The same of the sa

CHAPTER IV

RESULTS

4.1 Quantity of Silver from Various Fixing Solution Waste

The results of the experiment with the aid of atomic absorption spectrophotometer (A.A.S.) for standard silver solution and various sources of used fixing solution are presented in Table 4.1 and Table 4.2 respectively. The standard silver solution were also presented graphically in Fig. A1 in Appendix I.

Instrument	conditions	nead
THEFT	CONGILLIONS	usea

Wavelength	328.1	nm.
Lamp width	3.0	mA.
Slit width	100	ונ
Slit height	10	mm.
Air pressure	15	psig
Air : Aceteline	3:7	

Table 4.1 Absorbance of standard silver solution from A.A.S.

Std. Silver Solution	Absorbance			Average
(p.p.m.)	I	II	III	absorbance
1	4	4	4	4.00
2	9	8	9	8.66
4	18	19	18.5	18.50

Table 4.1 Absorbance of standard silver solution from A.A.S.

(continue)

Std. Silver Solution		Absorbanc	Average	
(p.p.m.)	I	II	III	absorbance
6	30	28	28	28.66
8	35	36	36	35.66
10	48	47	47	47.33

Table 4.2 Silver concentration of various fixing solution waste.

Source of used fixing solution	Type of * film	pH of fixing	Volume # litre/Day	Average * Absorbance	Ag g/litre	Quantity of Silver g/Day
Rochester color lab	P.F.	5.91	60	29•33	6•3	378.0
Technic color lab	P.F.	6.40	66	26.00	5.6	369.6
Kodak Thailand Co.Ltd	. P.F.	6.65	45	34.00	7.3	328.5
Saha color lab	P.F.	5•26	48	27.50	5.9	283.2
Vity cene color lab	M.F.	5.72	55	23.66	5.1	280.0
Cenae color lab	M.F.	5.01	60	18.50	4.0	240.0
Directorate of photo-	A.F.	5.50	32	35.0	7.5	240.0
graphy, RTAF.						
First color lab	P.F.	5.86	35	31.17	6.7	234.5
C.P.S. color lab	P.F.	4.72	53	20.66	4.4	233.2
Rama hospital	X.F.	6.44	25	42.83	9.2	230.0
Directorate of	A.F.	5.25	27	38.17	8.2	221.0
mapping RTAM.			-			

Table 4.2 Silver concentration of various fixing solution waste. (continue)

Source of used fixing solution	Type of + film	pH of fixing	Volume# (litre/Day)	Average * Absorbance	(Ag) g /litre	Quantity of Silver g/Day
Phumipol hospital	X.F.	5.56	23	41.83	9.0	207.0
Thai color lab	P.F.	5.89	30	28.0	6.0	180.0
Phramongkut hospital	X.F.	6.03	20	34.5	7.4	148.0
Agfa photo finishing	P.F.	6.36	20	34.5	7.4	148.0
center			1			
Siriraj hospital	X.F.	6.16	20	30.17	6.5	130.0
Rhognsilp cenae lab	M.F.	5.82	30	20.00	4.3	129.0
Paolo memorial hospita	1 X.F.	4.96	8	51.17	11.0	88.0
Computer color lab	P.F.	4.93	16	23.66	5.1	81.6
Pathumvan X-ray lab	X.F.	5.56	5	52.00	11.2	56.0
Pure color lab	P.F.	6.18	10	25.17	5.4	54.0
Samsaen X-ray	X.F.	5.39	5	47.00	10.1	50.5
Amorn color lab	P.F.	6.59	10	22.0	4.7	47.0
Paholyotin X-ray Co.Lt	d. X.F.	6.07	5	38.66	8.3	41.5

Table 4.2 Silver concentration of various fixing solution waste. (continue)

