromic indicator to a definite (and frequently restricted) pH range.

Sharper end points are usually obtained when an extremely small concentration of a metallochromic indicator is employed in a chelometric titration. For this reason the indicator in either its metallized or its free from should have a large molar absorptivity in the visual spectral region, making possible its use at concentrations in the order of 10⁻⁵ molar.

1.2 Scandium

Scandium was discovered in 1879 by L.F Nilson (2) and is found in a few rare minerals such as wolframite, wiikite and cuxenite to the extent of 1% or 2% Sc₂0₃. Scandium has an electron configuration (3) [Ar]3d¹4s², which is a congener of aluminium, but is decidedly more basic in its properties, it is in many respects quite similar to yttrium and the lanthanides. It is not a rare element, being as common as arsenic and twice as abundant as boron, but its chemistry is not on the whole well known. This is due partly to the absence of rich sources of the element and also to the difficulty of obtaining it in a pure state.

Scandium metal is obtained by the electrolysis of fused scandium chloride. It is dimorphic and crystallises with the close - packed hexagonal structure or the close - packed cubic structure. It is easily oxidised. When heated in nitrogen it yields the interstitial nitride ScN, which is decomposed by water with the liberation of ammonia.

Scandium has only the III oxidation state in which it gives the oxide (Sc_2O_3), halide (ScX_3) and oxohalide (ScOX) as well as numerous salts of oxo acids. The possibility of being a dipositive oxidation state has been rather carefully examined and there is no evidence for its existance.

The scandium ion, being smaller, has a much greater tendency to hydrolysis than the lanthanide ions, and polymeric species as indicated below have been shown to arise with

$$\left[\begin{array}{c} OH \\ SC \end{array}\right]_{n} \left[\begin{array}{c} (n+3)^{+} \\ \end{array}\right]$$

chain length increasing as pH increases. It is perhaps to be expected that, since it is closely related to both aluminium and the elements of the first transition series, scandium ion forms complexes for more readily than do the lanthanides. For this reason, the methods of determination of scandium are based on complex formation with the cooperation of spectrophotometric studies.

1.3 Metallochromic Indicator (or Metallochrome) for Scandium.

Many organic compounds had been used as metallochromic reagents for scandium. The works which had been done were summarized in Table I.

Table I

Metalfochromic Indicators for Scandium.

ref.	4	5	9				<u></u>					ω	,	
interfering ion	1.37xl04 Al, Fe, Cu, Ni, Gr, Be, Po_3	2.70x104 F", PO-3, C20-2, tartrate, citrate	1.02xlo4 EDTA,Al(III),Be(II),U(VI),	Fe(II), Th(IV), Cu(II), Y(III)	1.40xl0 ³ Zr(IV),W(VI), > 100fold of Zn(II)	Pb(II),Sn(II)	8.00xlo ³ cd(II),Bi(III), > 50fold of	Mn(II),T1(III),>10 fold of PO	>5 fold of Al(III), Zr(IV), >0.5	fold of Th(IV), Fe(III), Cu(II),	most metal, PO-5, C20-2, tartrate			
W	1.37x104	2.70x104	1.02x104		1.40x10 ³		8.00x10 ³					1.30x104		
Stoich	1	ML ₂	ME		ML		1					ML		
Anax (nm)	630	550	530		900		420					590		
Нď	6.4-7.2	5.6		agen da digen mag - digen - credibi	i	agamagan kangan sa	4.5		maganisan kalamatan da maganisa ka		and an interpretation	5.2		
Reagents	Pontacyl Violet 4 BSN	Chrone Azurol S.	Lumogallion				Naphthyl Azoxine			Para ang sanakan		N,N'-bis(2-hydroxy-5-	sulphophenyl-C-cyano)	fornazan
ON Oi	Н	2	2			**********	4			3		2		

Table I (continued)