Type of* film	pH of fixing	Volume # litre/Day	Average * Absorbance	Ag g/litre	Quantity of Silver g/Day
d. X.F.	5.11	5	33.00	7.1	35.5
P.F.	5.86	10	15.0	3.2	32.0
X.F.	6.57	3	34.5	7.4	. 22.2
X.F.	5.99	3	30.17	6.5	19.5
	film d. X.F. P.F. X.F.	film d. X.F. 5.11 P.F. 5.86 X.F. 6.57	film litre/Day d. X.F. 5.11 5 P.F. 5.86 10 X.F. 6.57 3	film litre/Day Absorbance d. X.F. 5.11 5 33.00 P.F. 5.86 10 15.0 X.F. 6.57 3 34.5	film litre/Day Absorbance g/litre d. X.F. 5.11 5 33.00 7.1 P.F. 5.86 10 15.0 3.2 X.F. 6.57 3 34.5 7.4

- + Type of film; A.F. is aerial films, M.F. is motion picture films, P.F. is photofinishing films. and X.F. is X-ray films.
- # Volume per day are approximated volume which obtained by questionniare.
- In quantitative analysis by A.A.S., all these sample was diluted to ratio 1: 1,000 before absorbance measurement.

4.2 Decomposition Potential of Pure Silver Complex (NaAgS 203)
Solution and Used Fixing Solution.

The results of the experiment on decomposition potential determination of pure silver complex (NaAgS₂O₃) solution and used fixing solution which have the same silver concentration 7.5 grams per litre are presented in Tables 4.3 and 4.4, and are also presented graphically in Figures 4.1 and 4.2 respectively. The decomposition potential were determined from these graph and shown in Table 4.5 including the current density observation at the time the first black particles were formed rapidly to become a serious dirt problem.

Table 4.3 Experimental data on decomposition potential determination of pure silver complex (NaAgS₂O₃) solution, Silver concentration: 7.5 g/l at temperature 30°c.

Applied Potential	Current (Amp.)				
(volt)	0 R.P.M.	500 R.P.M.	1,000 R.P.M.		
0	0	0	0'		
0.2	0	0	0		
0.4	0.02	0.04	0.05		
0.6	0.12	0.15	0.20		
0.8	0.14	0.32	0.40		
1.0	0.22	0.48	0.75		
1.2	0.28	0.75	1.05		
1.4	0.32	1.10	1.35		

Table 4.3 Experimental data on decomposition potential determination of pure silver complex (NaAgS₂O₃) solution, Silver concentration: 7.5 g/l at temperature 30°c. (continue)

Applied Potential	Current (Amp.)				
(volt)	0 R.P.M.	500 R.P.M.	1,000 R.P.M.		
1.6	0.43	1.48	1.75		
1.8	0.59	1.90	2.15		
2.0	0.75	2.37	2.40		
2•2	0.98	2.71	3.20		
2.4	1.20	3.22	3.75		
2.6	1.48	3.83	4.25		
2.8	1.75	4.21	4.80		
3.0	2.17	4.70	5.20		
3.2	2.68	5.21	5.60		
3.4	3.00	5.53	6.10		
3.6	3.60	6.02	6.80		
3.8	4.08	6.55	7.50		
4.0	4.55	6.97	8.10		

Table 4.4 Experimental data on decomposition potential determination of used fixing solution, Silver concentration: 7.5 g/l, at temperature 30°c.

Applied Potential		Current (Amp	.)
(volt)	0 R.P.M.	500 R.P.M.	1,000 R.P.M.
0	0	0	0
0.2	0	0	0
0.4	0.02	0.05	0.05
0.6	0.08	0.10	0.13
0.8	0.15	0.25	0.45
1.0	0.23	0.45	0.62
1.2	0.30	0.66	0.85
. 1.4	0.35	0.95	0.35
1.6	0.45	1.35	1.60
1.8	0.65	1.70	2.20
2.0	0.80	2.25	2.62
2.2	1.05	2.70	3.25
2.4	1.33	3.25	3.80
2.6	1.65	3.90	4.43
2.8	2.02	4.50	4.80
3.0	2.36	5.30	5.30
3.2	2.80	6.10	6.00
3.4	3.15	6.70	6.80
3.6	3.65	7.50	7.20

Table 4.4 Experimental data on decomposition potential determination of used fixing solution, Silver concentration: 7.5 g/l, at temperature 30°c (continue)

Applied Potential	Current (Amp.)				
(volt)	0 R.P.M.	500 R.P.M.	1,000 R.P.M.		
3.8	4.17	8.00	7.50		
4.0	4.75	8.50	8.00		

Table 4.5 Comparation of decomposition potentials at various speed of rotation and current observation at the time the first black particles were formed.

Rotation Speed	Pure silv	er complex	Used fixi	Used fixing solution	
(R.P.M.)	E _D (volt)	Current (Amp.)	E _D (volt)	Current (Amp.)	
0	1.87	0.43	1.90	0.35	
500	0.93	1.10	1.29	0.95	
1,000	0.90	1.75	0.97	1.60	

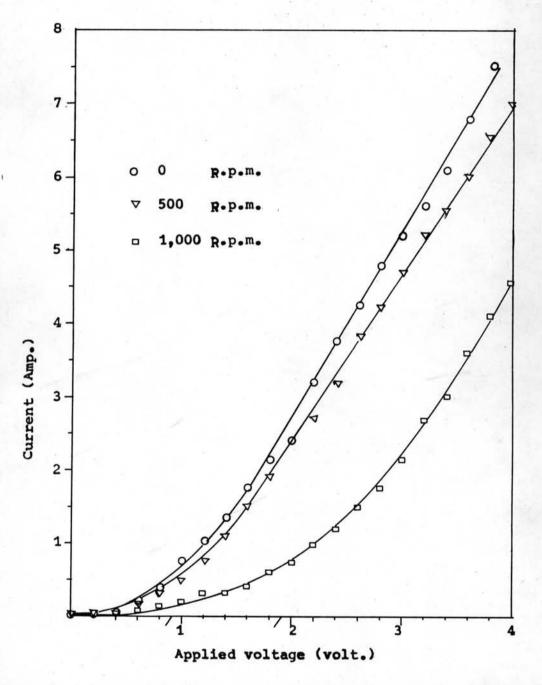


Figure - 4.1 Decomposition potential of pure silver complex

Solution, Silver 7.5 g./l., at various cathode

rotating speeds, Temperature 30°c Ep (0 r.p.m.) =

1.87 v., Ep (500 r.p.m.) = 0.93 v., Ep (1,000 r.p.m.)

= 0.90 v.



Figure 4.2 Decomposition potential of used fixing solution,

Silver 7.5 g./l., at various cathode rotating

speeds, Temperature 30°c, Ep (0 r.p.m.) = 1.90 v., Ep

(500 r.p.m.) = 1.29 v., Ep (1,000 r.p.m.) = 0.97 v.,

4.3 Current Efficiency at Various Cathode Rotating Speed.

The results of the experiment on quantitative analysis of silver concentration in used fixing lolution during silver electrolytic cell operation by atomic absorption spectrophotometer at various time intervals are presented in Table 4.6 and are also presented graphically in Figure 4.3. The cathode rotating speed used were 200, 400, 600, 800 and 1,000 r.p.m. The results of calculation on current efficiency at the various cathode rotating speed are presented in Table 4.7 and are also presented graphically in Figure 4.4.

All experiments were operated at the following condition: $E_{\rm app} = 1.3$ volt, current density = 0.3 asd., temperature = 30°c, initial silver concentration of used fixing solution = 7.5 g./l., and pH = 5.5.

Theoretical weight of deposited silver can be calculated by Equations 2.6 and 2.10

$$W = \frac{\text{Wm (I x t)}}{96,493 \text{ x n}}$$

The experimental weight of deposited silver can be calculated from silver concentration data in Table 4.6 and the current efficiency can be calculated by using Equation 2.14

 $\frac{\text{GM, expt.}}{\text{GM, theor.}} \times 100$

Table 4.6 Experimental results of silver concentration at various cathode rotating speed.