	-			And the spinish of th			
Reagents pH (< 0	A max (nm.)	Stoich	W	interfering ion	ref.
Magnezon 5.0-5.5	-		570	ž	1.10x10 ⁴		0/
3,4,5,7-tetrahydroxy- 3.0 4	4,92	4	415	MI	8,41x10 ³	To,Th, Mo,Fe,Ti,Zr,Be,	10
flavone(keempherol)	-				,	A1+3N1+2co+2v+5po-3so-2co-2	
						tartrate, citrate	
Chrome Azurol S. 5.5			625	ı	1.37x10 ⁵	1.37x105 A1+3Ga+3In+3,PO-3,F-	11
and Zephizamines 5.0	-		960	1	1		12
Glycjnccresol red 5.2	one of the second		490	ML ₃	2.1x104	Hf, In, Ga, Tl, Fe, Cu, Al, V, oxalate,	13
						citrate, F, Complexon(III), PO-3	
Stilbazochrome II 1.5-2.5			089	ML	2.35x10 ⁴		14
Methylthymol blue 3.1			582	ML ₂	ı		15
Pyrocatechol violet 6.0	0.9		t	M	1.87x10 ⁴		16
Chromal blue G.			290	ML2	3.14x104		17
1,5-bis(2-hydroxy-3,5,6 4.7-6.5 6		9	675	ML ₂	2.70x10 ⁴	2.70x104 Cu(II), Co(III), Fe(III), Ga, In,	18
-trichlorophenyl)-3- acetyl-fornazan	-					Pb(II), Hg(II), V(V), F, SO ₄ , Po ₄	
	descriptions in the contract of the contract o				alle france admit, p'ingl' tres. "A feir, ignig hyfe en kammut gall gamma		-

Table I (continued)

ref.	19		***************************************	50	21		22		23	, 24			
interfering ion				C204,F; citrate,EDTA	Se, Be, Cu(II), Al, Fe(III), Y, Th,	rare earth, C 0 4, F, citrate, EDTA			BO3 , tartrate, PO4	Mn, Co, Ni, Ge, Pb, Cu, UO2, Th, Ti, Zr,	Hf, Ga, In, Fe +3Al, F, Fo -3C20 and	30 <u>-</u> 2	
ω	6.00x10 ³	8.15x10 ³	1.40x10 ³	6.40x104	1		6.00x10 ⁴		5.06x10 ⁴	2.48x10 ⁴			
Stoich	M	ML	ML	ML ₂	ML ₂		1		ML3	ML			
/ max (nm.)	520	470	480	562	019		552		540	530			
Hď	4.0-4.6	4.0-4.2	4.0-4.2	1	9		4.5 0.3		8.1	1.3-6.0			
Reagents	Bromocresol green	Eromocresol purple	Bromocresol blue	Eriochrome brillion violet B.	Eriochrome Azurol G.		1,5-diantipyrinyl-3-	cyano formazan	4-(2-thiazolylazo) resorcinol	Phatalexon S.			
O.	15			16	17		18		19	20	Prophilips (1) and a prophilips (1)		

Table I (continued)

ref.	25	26							er til tellerin gra	
interfering ion	Th, Hf, Zr, Ti, Ga, Al and Fe		The state of the s							
8	M ₂ L 2.6x10 ⁴	2.39x10 ⁴	1.23x10 ⁴	ı	1.23x10 ⁴	2.35x10 ⁴	2.1(x,104			
max Stoich	M2L	ML	MT	1	ML	ML_2	ML_2			
/ max (nm.)	l ,	556	580	ı	580	260	490			
Hď	2.3-3.8	2.5	3.0	5.5	4.0	6.5	5.1			
Reagents	Thymolphathalexon S.	Xylenol orange	Methylthymol blue	Pyrocatechol violet	Chromazurol S.		Glycinecresol red)		
O.	21	22								

It appears that the reagents used for the determination of scandium spectrophotometrically as recorded in Table I may be classified into two main groups namely azo compounds and non-azo compounds.

From Table I, the reagents in the azo group are Pontacyl violet 4 BSN, Naphthyl azoxime, N,N'-bis (2- hydroxy-5-sulpho-nyl-C-cyano) formazan, Stilbazochrome II, and 4-(2-thiazolylazo) resorcinol, the rest are in the non-azo group. It can be seen that azo compounds are not widely used as metallochromic indicators for scandium comparing to those in non-azo group. This may be due to that the azo reagents give lower sensitivity. For this reason, the author decided to carry out a work in searching for a new azo compound which might be a potential metallochromic reagent for scandium compared to various azo compounds as recorded previously.