Time	200 r.r	o.m.	400 r.p.m.		600 r.p.m.		800 r.p.m.		1,000 r.p.m.	
(min)	av. absorbance	Ag g /1	av. absorbance	Ag g /1	av. absorbance	Ag g /l	av. absorbance	·Ag g /l	av. absorbance	Ag /1
0	34.83	7.50	34.83	7.50	35.00	7.50	35.00	7.50	34.83	7.50
30	30.00	6.45	30.00	6.45	29.50	6.35	29.33	6.30	29.50	6.35
60	25.66	5.50	24.50	5.25	24.50	5.25	24.00	5.15	23.33	5.00
90	20.33	4.35	20.17	4.33	19.17	4.10	18.66	4.00	17.83	3.8
120	15.66	3.35	15.00	3.20	13.50	2.80	12.83	2.75	14.66	3.1
150	11.17	2.40	10.50	2.25	8.17	1.75	7.50	1.60	8.17	1.7

Note: All. sample preparation for quantitative analysis by A.A.S were diluted with deionized water in dilution ratio 1: 1,000

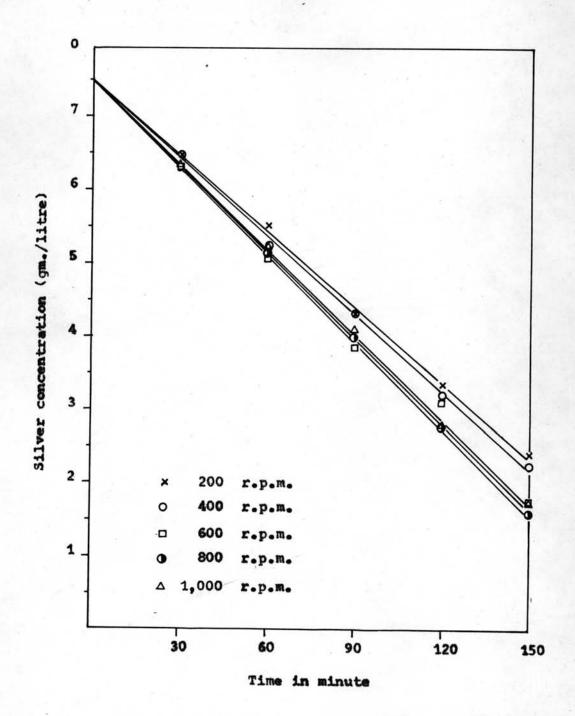


Figure 4.3 Silver concentration at various cathode retating speeds, current density = 0.3 asd., pH = 5.50,

Temperature 30°c, E = 1.30 volts.

Example at 200 r.p.m.

Table 4.7 Current efficiency values of electrolytic silver recovery at various cathode rotating speed.

83.82

Rotating speed	Weight of dep	Current		
(r.p.m.)	Theoretical	experimental	efficiency	
200	3.0186	2.5303	83.82	
400	3.0186	2.6058	86.32	
600	3.0186	2.8565	94.63	
800	3.0186	2.9318	97.12	
1,000	3.0186	2.8567	94.64	

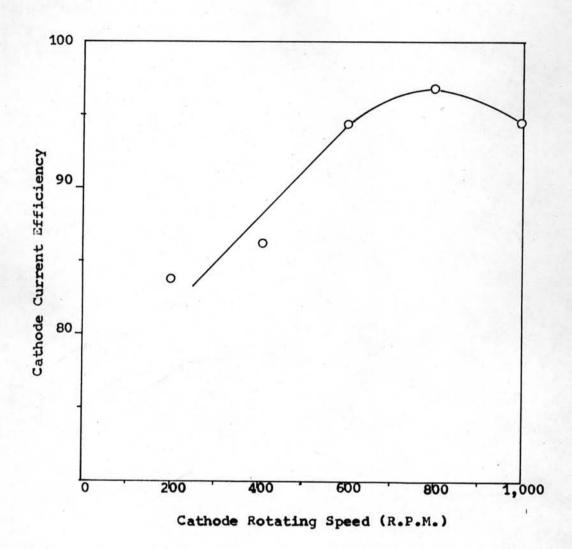


Figure 4.4 Dependence of cathode current efficiency on cathode rotating speed, current density = 0.3 asd., pH = 5.50, Temperature 30°c.

4.4 Current Efficiency at Various pH and Current Density

The results of the experiment on the current efficiency determination at various current density for various pH of used fixing solution are presented in Tables 4.8, 4.9, 4.10. 4.11, 4.12, 4.13 and 4.14 and are also presented graphically in Figure 4.5.

All experiment were operated at the following condition: $E_{\rm app} = 1.2 - 1.5$ volts, rotating speed = 800 r.p.m., temperature = 30°c, initial silver concentration of used fixing solution = 7.5 g /1, and the quantity of glacial acetic acid and 12 N. sodium hydroxide used to control the pH were as presented in Table 4.15.

Table 4.8 Experimental results of current efficiency determination at various current density of used fixing solution pH = 3.8.

Current	Yield	0.1 N.KSCN ml.	Purity	Wt. of Si	Current	
Density (asd.)			%	Theor.	Expt.	Efficiency
0.1	1.0361	9.03	97.41	1.3416	1.0093	75.23
0.3	1.2193	9.20	99.25	1.3416	1.2102	90.20
0.5	1.2340	9.17	98.92	1.3416	1.2207	90.99
0.7	1.2847	9.10	98.17	1.3414	1.2612	94.02
0.9	1.2584	9.00	97.09	1.3412	1.2218	91.09

Table 4.9 Experimental results of current efficiency determination at various current density of used fixing solution pH = 4.5

Current	Yield	0.1 N.KSCN	Purity	Wt. of S	Current	
Density (asd.)	(g)	ml.	%	Theor.	Expt.	Efficiency
0.1	1.0656	9.13	98.49	1.3416	1.0495	78.33
0.3	1.2962	9.20	99.25	1.3416	1.2864	95.88
0.5	1.3082	9.07	97.84	1.3416	1.2799	95.40
0.7	1.3071	9.10	98.17	1.3414	1.2832	95.66
0.9	1.2366	9.15	98.71	1.3412	1.2206	91.10

Table 4.10 Experimental results of current efficiency determination at various current density of used fixing solution pH = 5.5

Current	Yield	Yield 0.1 N.KSCN	Purity	Wt. of s	Current		
Density (asd.)	(g)	ml.	%	Theory	Expt.	Efficiency	
0.1	1.0823	9.20	99.25	1.3416	1.0742	80.07	
0.3	1.3283	9.10	98.17	1.3416	1.3040	97.20	
0.5	1.3287	9.10	98.17	1.3416	1.3044	97.23	
0.7	1.2932	9.23	99.57	1.3414	1.2876	95.99	
0.9	1.3026	9.07	97.85	1.3412	1.2746	95.03	

Table 4.11 Experimental results of current efficiency determination at various current density of used fixing solution pH = 6.5

Current	Yield	0.1 N.KSCN	Purity	Wt. of S	Current		
Density (asd.)	(g)	ml.			Expt.	Efficiency	
0.1	1.0981	9.13	98.49	1.3416	1.0815	80.61	
0.3	1.3201	9.20	99.25	1.3416	1.3102	97.66	
0.5	1.3403	9.17	98.92	1.3416	1.3258	98.82	
0.7	1.3232	9.20	99.25	1.3414	1.3133	97.90	
0.9	1.3191	8.97	96.77	1.3412	1.2765	95.17	

Table 4.12 Experimental results of current efficiency determination at various current density of used fixing solution pH = 7.0

Current	Yield	ld 0.1 N.KSCN	Purity	Wt. of S	Current	
Density (asd.)	(g)	ml.	%	Theor.	Expt.	Efficiency
					1.5	
0.1	1.0693	9.20	99.25	1.3416	1.0613	79.11
0.3	1.3118	8.90	96.01	1.3416	1.2594	93.87
0.5	1.3279	9.17	98.92	1.3416	1.3136	97.90
0.7	1.3061	9.05	97.63	1.3414	1.2751	95.06
0.9	1.2808	9.13	98.49	1.3412	1.2614	94.05

Table 4.13 Experimental results of current efficiency determination at various current density of used fixing solution pH = 8.0

Current	Yield	0.1 N.KSCN	Purity	Wt. of S:	Current	
Density (asd.)	(g)	ml.	%	Theor.	Expt.	Efficiency
0.1	1.0402	9.10	98.17	1.3416	1.0212	76.12
0.3	1.2103	9.15	98.71	1.3416	1.1947	89.05
0.5	1.2973	9.07	97.84	1.3416	1.2693	96.62
0.7	1.2884	9.00	97.09	1.3414	1.2509	93.25
0.9	1.2485	9.15	98.71	1.3412	1.2324	91.89

Table 4.14 Experimental results of current efficiency determination at various current density of used fixing solution pH = 10.0

Current	Yield	0.1 N.KSCN	Purity	Wt. of S	Current	
Density (asd.)	(g)	ml.	%	Theor.	Expt.	Efficiency
0.1	1.0250	8.40	90.62	1.3416	0.9288	69.23
0.3	1.2922	8.47	91.37	1.3416	1.1807	88.01
0.5	1.3263	8.60	92.78	1.3416	1.2305	91.72
0.7	1.2937	8.60	92.78	1.3414	1.2003	89.48
0.9	1.3119	8.30	89.54	1.3412	1.1747	87.58

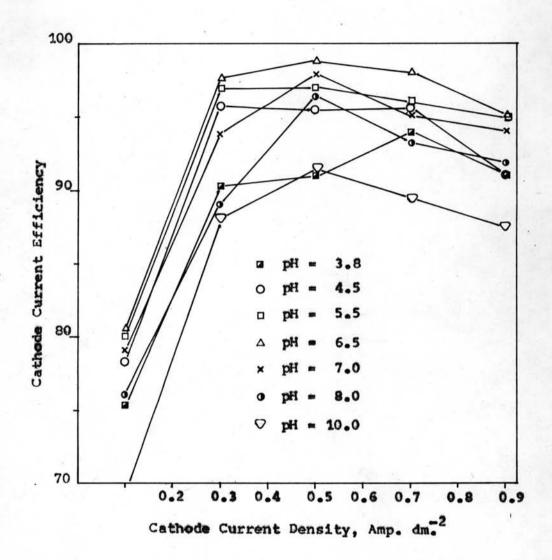


Figure 4.5 Effect of pH on cathode current efficiency., retating speed = 800 r.p.m., temperature 30°c, E app 1.2 - 1.5 volts.

Table 4.15 Quantity of acid and base used to control pH of 500 ml. used fixing solution having original pH = 5.5

pН	12 N. NaOH	Glacial HOAc	Total addition ml.	% Volume Increase
3.8	1.12	17.72	18.84	3.76
4.5	0.38	2.04	2.42	0.48
5.5	1.15	-	1.15	0.23
6.5	3.23	-	3.23	0.64
7.0	3.97	-	3.97	0.79
8.0	4.53	-	4.53	0.90
10.0	4.81	_	4.81	0.96

4.5 Minimum Silver Concentration at Various Current Density.

The result of the experiment on quantitative analysis of silver concentration at which black particles (silver sulfide) were formed at the cathode for various current density are presented in Table 4.16 and are also presented graphically in Figure 4.6

All experiment were operated at the following condition: $E_{\rm app} = 1.2 - 1.5$ volts. rotating speed = 800 r.p.m., temperature = 30°c, initial silver concentration of used fixing solution = 7.5 g /1 , and pH = 6.5

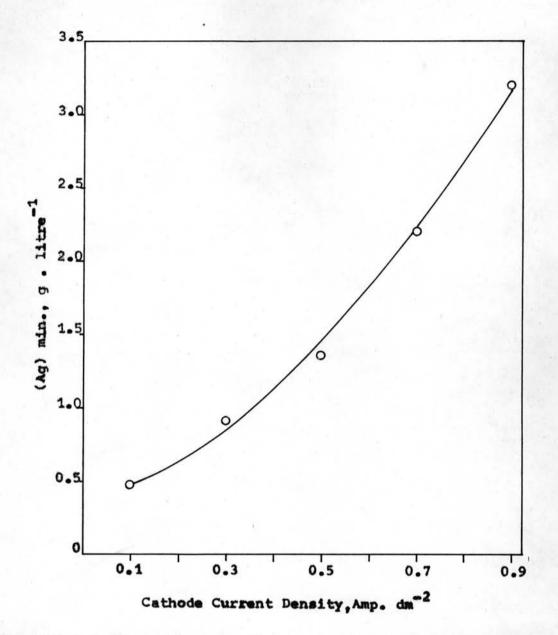


Figure 4.6 Dependence of silver concentration at which Silver sulfide occurred on cathode current density, rotating speed = 800 r.p.m., pH = 6.5, temperature = 30°c

Eapp = 1.2 - 1.5 volts.

Table 4.16 Experimental results of minimum silver concentration at which silver sulfide appeared, at various current density.

Current Density asd.	Dilution Ratio	Average Absorbance	Ag min g/litre.
0.1	1 : 100	22.17	0.47
0.3	1: 100	42.50	0.91
0.5	1:1,000	6.33	1.35
0.7	1:1,000	10.33	2.20
0.9	1:1,000	14.83	3.20

4.6 Current Efficiency at Various Sodium Sulfite Concentration.

The results of the experiment on quantitative analysis of silver concentration at various time intervals for various sodium sulfite concentration are presented in Table 4.17, and the results of calculation on current efficiency for various sodium sulfide concentration are presented in Table 4.18 and are presented graphically in Figure 4.7

All experiment were operated at the following condition: $E_{app} = 1.3 \text{ volts}$, current density = 0.5 asd. temperature = 30°c initial silver concentration of pure silver complex (NaAgS₂O₃) solution = 7.5 g /l at pH = 6.5

Table 4.17 Experimental results of silver concentration analysis by A.A.S. for various sodium sulfite concentration.

Time	without Na ₂ SO ₃		5 g. Na ₂ S	5 g. Na ₂ SO ₃ /litre		SO ₃ /litre	30 g. Na ₂ SO ₃ /litre	
(min)	AV. Absorbance	Ag g /1	Av. Absorbance	Ag g /1	Av. Absorbance	Ag g /l	Av. Absorbance	Ag g /1
0	35.00	7.50	35.17	7.50	35.0	7.50	35.0	7.50
20	28.66	6.19	28.83	6.22	29.0	6.24	28.83	6.22
40	22.83	4.92	23.00	4.95	22.83	4.92	22.83	4.92
60	17.00	3.65	17.00	3.65	17.17	3.67	16.66	3.60
80	11.33	2.43	11.17	2.41	11.00	2.36	11.00	2.36
100	6.00	1.28	5.66	1.22	5.17	1.09	5.17	1.09

Table 4.18 Experimental results of current efficiency for various sodium sulfite concentration.

		Without Na ₂ SO ₃		5 g. Na ₂ SO ₃ /1		15 g. Na ₂ SO ₃ /1		30 g. Na ₂ SO ₃ /1	
Time (min)	Wt. of Ag. Theor./ 20 min	Wt. of Ag. Expt./ 20 min	Current Efficie- ncy		Current Efficiency	Wt. of Ag Expt./ 20 min	Current Efficie- ncy	Frent /	Current Efficie ncy
0	-	_	-	-	-	-		-	_
20	0.6708	0.655	97.64	0.640	95.40	0.630	93.91	0.640	95.40
40	0.6708	0.635	94.66	0.635	94.66	0.660	98.38	0.650	96.89
60	0.6708	0.635	94.66	0.650	96.89	0.625	93.17	0.660	98.38
80	0.6708	0.610	90.93	0.620	92.43	0.665	97.64	0.620	92.42
100	0.6708	0.575	85.71	0.595	88.70	0.635	94.66	0.635	94.66

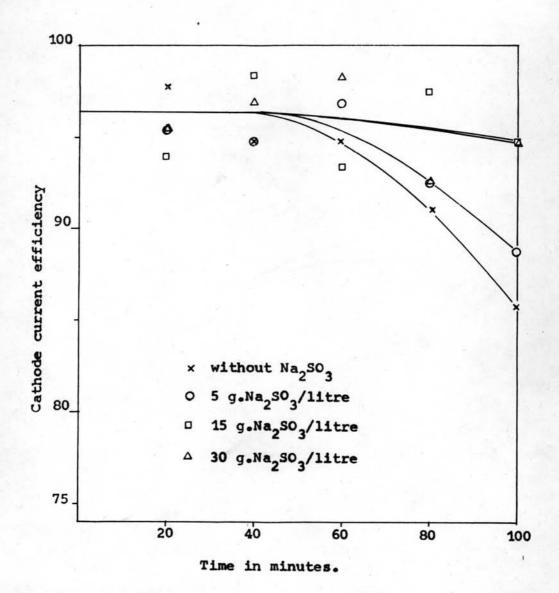


Figure 4.7 Effect of Sodium sulphite on current efficiency, rotating speed = 800 r.p.m., pH = 6.5, current density = 0.5 asd., Temperature = 30°c, E app = 1.3 volts.

4.7 Current Efficiency of Various Fixing Solution at Optimum Condition.

The results, of the experiment on current efficiency determination of various fixing solution at optimum condition which have the following operating condition: E = 1.3, current density = 0.5 asd., rotating speed = 800 r.p.m., pH = 6.5, and temperature = 30°c, are presented in Table 4.19

All of these fixing solution were diluted to the same silver concentration, 5 g / 1, with deionized water.

Table 4.19 Experimental results of current efficiency determination on different Type of fixing solution in comparism with pure silver complex + 15 g. Na_2^{SO} /litre.

Type of fixing solution	Wt. of Yield (g)	0.1 N.KSCN ml.	Purity %	Wt. of Ag Expt. (g)	Current Efficie- ncy
B & W aerial film fixing solution	2.0183	9.10	98•17	1.9814	98.46
Color aerial film fixing solution	1.9687	9.20	99.25	1.9540	97.10
B & W negative film fixing solution	1.9951	9.05	98•63	1.9678	97.79
Color negative film fixing solution	1.9754	9•13	98.49	1.9456	97.68
X-ray film fixing solution	1.9832	9.17	98.92	1.9618	97.49

Table 4.19 Experimental results of current efficiency determination on different

Type of fixing solution in comparism with pure silver complex + 15 g.

Na₂SO₃ /litre. (continue)

Type of fixing solution	Wt. of Yield (g)	0.1 N.KSCN ml.	Purity %	Wt. of Ag Expt. (g)	Current Efficie- ncy
Motion picture fixing solution	2.0109	8.90	96.01	1.9307	96.94
Pure silver complex + 15 g.	1.9712	9.25	99.78	1.9669	97.74
Na ₂ SO ₃ /litre.					

Note. The operating time = 1 hr., theoritical weight of recovery silver is equal to $3600 \text{ sec } \times 0.5 \text{ amp. } \times .001118 = 2.0124 \text{ g.}$